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WHAT IS IMAGE SEGMENTATION ?
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IS SEGMENTATION EASY?

� What is easy for humans is generally not easy for computers.

This is the case.
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IS SEGMENTATION EASY?

� What is easy for humans is generally not easy for computers.

This is the case.

� We, humans, do not know how we proceed when segmenting what we

see. The brain provides the solution but hides the algorithm.

� When trying to figure out what the brain is doing, the ability to find the

answer depends on the image in question:

Artery?

Arteries are bright and tend to be

elongated. They may have

branches.
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IS SEGMENTATION EASY?

� What is easy for humans is generally not easy for computers.

This is the case.

� We, humans, do not know how we proceed when segmenting what we

see. The brain provides the solution but hides the algorithm.

� When trying to figure out what the brain is doing, the ability to find the

answer depends on the image in question:

Nose?

??? “I just see it”.
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THRESHOLDING
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THRESHOLDING

� pixel is labeled to belong to object based on its intensity:

• intensity higher than threshold ⇒ object

• intensity lower than threshold ⇒ background

+ Simplest algorithm hardly exists.

– Works only for subclass of images in which objects are distinct from

background in intensity.
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DEPENDENCY ON THRESHOLD SELECTION

Original image. Properly set threshold.

Threshold too low. Threshold too high.
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AUTOMATIC THRESHOLD DETECTION
BY HISTOGRAM ANALYSIS
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OPTIMAL THRESHOLDING
BY MIXTURE OF GAUSSIANS

Motivation:
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EXAMPLE, SEGMENTATION OF THE BRAIN MRI

Input: T1-weighted NMR images.

Desired classes: white matter, grey matter, celebro-spinal fluid (CSF)
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BRAIN MRI, SEGMENTATION RESULT
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BRAIN MRI, SEGMENTATION RESULT
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EDGE-BASED SEGMENTATION

http://cmp.felk.cvut.cz


12/30

WHAT IS AN EDGE?

White 255
Black

0

 φ
Gradient

Edge direction 
ψ

� vector attached to each pixel

� it has the direction of iso-intensity contour

� its magnitude is proportional to the steepness of image intensity in the

pixel neighbourhood
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EDGES: EXAMPLE

Original image. Edge magnitude.

Non-maximal suppression. Nonmax + gradient direction.
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HOW CAN EDGES HELP?

Facts:

� edges have high magnitude where changes in intensity are high

� they point in direction of zero intensity change

Implication:

� edges can serve as fragments of boundaries between regions

� tracing edges may recover these boundaries
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HOW CAN EDGES HELP?
EXAMPLE
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Segmentation: GRAPH SEARCHING
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REGION-BASED SEGMENTATION
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REGION-BASED SEGMENTATION

� relies on homogeneity of regions with respect to certain property

� property (ex.): texture, intensity, color
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REGION-BASED SEGMENTATION

Possible strategies for extracting regions:

� region growing

� hierarchical image splitting

� watershed segmentation

� . . .

The region-based segmentation can be seen as complementary to the

edge-based one.
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WATERSHED SEGMENTATION

Segmentation of particles

(a) input binary image, (b) distance function, (c) topographic image of

catchment basins, (d) watershed segmentation

(c) (d)

(a) (b)
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WATERSHED SEGMENTATION

Segmentation of cells (gray-scale image)
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ACTIVE CONTOURS/SNAKES

(Data/lecture snakes sonka.html)

(~/teaching/dzo/resources/lecture snakes lundervold.pdf)

(~/teaching/dzo/resources/snakes)
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LEVEL-SET BASED SEGMENTATION

Dynamically evolving boundary:

� the boundary is initiated as a small circle

� it is evolved with normal speed inversely proportional to gradient

magnitude

⇒ Video

mplayer -fs Movieartery.mpeg
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HOUGH TRANSFORM

http://cmp.felk.cvut.cz


25/30

HOUGH TRANSFORM

� knowledge about the object shape is used

� voting into space of object shape parameters

Example: Lines

(x, y) point in an image y = kx + q

(k, q) line parameters

(k,q)  space(x,y)  space
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HOUGH TRANSFORM

Better parametrisation:

�

�

�

�

x cos θ + y sin θ + R = 0

(x, y) space (θ, R) space
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HARDER PROBLEMS
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HARDER PROBLEMS: SOLUTION STRATEGIES

� formulation of additional constraints

• topological constraints

• shape constraints

• . . .

� sample-based methods ⇒ recognition techniques

• neural networks

• PCA, LDA

• . . .

Typically, identification of local features is not possible without global image

interpretation.
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Matlab demo

>> ipexsegcell
>> ipexsegmicro
>> ipexsegwatershed
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SUMMARY

� segmentation finds objects of interest in the image

� the algorithm is highly dependent on the task to be solved

. . . thank you!
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EXAMPLE, SEGMENTATION OF THE BRAIN MRI

Input: T1-weighted NMR images.

Desired classes: white matter, grey matter, celebro-spinal fluid (CSF)
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BRAIN MRI, SEGMENTATION RESULT
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