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Chapter 6

Shape representation and

description

The last chapter was devoted to image segmentation methods which showed how to construct
homogeneous regions of images and/or their boundaries. Recognition of image regions is
an important step on the way to understanding image data, and requires an exact region
description in a form suitable for a classi�er (Chapter 7). This description should generate
a numeric feature vector, or a non-numeric syntactic description word, which characterizes
properties (for example, shape) of the region. Region description is the third of the four levels
given in Chapter 3, implying that the description already comprises some abstraction { for
example, 3D objects can be represented in a 2D plane and shape properties that are used
for description are usually computed in two dimensions. If we are interested in a 3D object
description, we have to process at least two images of the same object taken from di�erent
viewpoints (stereo vision), or derive the 3D shape from a sequence of images if the object is in
motion. A 2D shape representation is su�cient in the majority of practical applications, but
if 3D information is necessary { if, say, 3D object reconstruction is the processing goal, or the
3D characteristics bear the important information { the object description task is much more
di�cult; these topics are introduced in Chapter 9. In the following sections, we will limit our
discussion to 2D shape features and proceed under the assumption that object descriptions
result from the image segmentation process.

De�ning the shape of an object can prove to be very di�cult. Shape is usually repre-
sented verbally or in �gures and people use terms like elongated, rounded, with sharp edges,
etc. The computer era has introduced the necessity to describe even very complicated shapes
precisely, and while many practical shape description methods exist, there is no generally
accepted methodology of shape description. Further, it is not known what in shape is im-
portant. Current approaches have both positive and negative attributes; computer graphics
[Woodwark 86] or mathematics [Lord and Wilson 84] use e�ective shape representations which
are unusable in shape recognition [Juday 88] and vice versa. In spite of this, it is possible
to �nd features common to most shape description approaches. Location and description
of substantial variations in the �rst derivative of object boundaries often yield suitable in-
formation. Examples include alphanumeric optical character description (OCR), technical
drawings, ECG curve characterization, etc.

Shape is an object property which has been carefully investigated in recent years and
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many papers may be found dealing with numerous applications { OCR, ECG analysis, EEG
analysis, cell classi�cation, chromosome recognition, automatic inspection, technical diagnos-
tics, etc. Despite this variety, di�erences of many approaches are limited mostly to termi-
nology. These common methods can be characterized from di�erent points of view [Pavlidis
78, Pavlidis 80, Ballard and Brown 82, Brady 84, Besl 88, Marshall 89b, Koenderink 90, Watt
93, Hogg 93].
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Figure 6.1: Image analysis and understanding methods.

� Input representation form: Object description can be based on boundaries (contour-
based, external) or on more complex knowledge of whole regions (region-based, inter-
nal).

� Object reconstruction ability: That is, whether an object's shape can or cannot be
reconstructed from the description. Many varieties of shape-preserving methods exist.
They di�er in the degree of precision with respect to object reconstruction.
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� Incomplete shape recognition ability: That is, to what extent an object's shape can be
recognized from the description if objects are occluded and only partial shape informa-
tion is available.

� Local/global description character: Global descriptors can only be used if complete
object data are available for analysis. Local descriptors describe local object properties
using partial information about the objects. Thus, local descriptors can be used for
description of occluded objects.

� Mathematical and heuristic techniques: A typical mathematical technique is shape
description based on the Fourier transform. A representative heuristic method may be
elongatedness.

� Statistical or syntactic object description (Chapter 7).

� A robustness of description to translation, rotation, and scale transformations: Shape
description properties in di�erent resolutions.

The role of di�erent description methods in image analysis and image understanding is illus-
trated by the owchart shown in Figure 6.1.

Problems of scale (resolution) are common in digital images. Sensitivity to scale is even
more serious if a shape description is derived, because shape may change substantially with
image resolution. Contour detection may be a�ected by noise in high resolution, and small
details may disappear in low resolution (see Figure 6.2). Therefore, shape has been studied in
multiple resolutions which again causes di�culties with matching corresponding shape repre-
sentations from di�erent resolutions. Moreover, the conventional shape descriptions change
discontinuously. A scale-space approach has been presented in [Babaud et al. 86, Witkin
86, Yuille and Poggio 86, Maragos 89] that aims to obtain continuous shape descriptions if
the resolution changes continuously. This approach is not a new technique itself, but is an
extension of existing techniques, and more robust shape methods may result from developing
and retaining their parameters over a range of scales [Marshall 89b]. This approach will be
mentioned in more detail in Section 6.2.4.

In many tasks, it is important to represent classes of shapes properly, e.g. shape classes of
apples, oranges, pears, bananas, etc. The shape classes should represent the generic shapes
of the objects belonging to the same classes well. Obviously, shape classes should emphasize
shape di�erences among classes while the inuence of shape variations within classes should
not be reected in the class description. Current research challenges includes development
of approaches to automated learning about shape and reliable de�nition of shape classes
(Section 6.4).

Object representation and shape description methods discussed in the following sections
are not an exhaustive list { we will try to introduce generally applicable methods. It is neces-
sary to apply a problem-oriented approach to the solution of speci�c problems of description
and recognition. This means that the following methods are appropriate for a large variety of
descriptive tasks and the following ideas may be used to build a specialized, highly e�cient
method suitable for a particular problem description. Such a method will no longer be general
since it will take advantage of a priori knowledge about the problem. This is the way human
beings can solve their vision and recognition problems, by using highly specialized knowledge.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: (a) Original image 640 � 480, (b) contours of a, (c) original image 160 � 120

(d) contours of c, (e) original image 64 � 48, (f) contours of e.

It should be understood that despite the fact that we are dealing with two-dimensional
shape and its description, our world is three-dimensional and the same objects, if seen from
di�erent angles (or changing position/orientation in space), may form very di�erent 2D pro-
jections (see Chapter 9). The ideal case would be to have a universal shape descriptor capable
of overcoming these changes { to design projection-invariant descriptors. Consider an object
with planar faces and imagine how many very di�erent 2D shapes may result from a given
face if the position and 3D orientation of this simple object changes with respect to an ob-
server. In some special cases, like circles which transform to ellipses, or planar polygons,
projectively invariant features (called invariants) can be found. Unfortunately, no existing
shape descriptor is perfect; in fact, they are all far from being perfect. Therefore, a very
careful choice of descriptors resulting from detailed analysis of the shape recognition problem
must precede any implementation, and whether or not a 2D representation is capable of de-
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scribing a 3D shape must also be considered. For some 3D shapes, their 2D projection may
bear enough information for recognition { aircraft contours are a good example; successful
recognition of airplanes from projections are known even if they change their position and
orientation in space. In many other cases, objects must be seen from a speci�c direction to
get enough descriptive information { human faces are such a case.

Object occlusion is another hard problem in shape recognition. However, the situation is
easier here (if pure occlusion is considered, not combined with orientation variations yielding
changes in 2D projections as discussed above), since visible parts of objects may be used for
description. Here, the shape descriptor choice must be based on its ability to describe local
object properties { if the descriptor only gives a global object description (e.g. object size,
average boundary curvature, perimeter), such a description is useless if only a part of an
object is visible. If a local descriptor is applied (e.g. description of local boundary changes),
this information may be used to compare the visible part of the object to all objects which
may appear in the image. Clearly, if object occlusion occurs, the local or global character of
the shape descriptor must be considered �rst.

