

IMAGE SEGMENTATION

Ondřej Drbohlav, Václav Hlaváč, Jan Kybic

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

{drbohlav,hlavac,kybic}@fel.cvut.cz, http://cmp.felk.cvut.cz

WHAT IS IMAGE SEGMENTATION ?

 What is easy for humans is generally not easy for computers. This is the case.

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.
- When trying to figure out what the brain is doing, the ability to find the answer depends on the image in question:

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.
- When trying to figure out what the brain is doing, the ability to find the answer depends on the image in question:

Cells?

Cells are black.

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.
- When trying to figure out what the brain is doing, the ability to find the answer depends on the image in question:

Cells?

Cells are homogeneous *connected regions*.

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.
- When trying to figure out what the brain is doing, the ability to find the answer depends on the image in question:

Artery?

Arteries are bright and *tend* to be elongated. They may have branches.

- What is easy for humans is generally not easy for computers. This is the case.
- We, humans, do not know how we proceed when segmenting what we see. The brain provides the solution but hides the algorithm.
- When trying to figure out what the brain is doing, the ability to find the answer depends on the image in question:

Nose?

??? "I just see it".

THRESHOLDING

THRESHOLDING

5/30

• pixel is labeled to belong to object based on its intensity:

- intensity higher than threshold \Rightarrow object
- intensity lower than threshold \Rightarrow background
- + Simplest algorithm hardly exists.
- Works only for subclass of images in which objects are distinct from background in intensity.

DEPENDENCY ON THRESHOLD SELECTION

Original image.

Properly set threshold.

Threshold too low.

Threshold too high.

AUTOMATIC THRESHOLD DETECTION BY HISTOGRAM ANALYSIS

m p

7/30

AUTOMATIC THRESHOLD DETECTION BY HISTOGRAM ANALYSIS

m p

7/30

OPTIMAL THRESHOLDING BY MIXTURE OF GAUSSIANS

Motivation:

EXAMPLE, SEGMENTATION OF THE BRAIN MRI

Input: T1-weighted NMR images.

Desired classes: white matter, grey matter, celebro-spinal fluid (CSF)

BRAIN MRI, SEGMENTATION RESULT

EDGE-BASED SEGMENTATION

WHAT IS AN EDGE?

- vector attached to each pixel
- it has the direction of iso-intensity contour
- its magnitude is proportional to the steepness of image intensity in the pixel neighbourhood

EDGES: EXAMPLE

Original image.

Edge magnitude.

Non-maximal suppression. Nonmax + gradient direction.

HOW CAN EDGES HELP?

Facts:

- edges have high magnitude where changes in intensity are high
- they point in direction of zero intensity change

Implication:

- edges can serve as fragments of boundaries between regions
- tracing edges may recover these boundaries

HOW CAN EDGES HELP? EXAMPLE

Segmentation: GRAPH SEARCHING

REGION-BASED SEGMENTATION

REGION-BASED SEGMENTATION

- relies on homogeneity of regions with respect to certain property
- property (ex.): texture, intensity, color

REGION-BASED SEGMENTATION

р

19/30

Possible strategies for extracting regions:

region growing

. . .

- hierarchical image splitting
- watershed segmentation

The region-based segmentation can be seen as complementary to the edge-based one.

WATERSHED SEGMENTATION

Segmentation of particles

(a) input binary image, (b) distance function, (c) topographic image of catchment basins, (d) watershed segmentation

р

20/30

WATERSHED SEGMENTATION

Segmentation of cells (gray-scale image)

ACTIVE CONTOURS/SNAKES

(Data/lecture_snakes_sonka.html)

(*leaching/dzo/resources/lecture_snakes_lundervold.pdf*)

(*l*teaching/dzo/resources/snakes)

LEVEL-SET BASED SEGMENTATION

Dynamically evolving boundary:

- the boundary is initiated as a small circle
- it is evolved with normal speed inversely proportional to gradient magnitude

\Rightarrow Video

```
mplayer -fs Movieartery.mpeg
```


HOUGH TRANSFORM

HOUGH TRANSFORM

- knowledge about the object shape is used
- voting into space of object shape parameters

Example: Lines

(x,y) space

(k,q) space

HOUGH TRANSFORM

Better parametrisation:

50 55

60

10 20 30 40 50 60

10 20 30 40

50

 $x\cos\theta + y\sin\theta + R = 0$

HARDER PROBLEMS

HARDER PROBLEMS: SOLUTION STRATEGIES

formulation of additional constraints

- topological constraints
- shape constraints
- . . .
- sample-based methods \Rightarrow recognition techniques
 - neural networks
 - PCA, LDA
 - . . .

Typically, identification of local features is not possible without global image interpretation.

Matlab demo

- >> ipexsegcell
- >> ipexsegmicro
- >> ipexsegwatershed
SUMMARY

- segmentation finds objects of interest in the image
- the algorithm is highly dependent on the task to be solved

... thank you!

р

30/30

Frequency

Intensity

(d)

