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In this lecture we will discuss the the criteria used in the design of wavelet filter
banks. We will show the design process using the the Daubechies wavelet as an example

(Figure 1).
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Figure 1: The scaling function of the Daubechies wavelet (for a filter of length 4) is on
the top and its wavelet function is at the bottom. Note that the shape of this wavelet
and the Haar wavelet resembles waves, hence the name.

1 Properties of Wavelet Bases and Filter Banks

The first step in the design process is to formulate a set of requirements for the filter
bank and the associated basis. The following five properties are particularly important:
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1. Finite filters. Also known as filters with Finite Impulse Response (FIR). The basis
functions derived from such filters have compact support. For efficiency, we would
like to make our filters as short as possible.

2. Orthogonality. For orthogonal filter banks one filter essentially defines the whole
bank; choosing a synthesis filter with good numerical properties (for example, sta-
bility) guarantees that the corresponding analysis filter also has the same properties.
For orthonormal bases in functional spaces it is easy to compute the coefficients:
we just need to take the dot product of the input function with each basis function.
Orthogonal filter banks allow implementations with minimal quantization error.

3. Good approximation. We want to have a set of basis functions that yields a good
approximation to functions with as few coefficients as possible. Clearly, this cannot
be achieved for arbitrary function; however, we may require that all sufficiently
smooth functions are approximated with few coefficients.

4. Symmetry. Nonsymmetric low-pass filters are particularly undesirable for image-
processing applications: such filters lead to “smeared” images after low-pass filter-
ing.

5. Regularity. Sometimes it is desirable to have a smooth approximation even after
many terms in the approximation are truncated. Suppose we express f as a linear
combination of a wavelet basis functions f;:

o0
fzzaifi where a; -0 as 17— oc.
1=0

The function g = 3>, a;f; is an approximation of the function f after we truncate
the coefficients after some number k. If the basis is not regular, it is likely that ¢ will
not be smooth because the only way to build a smooth function from non-smooth
basis functions is to have non-smooth features of basis functions cancel each other.

Unfortunately, the constraints imposed by the requirements of orthogonality and sym-
metry are too restrictive: the only filter bank that satisfies both requirements is the Haar
filter bank. Further, good approximation and high regularity can be achieved only at the
expense of increasing the length of the filter. A trade-off has to be made depending on a
particular application. For example, the Daubechies wavelet basis has compact support,
is orthogonal, and has maximal approximation order among all bases generated by filters
of given size.

A set of coefficients h(k) can be computed according to the requirements that we set.
We will show how the coefficients of the Daubechies wavelet are constructed in Section 5.

With these coefficients, we can solve for the scaling function ¢ of the wavelet basis
using the dilation equation.
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2 The Cascade Algorithm

For the Haar wavelet we could guess the solution of the dilation equation. In general,
solutions of dilations equations cannot be expressed using elementary functions. Rather
then providing formulas for solutions, we describe an algorithm that for a large class of
dilation equations yields a solution when one exists. This algorithm is called the cascade
algorithm.

Recall that the dilation equation is

$(1) = V2 c(k)g(2t — k). (1)

Note that we use normalized filter coefficients, so the coefficient in front of the sum
in the right-hand side is v/2 not 2. Given a set of coefficients ¢(k), the cascade algorithm
solves the dilation equation iteratively. The iteration begins, for example, with the Haar
scaling function,

1 iftef0,1)

0 otherwise

o0 -1

In the ith step, we plug ¢'~! into the right hand side of the dilation equation to obtain
é
G (t) = V2 e(k)p' (2t — k). (2)
k

Each iteration hopefully takes us closer to the scaling function we are looking for.
The cascade algorithm converges when ¢ = ¢'~'. In the case of the Haar filter bank

(c(0) = g, c(1) = g), convergence is achieved in the first iteration.
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Figure 2: Cascade algorithm uses Haar scaling function as starting point and solves the
scaling function iteratively. Shown here are ¢°, ¢!, ¢%, ¢°, and ¢*.

A more interesting example is to use a set of coefficients where ¢(0) = 1/4, ¢(1) = 1/2,

¢(2) = 1/4.
8(1) = VAGH(20) + 5621 — 1) + 1621 ~2)) g
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In the limit, the scaling function we get, with this particular set of coefficients, is a “hat”
function (see Figure 2). Remarkably, this is a linear spline basis function. All other spline
basis functions can be found as solutions of dilation equations for a particular choice of
coefficients.

Using the cascade algorithm, we can derive some properties of the basis functions
generated by a filter bank directly from the properties of the filters, without having
explicit expressions for the basis functions themselves.

3 Orthogonality of Wavelet Bases

To illustrate the idea of deriving the properties of the wavelet basis from the properties
of a filter, let us prove that if a wavelet filter bank matrix is orthogonal, then the set of
wavelet basis functions is orthonormal.

The coefficients to the dilation equation are found in the filter bank matrix F":

If  is orthogonal, the following relations among the coefficients must hold:
3 cln)en — 2k) = 8(k) (4)
zn:d(n)c(n —2%) = 0
zn:d(n)d(n —9%k) = &(k)

Note that d(k) is 1 when & = 0 and is 0 elsewhere.