In Sections 6.2 and 6.3, descriptors are sorted according to whether they are based on ob-
ject boundary information (contour-based, external description) or whether the information
from object regions is used (region-based, internal description) [Li and Ma 94]. This classi�-
cation of shape description methods corresponds to previously described boundary-based and
region-based segmentation methods. However, both contour-based and region-based shape
descriptors may be local or global and di�er in sensitivity to translation, rotation, scaling,
etc.

6.1 Region identi�cation

Region identi�cation is necessary for region description. One of the many methods for region
identi�cation is to label each region (or each boundary) with a unique (integer) number; such
identi�cation is called labeling or coloring (also connected component labeling), and the
largest integer label usually gives the number of regions in the image. Another method is to
use a smaller number of labels (four is theoretically su�cient [Appel and Haken 77, Saaty
and Kainen 77, Nishizeki and Chiba 88, Wilson and Nelson 90]), and ensure that no two
neighboring regions have the same label; then information about some region pixel must be
added to the description to provide full region reference. This information is usually stored in
a separate data structure. Alternatively, mathematical morphology approaches (Chapter 11)
may be used for region identi�cation.

Assume that the segmented image R consists of m disjoint regions Ri (as in equation
(5.1)). The image R often consists of objects and a background

RC

b =
m[

i=1;i6=b

Ri

where RC is the set complement, Rb is considered background, and other regions are consid-
ered objects. Input to a labeling algorithm is usually either a binary or multi-level image,
where background may be represented by zero pixels, and objects by non-zero values. A
multi-level image is often used to represent the labeling result, background being represented
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by zero values, and regions represented by their non-zero labels. Algorithm 6.1 presents a
sequential approach to labeling a segmented image.
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Figure 6.3: Masks for region identi�cation: (a) In 4-connectivity, (b) in 8-connectivity, (c)

label collision.

Algorithm 6.1: 4-neighborhood and 8-neighborhood region identi�-

cation

1. First pass: Search the entire image R row by row and assign a non-zero value v to
each non-zero pixel R(i; j). The value v is chosen according to the labels of the pixel's
neighbors where the property neighboring is de�ned by Figure 6.3. (`neighbors' outside
the image R are not considered),

� If all the neighbors are background pixels (with pixel value zero), R(i; j) is assigned
a new (and as yet) unused label.

� If there is just one neighboring pixel with a non-zero label, assign this label to the
pixel R(i; j).

� If there is more than one non-zero pixel among the neighbors, assign the label
of any one to the labeled pixel. If the labels of any of the neighbors di�er (label
collision) store the label pair as being equivalent. Equivalence pairs are stored in
a separate data structure { an equivalence table.

2. Second pass: All of the region-pixels were labeled during the �rst pass but some regions
have pixels with di�erent labels (due to label collisions). The whole image is scanned
again, and pixels re-labeled using the equivalence table information (for example, with
the lowest value in an equivalence class).

Label collision is a very common occurrence { examples of image shapes experiencing this are
U-shaped objects, mirrored E (9) objects, etc. (see Figure 6.3c). The equivalence table is a
list of all label pairs present in an image; all equivalent labels are replaced by a unique label
in the second step. Since the number of label collisions is usually not known beforehand,
it is necessary to allocate su�cient memory to store the equivalence table in an array. A
dynamically allocated data structure is recommended. Further, if pointers are used for label
speci�cation, scanning the image for the second time is not necessary (the second pass of the
algorithm) and only rewriting labels to which these pointers are pointing is much faster.
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The algorithm is basically the same in 4-connectivity and 8-connectivity, the only di�er-
ence being in the neighborhood mask shape (Figure 6.3b). It is useful to assign the region
labels incrementally to permit the regions to be counted easily in the second pass. An example
of partial results is given in Figure 6.4.

0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  1  1  0  0  1  1  0  1  0
0  1  1  1  1  1  1  0  0  1  0  0  1  0
0  0  0  0  1  0  1  0  0  0  0  0  1  0
0  1  1  1  1  1  1  1  1  1  1  1  1  0
0  0  0  0  1  1  1  1  1  1  1  1  1  0
0  1  1  0  0  0  1  0  1  0  0  1  1  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  2  2  0  0  3  3  0  4  0
0  5  5  5  2  2  2  0  0  3  0  0  4  0
0  0  0  0  5  0  2  0  0  0  0  0  4  0
0  6  6  5  5  5  2  2  2  2  2  4  4  0
0  0  0  0  5  5  5  2  2  2  2  2  4  0
0  7  7  0  0  0  5  0  2  0  0  2  2  0

(a) (b)

0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  2  2  0  0  1  1  0  2  0
0  2  2  2  2  2  2  0  0  1  0  0  2  0
0  0  0  0  2  0  2  0  0  0  0  0  2  0
0  2  2  2  2  2  2  2  2  2  2  2  2  0
0  0  0  0  2  2  2  2  2  2  2  2  2  0
0  3  3  0  0  0  2  0  2  0  0  2  2  0

(c)

Figure 6.4: Object identi�cation in 8-connectivity: (a),(b),(c) Algorithm steps. Equivalence

table after step (b): 2-5, 5-6, 2-4.

Region identi�cation can be performed on images that are not represented as straight-
forward matrices; the following algorithm [Rosenfeld and Kak 82] may be applied to images
that are run-length encoded (see Chapter 3).

Algorithm 6.2: Region identi�cation in run-length encoded data

1. First pass: Use a new label for each continuous run in the �rst image row that is not
part of the background.

2. For the second and subsequent rows, compare positions of runs. If a run in a row does
not neighbor (in the 4- or 8- sense) any run in the previous row, assign a new label. If
a run neighbors precisely one run in the previous row, assign its label to the new run.
If the new run neighbors more than one run in the previous row, a label collision has
occurred. Collision information is stored in an equivalence table, and the new run is
labeled using the label of any one of its neighbors.

3. Second pass: Search the image row by row and re-label the image according to the
equivalence table information.
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If the segmented image is represented by a quadtree data structure, the following algorithm
may be applied:

Algorithm 6.3: Quadtree region identi�cation

1. First pass: Search quadtree nodes in a given order { e.g. beginning from the root and
in NW, NE, SW, SE directions. Whenever an unlabeled non-zero leaf node is entered,
a new label is assigned to it. Then search for neighboring leaf nodes in the E and S
directions (plus SE in 8-connectivity). If those leaves are non-zero and have not yet been
labeled, assign the label of the node from which the search started. If the neighboring
leaf node has already been labeled, store the collision information in an equivalence
table.

2. Repeat step (1) until the whole tree has been searched.

3. Second pass: Re-label the leaf nodes of the quadtree according to the equivalence table.

Algorithmic details and the procedure for looking for neighboring leaf nodes can be found in
[Rosenfeld and Kak 82, Samet 84].

The region counting task is closely related to the region identi�cation problem. Object
counting can be an intermediate result of region identi�cation as we have seen. If it is only
necessary to count regions with no need to identify them, a one-pass algorithm is su�cient
[Rosenfeld and Kak 82, Atkinson et al. 85].

6.2 Contour-based shape representation and description

Region borders must be expressed in some mathematical form. The rectangular represen-
tation of xn pixel co-ordinates as a function of the path length n is most common. Other
useful representations are (see Figure 6.5);

� polar co-ordinates, in which border elements are represented as pairs of angle � and
distance r;

� tangential co-ordinates, which codes the tangential directions �(xn) of curve points as
a function of path length n.

6.2.1 Chain codes

Chain codes describe an object by a sequence of unit-size line segments with a given orien-
tation (see Section 3.2.2). The �rst element of such a sequence must bear information about
its position to permit the region to be reconstructed. The process results in a sequence of
numbers (see Figure 6.6); to exploit the position invariance of chain codes the �rst element,
which contains the position information, is omitted. This de�nition of the chain code is known
as Freeman's code [Freeman 61]. Note that a chain code object description may easily be
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Figure 6.5: Co-ordinate systems: (a) Rectangular (Cartesian), (b) polar, (c) tangential.
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Figure 6.6: Chain code in 4-connectivity, and its derivative. Code: 3, 0, 0, 3, 0, 1, 1, 2, 1,

2, 3, 2, derivative: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.

obtained as a by-product of border detection; see Section 5.2.3 for a description of border
detection algorithms.

If the chain code is used for matching it must be independent of the choice of the �rst
border pixel in the sequence. One possibility for normalizing the chain code is to �nd the
pixel in the border sequence which results in the minimum integer number if the description
chain is interpreted as a base four number { that pixel is then used as the starting pixel [Tsai
and Yu 85]. A mod 4 or mod 8 di�erence code, called a chain code derivative, is another
numbered sequence that represents relative directions of region boundary elements, measured
as multiples of counter-clockwise 90o or 45o direction changes (Figure 6.6). A chain code is
very sensitive to noise, and arbitrary changes in scale and rotation may cause problems if
used for recognition. The smoothed version of the chain code (averaged directions along a
speci�ed path length) is less noise sensitive [Li and Zhiying 88].

6.2.2 Simple geometric border representation

The following descriptors are mostly based on geometric properties of described regions. Be-
cause of the discrete character of digital images, all of them are sensitive to image resolution.

Boundary length

This is an elementary region property, simply derived from the chain code representation. Ver-
tical and horizontal steps have unit length, and the length of diagonal steps in 8-connectivity
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is
p
2. It can be shown that the boundary is longer in 4-connectivity where a diagonal

step consists of two rectangular steps with a total length of two. A closed-boundary length
(perimeter) can also easily be evaluated from run length [Rosenfeld and Kak 82] or quadtree
representations [Samet 81, Crowley 84] as well. Boundary length increases as the image
raster resolution increases; on the other hand, region area is not a�ected by higher reso-
lution and converges to some limit (see also the description of fractal dimension given in
Section 14.1.6). To provide continuous-space perimeter properties (area computation from
the boundary length, shape features, etc.), it is better to de�ne the region border as being
the outer or extended border (see Section 5.2.3). If inner borders are used, some properties
are not satis�ed { e.g. the perimeter of a one-pixel region is four if the outer boundary is
used, and one using the inner.

Curvature

In the continuous case, curvature is de�ned as the rate of change of slope. In discrete space,
the curvature description must be slightly modi�ed to overcome di�culties resulting from vi-
olation of curve smoothness. The curvature scalar descriptor (also called boundary straight-
ness) �nds the ratio between the total number of boundary pixels (length) and the number of
boundary pixels where the boundary direction changes signi�cantly. The smaller the number
of direction changes, the straighter the boundary. The evaluation algorithm is based on the
detection of angles between line segments positioned b boundary pixels from the evaluated
boundary pixel in both directions. The angle need not be represented numerically; rather,
relative position of line segments can be used as a property. The parameter b determines
sensitivity to local changes of the boundary direction (Figure 6.7). Curvature computed from
the chain code can be found in [Rosenfeld 74], and the tangential border representation is
also suitable for curvature computation. Values of the curvature at all boundary pixels can
be represented by a histogram; relative numbers then provide information on how common
speci�c boundary direction changes are. Histograms of boundary angles, such as the � angle
in Figure 6.7, can be built in a similar way{ such histograms can be used for region descrip-
tion. Another approach to calculating curvature from digital curves is based on convolution
with the truncated Gaussian kernel [Lowe 89], and an improved version not su�ering from
systematic bias caused by curvature smoothing e�ect is given in [Hlavac et al. 94].

Bending energy

The bending energy of a border (curve) may be understood as the energy necessary to bend
a rod to the desired shape, and can be computed as a sum of squares of the border curvature
c(k) over the border length L.

BE =
1

L

LX
k=1

c2(k) (6.1)

Bending energy can easily be computed from Fourier descriptors using Parseval's theorem
[Oppenheim et al. 83, Papoulis 91]. To represent the border, Freeman's chain code or its
smoothed version may be used [Smeulders et al. 80], see Figure 6.8. Bending energy does
not permit shape reconstruction.
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Figure 6.7: Curvature.

Signature

The signature of a region may be obtained as a sequence of normal contour distances. The
normal contour distance is calculated for each boundary element as a function of the path
length. For each border point A the shortest distance to an opposite border point B is sought
in a direction perpendicular to the border tangent at point A, see Figure 6.9. Note that being
opposite is not a symmetric relation (compare Algorithm 5.17). Signatures are noise sensitive,
and using smoothed signatures or signatures of smoothed contours reduces noise sensitivity.
Signatures may be applied to the recognition of overlapping objects or whenever only partial
contours are available [Vernon 87]. Position, rotation, and scale-invariant modi�cations based
on gradient-perimeter and angle-perimeter plots are discussed in [Safaee-Rad et al. 89].

Chord distribution.

A line joining any two points of the region boundary is a chord, and the distribution of lengths
and angles of all chords on a contour may be used for shape description. Let b(x; y) = 1
represent the contour points, and b(x; y) = 0 represent all other points. The chord distribution
can be computed (see Figure 6.10a) as

h(�x;�y) =

Z Z
b(x; y)b(x+�x; y +�y)dxdy (6.2)

or in digital images as

h(�x;�y) =
X
i

X
j

b(i; j)b(i+�x; j +�y) (6.3)

To obtain the rotation-independent radial distribution hr(r), the integral over all angles is
computed (Figure 6.10b).

hr(r) =

Z
�=2

��=2

h(�x;�y)rd� (6.4)
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Figure 6.8: Bending energy: (a) Chain code 0, 0, 2, 0, 1, 0, 7, 6, 0, 0, (b) curvature 0, 2, -2,

1, -1, -1, -1, 2, 0, (c) sum of squares gives the bending energy, (d) smoothed version.
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Figure 6.9: Signature: (a) Construction, (b) signatures for a circle and a triangle.

where r =
p
�x2 +�y2; � = sin�1(�y=r). The distribution hr(r) varies linearly with

scale. The angular distribution ha(�) is independent of scale, while rotation causes a propor-
tional o�set

ha(�) =
Z max(r)

0

h(�x;�y)dr (6.5)

Combination of both distributions gives a robust shape descriptor [Smith and Jain 82, Cootes
et al. 92].