A wavelet basis is composed of the top level scaling functions ¢(¢ — k) and the wavelet
functions w(2't — k) at all scales. In order to show that a wavelet basis orthonormal, we
must prove that the inner products of between different function are 0, while the inner
product of a basis function with itself is 1.

<H(t — ki), bt —ke)> = (k1 — ky) (5)
<p(t — k1), w2t —ky)> = 0 (6)
<w(2 — k), w(2t —ky)> = 8(i — 5)5(k1 — k2) (7)

We use proof by induction in the context of the cascade algorithm to show Equation (5)
first. Note that it is sufficient to prove Equation (5) for k; = 0, because we can reduce
the general case to the the case t; = 0 by replacing ¢ with ¢ + k.
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We start from the base case ¢°(¢ — k), which are the Haar scaling functions. They
are known to be orthonormal:

<@°(1),6°(t — k) > = 8(k)
then we will prove that
<HW.Ft—R)>=6(k) = <&, —k)> = 8(k)

From the dilation equation,
<ET. 6T R)> = [VEX ek (2 — k)IIVEY e(ka)é (2L — o)
= 23 e(ky)e(ks) / G (20 — k)G (2L — k) — ko)t

k1ko

Let T'=2t — ky, then t = (T' 4 k1) /2, dt = dT'/2, and

<), 6t — k) > = Y e(kr)elks) / ¢'(T)$" (T + ky — ky — 2k)dT

ki1k2

By the induction hypothesis < ¢;(t), ¢:(t — k) > = §(k),

<), ¢t —k)> = c(kr)e(k2)8 (ki — ko — 2k)

ky ko

By the definition of ¢, the only non-zero terms in the summation are those when ky =
ky — 2k, ' '

<G, 6Tt — k) > =Y e(k)c(ky — 2K)

kq

Now let n = kq, ' '

<P (), ot —k)> =" c(n)e(n — 2k)
This is §(k) given by Equation (5). Thus Equation (5) is true. Equation (6) and Equa-
tion (7) can be proven by similar arguments.

4 Approximation

A good approximating basis will have only a few large coefficients for a smooth function
and leave the rest relatively small. If we truncate the summation, the reconstructed
function is still very close to the original f.

The quality of approximation for a basis is related to the number of the vanishing
moments of the basis functions. We say that a function has P vanishing moments if

/fitkdt =0 where ke€[0.P—1]
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If f() is smooth around some point tg, it can be represented by a Taylor’s series expansion
with remainder R(t),

and the coefficient a; for the basis function f; can be computed by taking the dot
product of f(¢) and each component function of the basis, since the basis is orthonormal®

a; = < [f, fi>

= [

P-1 (]) - 7
- / > L P )P R e

!
§=0 J:

_ /f dt—|—/ (t — to)P R(1) fi(1)dt

If the basis function f; has P vanishing moments, all the terms in the summation will
vanish since they are all linear combinations of monomials t* where k& < P.

a; = / (t — )P R() f:(t)dt

Suppose the original wavelet function w(t) has support Iy and f;(¢) = w(2/t — k), with
% ~1y. Then fi(1) has support I with |I| = bl - and

27 23

a; < C/ It —to|Fdt < D277 (D are some constants not depending on P
T

This formula indicates that the magnitude of coefficients rapidly decreases as P grows.
The following condition on filters ensures that the wavelets have P vanishing moments:

ST(=1)"n*ho(k) =0 where k€ [0..P —1] (8)

n

We state this condition without a proof.

5 Computing the Daubechies Filter Bank Coefficients

Now we are ready to compute the coefficients of the Daubechies filter bank. Using
the cascade algorithm we can find the scaling function and the wavelet with arbitrary
precision.

LAll integrals without specified range are taken over (—oc ...+ 00).
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The Daubechies filter bank is orthogonal and FIR, and has the best approximation
for a given filter length. We compute the coefficients for the case when the filter length
is assumed to be 4. Our filter bank matrix will look something like this,

cg ¢ ¢ ¢33 0 0 0
0 0 ¢ ¢ ¢ ¢ O

If the coefficients satisfy

cg—l—cf—l—cg—l—cg = 1 (9)
CogCo + Ci1C3 = 0, (10)

then the filter bank matrix will be orthogonal. As we have proved in Section 3, this guar-
antees that the wavelet basis is orthonormal. Since we have four coefficients, we still have
two degrees of freedom left to maximize the approximation order. Using Equation (8),
we get the two remaining constraints, that ensure that the wavelet has two vanishing
moments:

co—¢c+cg—c3 = 0 when k=0 (11)
—c;+2¢3—3¢cs = 0 when k=1 (12)

By solving the system of equations together with Equation (9) and (10), we get
14++3 3+V3 3-V3 1-+3
co = , ¢ = , Cp= , C3=
VNG N VNG P2

For longer filters, we can obtain bases with more vanishing moments. The equations
for coefficients can be solved explicitly only for small filter lengths; for longer filters the
values for coefficients can be computed numerically.