6.2.3 Fourier transforms of boundaries

Suppose C is a closed curve (boundary) in the complex plane (Figure 6.11a). Traveling
anti-clockwise along this curve keeping constant speed, a complex function z(t) is obtained,
where t is a time variable. The speed should be chosen such that one circumnavigation of the
boundary takes time 2�; then a periodic function with period 2� is obtained after multiple
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Figure 6.10: Chord distribution.

passes around the curve. This permits a Fourier representation of z(t) (see Section 2.1.3);

z(t) =
X
n

Tne
int (6.6)

The coe�cients Tn of the series are called the Fourier descriptors of the curve C. It is
more useful to consider the curve distance s in comparison to time

t = 2�s=L; (6.7)

where L is the curve length. The Fourier descriptors Tn are given by

Tn =
1

L

Z
L

0

z(s)e�i(2�=L)nsds (6.8)

The descriptors are inuenced by the curve shape and by the initial point of the curve.
Working with digital image data, boundary co-ordinates are discrete and the function z(s) is
not continuous. Assume that z(k) is a discrete version of z(s), where 4-connectivity is used
to get a constant sampling interval; the descriptors Tn can be computed from the discrete
Fourier transform (DFT, Section 12.2) of z(k);

z(k) � DFT �! Tn (6.9)

The Fourier descriptors can be invariant to translation and rotation if the co-ordinate system
is appropriately chosen [Pavlidis 77, Persoon and Fu 77, Wallace and Wintz 80, Grimmins
82, Lin and Chellappa 87]. They have been used for handwritten alphanumeric character
description in [Shridhar and Badreldin 84]; the character boundary in this description was
represented by co-ordinate pairs (xm; ym) in 4-connectivity, (x1; y1) = (xL; yL). Then

an =
1

L� 1

L�1X
m=1

xme
�i(2�=(L�1))nm (6.10)

bn =
1

L� 1

L�1X
m=1

yme
�i(2�=(L�1))nm (6.11)

The coe�cients an, bn are not invariant, but after the transform

rn = (j an j2 + j bn j2)1=2; (6.12)
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Figure 6.11: Fourier description of boundaries: (a) Descriptors Tn, (b) descriptors Sn.

rn are translation and rotation invariant. To achieve a magni�cation invariance the descriptors
wn are used:

wn = rn=r1 (6.13)

The �rst 10 { 15 descriptors wn are found to be su�cient for character description.
A closed boundary can be represented as a function of angle tangents versus the distance

between the boundary points from which the angles were determined (Figure 6.11b). Let 'k

be the angle measured at the kth boundary point, and let lk be the distance between the
boundary starting point and the kth boundary point. A periodic function can be de�ned

a(lk) = 'k + uk ; (6.14)

uk = 2�lk=L (6.15)

The descriptor set is then

Sn =
1

2�

Z 2�

0

a(u)e�inudu (6.16)

The Discrete Fourier Transform is used in all practical applications [Pavlidis 77].

The high quality boundary shape representation obtained using only a few lower order
coe�cients is a favorable property common to Fourier descriptors. We can compare the results
of using the Sn and Tn descriptors: The Sn descriptors have more high frequency components
present in the boundary function due to more signi�cant changes of tangent angles, and as a
result, they do not decrease as fast as the Tn descriptors. In addition the Sn descriptors are
not suitable for boundary reconstruction since they often result in a non-closed boundary.
A method for obtaining a closed boundary using Sn descriptors is given in [Strackee and
Nagelkerke 83]. The Tn descriptor values decrease quickly for higher frequencies and their
reconstruction always results in a closed boundary. Moreover, the Sn descriptors cannot
be applied for squares, equilateral triangles, etc. [Wallace 81] unless the solution methods
introduced in [Wallace and Wintz 80] are applied.

Fourier descriptors can also be used for calculation of region area, location of centroid,
and computation of second-order moments [Kiryati and Maydan 89]. Fourier descriptors
are a general technique, but problems with describing local information exist. A modi�ed
technique using a combined frequency-position space that deals better with local curve prop-
erties is described in [Eichmann et al. 90], and another modi�cation invariant under rotation,
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translation, scale, mirror reection, and shifts in starting points is discussed in [Krzyzak et
al. 89]. Conventional Fourier descriptors cannot be used for recognition of occluded objects.
Nevertheless, classi�cation of partial shapes using Fourier descriptors is introduced in [Lin
and Chellappa 87]. Boundary detection and description using elliptic Fourier decomposition
of the boundary is described in [Staib and Duncan 92].

6.2.4 Boundary description using segment sequences

Representation of a boundary using segments with speci�ed properties is another option for
boundary (and curve) description. If the segment type is known for all segments, the boundary
can be described as a chain of segment types, a code-word consisting of representatives of
a type alphabet. An example is given in Figure 6.14 which will be discussed later in more
detail. This sort of description is suitable for syntactic recognition (see Section 7.4). A trivial
segment chain is used to obtain the Freeman code description discussed in Section 6.2.1.

A polygonal representation approximates a region by a polygon, the region being
represented using its vertices. Polygonal representations are obtained as a result of a simple
boundary segmentation. The boundary can be approximated with varying precision; if a
more precise description is necessary, a larger number of line segments may be employed.
Any two boundary points x1, x2 de�ne a line segment and a sequence of points x1, x2, x3
represents a chain of line segments { from the point x1 to the point x2, and from x2 to x3.
If x1=x3, a closed boundary results. There are many types of straight segment boundary
representations [Pavlidis 77, Koch and Kashyap 87, Matas and Kittler 93, Lindenbaum and
Bruckstein 93, Ji and Haralick 97]; the problem lies in determining the location of boundary
vertices, one solution to which is to apply a split-and-merge algorithm. The merging step
consists of going through a set of boundary points and adding them to a straight segment
as long as a segment straightness criterion is satis�ed. If the straightness characteristic of
the segment is lost, the last connected point is marked as a vertex and construction of a
new straight segment begins. This general approach has many variations, some of which are
described in [Pavlidis 77].

Boundary vertices can be detected as boundary points with a signi�cant change of bound-
ary direction using the curvature (boundary straightness) criterion (see Section 6.2.2). This
approach works well for boundaries with rectilinear boundary segments.

Another method for determining the boundary vertices is a tolerance interval approach
based on setting a maximum allowed di�erence e. Assume that point x1 is the end-point of
a previous segment and so by de�nition the �rst point of a new segment. De�ne points x2,
x3 positioned a distance e from the point x1 to be rectilinear { x1,x2,x3 are positioned on a
straight line { see Figure 6.12. The next step is to locate a segment which can �t between
parallels directed from points x2 and x3. Resulting segments are sub-optimal, although
optimality can be achieved with a substantial increase in computational e�ort [Tomek 74].

The methods introduced above represent single-pass algorithms of boundary segmentation
using a segment-growing approach. Often they do not result in the best possible boundary
segmentation because the vertex which is located often indicates that the real vertex should
have been located a few steps back. The splitting approach of segmenting boundaries into
smaller segments can sometimes help and the best results can be anticipated using a com-
bination of both methods. If the splitting approach is used, segments are usually divided
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Figure 6.12: Tolerance interval.

into two new smaller segments until the new segments meet the �nal requirements [Duda and
Hart 73, Pavlidis 77]. A simple procedure for splitting begins from end-points x1 and x2 of a
curve; these end-points are connected by a line segment. The next step searches all the curve
points for the curve point x3 with the largest distance from the line segment. If the point
located is within a preset distance between itself and the line segment, the segment x1-x2 is
an end segment and all curve vertices are found, the curve being polygonally represented by
vertices x1 and x2. Otherwise the point x3 is set as a new vertex and the process is recursively
applied to both resulting segments x1-x3 and x3-x2 (see Figure 6.13 and Section 5.2.7).

Figure 6.13: Recursive boundary splitting.

Boundary segmentation into segments of constant curvature is another possibility for
boundary representation. The boundary may also be split into segments which can be rep-
resented by polynomials, usually of the second order, such as circular, elliptic, or parabolic
segments [Costabile et al. 85, Wuescher and Boyer 91]. Curve segmentation into circular arcs
and straight lines is presented in [Rosin and West 89]. Segments are considered as primitives
for syntactic shape recognition procedures { a typical example is the syntactic description
and recognition of chromosomes [Fu 74], where boundary segments are classi�ed as convex
segments of large curvature, concave segments of large curvature, straight segments, etc. as
illustrated in Figure 6.14.

Other syntactic object recognition methods based on a contour partitioning into primitives
from a speci�ed set are described in [Jakubowski 85, Jakubowski 90, Tampi and Sridhar 90].
Partitioning of the contour using location of points with high positive curvatures (corners)
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Figure 6.14: Structural description of chromosomes by a chain of boundary segments, code

word: d, b, a, b, c, b, a, b, d, b, a, b, c, b, a, b (adapted from [Fu 74]).

is described in [Chien and Aggarwal 89] together with applications to occluded contours. A
discrete curvature function based on a chain code representation of a boundary is used with
a morphological approach to obtain segments of constant curvature in [Leymarie and Levine
89]. Contour partitioning using segments of constant intensity is suggested in [Marshall 89a],
and polygonal representation used in a hypothesize and verify approach to recognition of
occluded objects may be found in [Koch and Kashyap 87].

Sensitivity of shape descriptors to scale (image resolution) has already been mentioned as
an undesirable feature of a majority of descriptors. In other words, shape description varies
with scale, and di�erent results are achieved at di�erent resolutions. This problem is no less
important if a curve is to be divided into segments; some curve segmentation points exist
in one resolution and disappear in others without any direct correspondence. Considering
this, a scale-space approach to curve segmentation that guarantees a continuously changing
position of segmentation points is a signi�cant achievement [Babaud et al. 86, Witkin 86,
Yuille and Poggio 86, Maragos 89, Florack et al. 92, Gri�n et al. 92]. In this approach,
only new segmentation points can appear at higher resolutions, and no existing segmentation
points can disappear. This is in agreement with our understanding of varying resolutions;
�ner details can be detected in higher resolution but signi�cant details should not disappear
if the resolution increases. This technique is based on application of a unique Gaussian
smoothing kernel to a one-dimensional signal (e.g. a curvature function) over a range of
sizes and the result is di�erentiated twice. To determine the peaks of curvature, the zero
crossing of the second derivative is detected, the positions of zero crossings give the position of
curve segmentation points. Di�erent locations of segmentation points are obtained at varying
resolution (di�erent Gaussian kernel size). An important property of the Gaussian kernel is
that the location of segmentation points changes continuously with resolution which can be
seen in the scale-space image of the curve, Figure 6.15a. Fine details of the curve disappear
in pairs with increasing size of the Gaussian smoothing kernel, and two segmentation points
always merge to form a closed contour showing that any segmentation point existing in coarse
resolution must also exist in �ner resolution. Moreover, the position of a segmentation point
is most accurate in �nest resolution and this position can be traced from coarse to �ne
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resolution using the scale-space image. A multiscale curve description can be represented by
an interval tree, Figure 6.15b. Each pair of zero crossings is represented by a rectangle,
its position corresponding with segmentation point locations on the curve, its height showing
the lowest resolution at which the segmentation point can be detected. Interval trees can be
used for curve decomposition in di�erent scales keeping the possibility of segment description
using higher resolution features.

(a) (b)
Increasing

Increasing scale

resolution

Figure 6.15: Scale-space image: (a) Varying number and locations of curve segmentation

points as a function of scale, (b) curve representation by an interval tree.

Another scale-space approach to curve decomposition is the curvature primal sketch

[Asada and Brady 86], (compare Section 9.1.1). A set of primitive curvature discontinuities is
de�ned and convolved with �rst and second derivatives of a Gaussian in multiple resolutions.
The curvature primal sketch is computed by matching the multiscale convolutions of a shape.
The curvature primal sketch then serves as a shape representation; shape reconstruction may
be based on polygons or splines. Another multiscale border-primitive detection technique that
aggregates curve primitives at one scale into curve primitives at a coarser scale is described
in [Saund 90]. A robust approach to multiscale curve corner detection that uses additional
information extracted from corner behavior in the whole multi-resolution pyramid is given in
[Fermuller and Kropatsch 92].

6.2.5 B-spline representation

Representation of curves using piecewise polynomial interpolation to obtain smooth curves is
widely used in computer graphics. B-splines are piecewise polynomial curves whose shape is
closely related to their control polygon { a chain of vertices giving a polygonal representation
of a curve. B-splines of the third-order are most common because this is the lowest order
which includes the change of curvature. Splines have very good representation properties and
are easy to compute: Firstly, they change their shape less then their control polygon, and
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do not oscillate between sampling points as many other representations do. Furthermore,
a spline curve is always positioned inside a convex n + 1-polygon for a B-spline of the nth

order { Figure 6.16. Secondly, the interpolation is local in character. If a control polygon
vertex changes its position, a resulting change of the spline curve will occur only in a small
neighborhood of that vertex. Thirdly, methods of matching region boundaries represented
by splines to image data are based on a direct search of original image data. These methods
are similar to the segmentation methods described in Section 5.2.6. A spline direction can be
derived directly from its parameters.

n n    = 1   = 3

(a)

   = 2n   = 3n

(b)

(c) (d)

Figure 6.16: Splines of order n. (a,b,c) Convex n+1-polygon for a B-spline of the nth order,

(d) 3rd order spline.

Let xi, i = 1; : : : ; n be points of a B-spline interpolation curve; call this interpolation
curve x(s). The s parameter changes linearly between points xi { that is, xi = x(i). Each
part of a cubic B-spline curve is a third-order polynomial, meaning that it and its �rst and
second derivatives are continuous. B-splines are given by

x(s) =
n+1X
i=0

viBi(s); (6.17)

where vi are coe�cients representing a spline curve, and Bi(s) are base functions whose shape
is given by the spline order. The coe�cients vi bear information dual to information about
the spline curve points xi { the values vi can be derived from xi values and vice versa. The
coe�cients vi represent vertices of the control polygon and if there are n points xi, there
must be n+ 2 points vi. The two end-points v0, vn+1 are speci�ed by binding conditions. If
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the curvature of a B-spline curvature is to be zero at the curve beginning and end, then

v0 = 2v1 � v2

vn+1 = 2vn � vn�1 (6.18)

If the curve is closed then v0 = vn and vn+1 = v1.
The base functions are non-negative and are of local importance only. Each base function

Bi(s) is non-zero only for s 2 (i� 2; i+ 2) meaning that for any s 2 (i; i+ 1), there are only
four non-zero base functions for any i : Bi�1(s), Bi(s), Bi+1(s), and Bi+2(s). If the distance
between the xi points is constant (e.g. unit distances), all the base functions are of the same
form and consist of four parts Cj(t), j = 0; : : : ; 3.

C0(t) =
t3

6

C1(t) =
�3t3 + 3t2 + 3t + 1

6
(6.19)

C2(t) =
3t3 � 6t2 + 4

6

C3(t) =
�t3 + 3t2 � 3t+ 1

6

Because of equation (6.17) and zero-equal base functions for s =2 (i � 2; i+ 2), x(s) can be
computed from the addition of only four terms for any s.

x(s) = Ci�1;3(s)vi�1 + Ci;2(s)vi + Ci+1;1(s)vi+1 + Ci+2;0(s)vi+2 (6.20)

Here, Ci;j(s) means that we use the jth part of the base function Bi (see Figure 6.17). Note
that

Ci;j(s) = Cj(s� i); (6.21)

i = 0; : : : ; n+ 1; j = 0; 1; 2; 3:

To work with values inside the interval [i; i+1), the interpolation curve x(s) can be computed
as

x(s) = C3(s� i)vi�1 + C2(s� i)vi + C1(s � i)vi+1 + C0vi+2 (6.22)

Speci�cally if s = 5, s is positioned at the beginning of the interval [i; i+ 1), therefore i = 5
and

x(5) = C3(0)v4 + C2(0)v5 + C1(0)v6 =
1

6
v4 +

4

6
v5 +

1

6
v6 (6.23)

or if s = 7:7 then i = 7 and

x(5) = C3(0:7)v6+ C2(0:7)v7+ C1(0:7)v8+ C0(0:7)v9 (6.24)

Other useful formulae can be found in [DeBoor 78, Ballard and Brown 82, Ikebe and Miyamoto
82].

Splines generate curves which are usually considered pleasing. They allow a good curve
approximation, and can easily be used for image analysis curve representation problems.
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Figure 6.17: The only four non-zero base functions for s 2 (i; i+ 1).

A technique transforming curve samples to B-spline control polygon vertices is described
in [Paglieroni and Jain 88] together with a method of e�cient computation of boundary
curvature, shape moments, and projections from control polygon vertices. Splines di�er in
their complexity; one of the simplest applies the B-spline formula for curve modeling as well
as for curve extraction from image data [DeBoor 78]. Splines are used in computer vision to
form exact and exible inner model representations of complex shapes which are necessary in
model-driven segmentation and in complex image understanding tasks. On the other hand,
splines are highly sensitive to change in scale.

6.2.6 Other contour-based shape description approaches

Many other methods and approaches can be used to describe two-dimensional curves and
contours.

TheHough transform has excellent shape description abilities and is discussed in detail
in the image segmentation context in Section 5.2.6 (see also [McKenzie and Protheroe 90]).
Region-based shape description using statistical moments is covered in Section 6.3.2 where
a technique of contour-based moments computation from region borders is also included.
Further, it is necessary to mention the fractal approach to shape [Mandelbrot 82, Barnsley
88, Falconer 90] that is gaining growing attention in image shape description [Frisch et al.
87, Chang and Chatterjee 89, Vemuri and Radisavljevic 93, Taylor and Lewis 94].

Mathematical morphology can be used for shape description, typically in connection
with region skeleton construction (see Section 6.3.4) [Reinhardt and Higgins 96]. A di�erent
approach is introduced in [Loui et al. 90] where a geometrical correlation function rep-
resents two-dimensional continuous or discrete curves. This function is translation, rotation,
and scale invariant and may be used to compute basic geometrical properties.

Neural networks (Section 7.3) can be used to recognize shapes in raw boundary repre-
sentations directly. Contour sequences of noiseless reference shapes are used for training, and
noisy data are used in later training stages to increase robustness; e�ective representations of
closed planar shapes result [Gupta et al. 90]. Another neural network shape representation
system uses a modi�ed Walsh-Hadamard transform (Chapter 12) to achieve position-invariant
shape representation [Minnix et al. 90].

6.2.7 Shape invariants

Shape invariants represent a very active current research area in machine vision. Although
the importance of shape invariance has been known for a long time, the �rst machine-vision
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related paper about shape invariants [Weiss 88] appeared in 1988 followed by a book [Kanatani
90] in 1990. The following section gives a brief overview of this topic and is mostly based on
the paper [Forsyth et al. 91] and on the book [Mundy and Zisserman 92] in which additional
details can be found. The book [Mundy and Zisserman 92] gives an overview of this topic
in its Introduction and its Appendix presents an excellent and detailed survey of projective
geometry for machine vision. Even if shape invariance is a novel approach in machine vision,
invariant theory is not new and many of its principles were introduced in the nineteenth
century.

As has been mentioned many times, object description is necessary for object recognition.
Unfortunately, all the shape descriptors discussed so far depend on viewpoint, meaning that
object recognition may often be impossible as a result of changed object or observer position,
as illustrated in Figure 6.18. The role of shape description invariance is obvious { shape
invariants represent properties of such geometric con�gurations which remain unchanged
under an appropriate class of transforms [Mundy and Zisserman 92, Reiss 93]. Machine
vision is especially concerned with the class of projective transforms.

Figure 6.18: Change of shape caused by a projective transform. The same rectangular cross-

section is represented by di�erent polygons in the image plane.

Collinearity is the simplest example of a projectively invariant image feature. Any straight
line is projected as a straight line under any projective transform. Similarly, the basic idea of
the projection-invariant shape description is to �nd such shape features that are una�ected
by the transform between the object and the image plane.

A standard technique of projection-invariant description is to hypothesize the pose (posi-
tion and orientation) of an object and transform this object into a speci�c co-ordinate system;
then shape characteristics measured in this co-ordinate system yield an invariant description.
However, the pose must be hypothesized for each object and each image which makes this
approach di�cult and unreliable.

Application of invariant theory, where invariant descriptors can be computed directly
from image data without the need for a particular co-ordinate system, represents another
approach. In addition, invariant theory can determine the total number of functionally in-
dependent invariants for a given situation therefore showing completeness of the description
invariant set. Invariant theory is based on a collection of transforms that can be composed
and inverted. In vision, the plane-projective group of transforms is considered which con-
tains all the perspectives as a subset. The group approach provides a mathematical tool
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for generating invariants; if the transform does not satisfy the properties of a group, this
machinery is not available [Mundy and Zisserman 92]. Therefore, the change of co-ordinates
due to the plane-projective transform is generalized as a group action. Lie group theory
is especially useful in designing new invariants.

Let corresponding entities in two di�erent co-ordinate systems be distinguished by large
and small letters. An invariant of a linear transformation is de�ned in [Mundy and Zisserman
92] as follows:

An invariant, I(P), of a geometric structure described by a parameter vector
P, subject to a linear transformation T of the co-ordinates x = TX, is trans-
formed according to I(p) = I(P)jTjw. Here I(p) is the function of the parameters
after the linear transformation, and jTj is the determinant of the matrix T.

In this de�nition, w is referred to as the weight of the invariant. If w = 0, the invariants are
called scalar invariants, which are considered below. Invariant descriptors are una�ected
by object pose, by perspective projection, and by the intrinsic parameters of the camera.

Several examples of invariants are now given.

1. Cross ratio: The cross ratio represents a classic invariant of a projective line. As
mentioned earlier, a straight line is always projected as a straight line. Any four collinear
points A;B;C;D may be described by the cross-ratio invariant

I =
(A� C)(B �D)

(A�D)(B � C)
(6.25)

where (A�C) represents the distance between points A and C (see Figure 6.19). Note
that the cross ratio depends on the order in which the four collinear points are labeled.

A’
B’

C’

D’

C
D

A
B

Figure 6.19: Cross ratio; four collinear points form a projective invariant.

2. Systems of lines or points: A system of four coplanar concurrent lines (meeting at
the same point) is dual to a system of four collinear points and the cross ratio is its
invariant, see Figure 6.19.

A system of �ve general coplanar lines forms two invariants

I1 =
jM431jjM521j
jM421jjM531j

I2 =
jM421jjM532j
jM432jjM521j

(6.26)



6.2. CONTOUR-BASED SHAPE REPRESENTATION AND DESCRIPTION 251

where Mijk = (li; lj ; lk). li = (l1
i
; l2
i
; l3
i
)T is a representation of a line l1

i
x+ l2

i
y + l3

i
= 0,

where i 2 [1; 5], and jMj is the determinant of M. If the three lines forming the matrix
Mijk are concurrent, the matrix becomes singular and the invariant is unde�ned.

A system of �ve coplanar points is dual to a system of �ve lines and the same two
invariants are formed. These two functional invariants can also be formed as two cross
ratios of two coplanar concurrent line quadruples, see Figure 6.20. Note that even
though combinations other than those given in Figure 6.20 may be formed, only the
two presented functionally independent invariants exist.

A

B

C
D

E

A

B

C

D

E
E

D
C

B

A

(a) (b) (c)

Figure 6.20: Five coplanar points form two cross-ratio invariants: (a) Coplanar points, (b)

�ve points form a system of four concurrent lines, (c) the same �ve points form another

system of four coplanar lines.

3. Plane conics: A plane conic may be represented by an equation

ax2 + bxy + cy2 + dx+ ey + f = 0 (6.27)

for x = (x; y; 1)T . Then the conic may also be de�ned by a matrix C

C =

�������
a b=2 d=2
b=2 c e=2
d=2 e=2 f

�������
and

xT C x = 0 (6.28)

For any conic represented by a matrix C, and any two coplanar lines not tangent to
the conic, one invariant may be de�ned

I =
(lT1C

�1l2)2

(lT1C
�1l1)(lT2C

�1l2)
(6.29)

The same invariant can be formed for a conic and two coplanar points.

Two invariants can be determined for a pair of conics represented by their respective
matrices C1;C2 normalized so that jCij = 1

I1 = Trace[C�1
1 C2] I2 = Trace[C�1

2 C1] (6.30)
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(The trace of a matrix is calculated as the sum of elements on the main diagonal.) For
non-normalized conics, the invariants of associated quadratic forms are

I1 = Trace[C�1
1 C2]

� jC1j
jC2j

�1

3

I2 = Trace[C�1
2 C1]

�jC2j
jC1j

� 1

3

(6.31)

and two true invariants of the conics are [Quan et al. 92]

I1 =
Trace[C�1

1 C2]

(Trace[C�1
2 C1])2

jC1j
jC2j

I2 =
Trace[C�1

2 C1]

(Trace[C�1
1 C2])2

jC2j
jC1j

(6.32)

An interpretation of these invariants is given in [Maybank 92]. Two plane conics
uniquely determine four points of intersection, and any point that is not an intersec-
tion point may be chosen to form a �ve-point system together with the four intersection
points. Therefore, two invariants exist for the pair of conics, as for the �ve-point system.

Many man-made objects consist of a combination of straight lines and conics, and these
invariants may be used for their description. However, if the object has a contour which cannot
be represented by an algebraic curve, the situation is much more di�cult. Di�erential

invariants can be formed (e.g. curvature, torsion, Gaussian curvature) which are not a�ected
by projective transforms. These invariants are local { that is, the invariants are found for
each point on the curve, which may be quite general. Unfortunately, these invariants are
extremely large and complex polynomials, requiring up to seventh derivatives of the curve,
which makes them practically unusable due to image noise and acquisition errors, although
noise-resistant local invariants are beginning to appear [Weiss 92]. However, if additional
information is available, higher derivatives may be avoided. In [Brill et al. 92, Van Gool
et al. 92], higher derivatives are traded for extra reference points which can be detected on
curves in di�erent projections although the necessity of matching reference points in di�erent
projections brings other di�culties.

Designing new invariants is an important part of invariant theory in its application to
machine vision. The easiest way is to combine primitive invariants forming new ones from
these combinations. Nevertheless, no new information is obtained from these combinations.
Further, complete tables of invariants for systems of vectors under the action of the rotation
group, the a�ne transform group, and the general linear transform group may be found in
[Weyl 46]. To obtain new sets of functional invariants, several methods (eliminating transform
parameters, the in�nitesimal method, the symbolic method) can be found in [Forsyth et al.
91, Mundy and Zisserman 92].

Stability of invariants is another crucial property which a�ects their applicability. The
robustness of invariants to image noise and errors introduced by image sensors is of prime
importance, although not much is known about this. Results of plane-projective invariant sta-
bility testing (cross ratio, �ve coplanar points, two coplanar conics) can be found in [Forsyth
et al. 91, Hopcroft et al. 92]. Further, di�erent invariants have di�erent stabilities and
distinguishing powers. It was found, for example [Rothwell et al. 92a], that measuring a
single conic and two lines in a scene is too computationally expensive to be worthwhile. It is
recommended to combine di�erent invariants to enable fast object recognition.

An example of recognition of man-made objects using invariant description of four copla-
nar lines, a conic and two lines, and a pair of coplanar conics is given in [Rothwell et al. 92a].
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The recognition system is based on a model library containing over thirty object models {
signi�cantly more than that reported for other recognition systems. Moreover, the construc-
tion of the model library is extremely easy; no special measurements are needed, the object
is digitized in a standard way and the projectively invariant description is stored as a model
[Rothwell et al. 92b]. Further, there is no need for camera calibration. The recognition
accuracy is 100% for occluded objects viewed from di�erent viewpoints if the objects are not
severely disrupted by shadows and specularities. An example of such object recognition is
given in Figure 6.21.

Figure 6.21: Object recognition based on shape invariants: (a) Original image of overlapping

objects taken from an arbitrary viewpoint, (b) object recognition based on line and conic invari-

ants. Courtesy D. Forsyth, The University of Iowa; C. Rothwell, A. Zisserman, University

of Oxford; J. Mundy, General Electric Corporate Research and Development, Schenectady,

NY.

6.3 Region-based shape representation and description

We can use boundary information to describe a region, and shape can be described from
the region itself. A large group of shape description techniques is represented by heuris-
tic approaches which yield acceptable results in description of simple shapes. Region area,
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rectangularity, elongatedness, direction, compactness, etc. are examples of these methods.
Unfortunately, they cannot be used for region reconstruction and do not work for more
complex shapes. Other procedures based on region decomposition into smaller and simpler
subregions must be applied to describe more complicated regions, then subregions can be
described separately using heuristic approaches. Objects are represented by a planar graph
with nodes representing subregions resulting from region decomposition, and region shape is
then described by the graph properties [Rosenfeld 79, Bhanu and Faugeras 84, Turney et al.
85]. There are two general approaches to acquiring a graph of subregions: The �rst one is
region thinning leading to the region skeleton, which can be described by a graph. The
second option starts with the region decomposition into subregions, which are then repre-
sented by nodes while arcs represent neighborhood relations of subregions. It is common to
stipulate that subregions be convex.

Graphical representation of regions has many advantages; the resulting graphs

� are translation and rotation invariant; position and rotation can be included in the
graph de�nition

� are insensitive to small changes in shape

� are highly invariant with respect to region magnitude

� generate a representation which is understandable

� can easily be used to obtain the information-bearing features of the graph

� are suitable for syntactic recognition

On the other hand, the shape representation can be di�cult to obtain and the classi�er-
learning stage is not easy either (see Chapter 7). Nevertheless, if we are to get closer to the
reality of computer vision, and to understand complex images, there is no alternative.

6.3.1 Simple scalar region descriptors

A number of simple heuristic shape descriptors exist which relate to statistical feature de-
scription. These methods are basic and are used for description of subregions in complex
regions, and may then be used to de�ne graph node classi�cation [Bribiesca and Guzman 80].

Area

The simplest and most natural property of a region is its area, given by the number of pixels
of which the region consists. The real area of each pixel may be taken into consideration
to get the real size of a region, noting that in many cases, especially in satellite imagery,
pixels in di�erent positions correspond to di�erent areas in the real world. If an image is
represented as a rectangular raster, simple counting of region pixels will provide its area. If
the image is represented by a quadtree, however, it may be more di�cult to �nd the region
area. Assuming that regions have been identi�ed by labeling, the following algorithm may
be used.
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Algorithm 6.4: Calculating area in quadtrees

1. Set all region area variables to zero, and determine the global quadtree depth H ; for
example, the global quadtree depth is H = 8 for a 256� 256 image.

2. Search the tree in a systematic way. If a leaf node at a depth h has a non-zero label,
proceed to step (3).

3. Compute:
area[region label] = area[region label] + 4(H�h)

4. The region areas are stored in variables area[region label].

The region can be represented by n polygon vertices (ik; jk), and (i0; j0) = (in; jn). The area
is given by

area =
1

2
j
n�1X
k=0

(ikjk+1 � ik+1jk)j (6.33)

{ the sign of the sum represents the polygon orientation. If a smoothed boundary is used to
overcome noise sensitivity problems, the region area value resulting from equation (6.33) is
usually somewhat reduced. Various smoothing methods and accurate area-recovering tech-
niques are given in [Koenderink and van Doorn 86].

If the region is represented by the (anti-clockwise) Freeman chain code the following
algorithm provides the area;

Algorithm 6.5: Region area calculation from Freeman 4-connectivity

chain code representation

1. Set the region area to zero. Assign the value of the starting point i co-ordinate to the
variable vertical position.

2. For each element of the chain code (values 0, 1, 2, 3) do

switch(code) {

case 0:

area := area - vertical_position;

break;

case 1:

vertical_position := vertical_position + 1;

break;

case 2:

area := area + vertical_position;

break;

case 3:

vertical_position := vertical_position - 1;

break;

}
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3. If all boundary chain elements have been processed, the region area is stored in the
variable area.

Euler's number

Euler's number # (sometimes called Genus or the Euler-Poincar�e characteristic) de-
scribes a simple topologically invariant property of the object. It is based on S, the number
of contiguous parts of an object and N , the number of holes in the object (an object can
consist of more than one region, otherwise the number of contiguous parts is equal to one
(see Section 2.3.1)). Then

# = S �N (6.34)

Special procedures to compute Euler's number can be found in [Dyer 80, Rosenfeld and Kak
82, Pratt 91], and in Chapter 11.

Projections,

Horizontal and vertical region projections ph(i) and pv(j) are de�ned as

ph(i) =
X
j

f(i; j) pv(j) =
X
i

f(i; j) (6.35)

Region description by projections is usually connected to binary image processing. Projec-
tions can serve as a basis for de�nition of related region descriptors.; for example, the width
(height) of a region with no holes is de�ned as the maximum value of the horizontal (vertical)
projection of a binary image of the region. These de�nitions are illustrated in Figure 6.22.
Note that projections can be de�ned in any direction. A practical example exploiting the use
of projections is described in Section 16.1.

Eccentricity

The simplest eccentricity characteristic is the ratio of the length of the maximum chord A to
the maximum chord B which is perpendicular to A (the ratio of major and minor axes of an
object) { see Section 6.2.2, Figure 6.23. Another approximate eccentricity measure is based
on a ratio of main region axes of inertia [Ballard and Brown 82, Jain 89].

Elongatedness

Elongatedness is a ratio between the length and width of the region bounding rectangle.
This is the rectangle of minimum area that bounds the shape, which is located by turning in
discrete steps until a minimum is located (see Figure 6.24a). This criterion cannot succeed in
curved regions (see Figure 6.24b), for which the evaluation of elongatedness must be based on
maximum region thickness. Elongatedness can be evaluated as a ratio of the region area and
the square of its thickness. The maximum region thickness (holes must be �lled if present)
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width

height

vertical projection

horizontal projection

Figure 6.22: Projections.

A

B

Figure 6.23: Eccentricity.

can be determined as the number of erosion steps (see Chapter 11) that may be applied before
the region totally disappears. If the number of erosion steps is d, elongatedness is then

elongatedness =
area

(2d)2
(6.36)

Another method based on longest central line detection is described in [Nagao and Matsuyama
80]; representation and recognition of elongated regions is also discussed in [Lipari and Harlow
88].

Note that the bounding rectangle can be computed e�ciently from boundary points, if
its direction � is known. De�ning

�(x; y) = x cos � + y sin �; �(x; y) = �x sin � + y cos � (6.37)

search for the minimum and maximum of � and � over all boundary points (x; y). The values
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of �min; �max; �min; �max then de�ne the bounding rectangle, and l1 = (�max � �min) and
l2 = (�max � �min) are its length and width.

a

b

(a) (b)

Figure 6.24: Elongatedness: (a) Bounding rectangle gives acceptable results, (b) bounding

rectangle cannot represent elongatedness.

Rectangularity

Let Fk be the ratio of region area and the area of a bounding rectangle, the rectangle having
the direction k. The rectangle direction is turned in discrete steps as before, and rectangu-
larity measured as a maximum of this ratio Fk;

rectangularity = max
k

(Fk) (6.38)

The direction need only be turned through one quadrant. Rectangularity assumes values
from the interval (0; 1], with 1 representing a perfectly rectangular region. Sometimes, it may
be more natural to draw a bounding triangle; a method for similarity evaluation between two
triangles called sphericity is presented in [Ansari and Delp 90].

Direction

Direction is a property which makes sense in elongated regions only. If the region is elongated,
direction is the direction of the longer side of a minimum bounding rectangle. If the shape
moments are known (Section 6.3.2), the direction � can be computed as

� =
1

2
tan�1(

2�11
�20 � �02

) (6.39)

It should be noted that elongatedness and rectangularity are independent of linear trans-
formations { translation, rotation, and scaling. Direction is independent on all linear trans-
formations which do not include rotation. Mutual direction of two rotating objects is rotation
invariant.

Compactness

Compactness is a popular shape description characteristic independent of linear transforma-
tions given by

compactness =
(region border length)2

area
(6.40)
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The most compact region in a Euclidean space is a circle. Compactness assumes values in
the interval [1;1) in digital images if the boundary is de�ned as an inner boundary (see
Section 5.2.3), while using the outer boundary, compactness assumes values in the interval
[16;1). Independence from linear transformations is gained only if an outer boundary repre-
sentation is used. Examples of a compact and a non-compact region are shown in Figure 6.25.

(a) (b)

Figure 6.25: Compactness: (a) Compact, (b) non-compact.

6.3.2 Moments

Region moment representations interpret a normalized gray level image function as a proba-
bility density of a 2D random variable. Properties of this random variable can be described
using statistical characteristics {moments [Papoulis 91]. Assuming that non-zero pixel val-
ues represent regions, moments can be used for binary or gray level region description. A
moment of order (p+ q) is dependent on scaling, translation, rotation, and even on gray level
transformations and is given by

mpq =
Z
1

�1

Z
1

�1

xpyqf(x; y) dx dy (6.41)

In digitized images we evaluate sums

mpq =
1X

i=�1

1X
j=�1

ipjqf(i; j) (6.42)

where x; y; i; j are the region point co-ordinates (pixel co-ordinates in digitized images).
Translation invariance can be achieved if we use the central moments

�pq =
Z
1

�1

Z
1

�1

(x� xc)
p(y � yc)

qf(x; y) dx dy (6.43)

or in digitized images

�pq =
1X

i=�1

1X
j=�1

(i� xc)
p(j � yc)

qf(i; j) (6.44)
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where xc; yc are the co-ordinates of the region's center of gravity (centroid) which can be
obtained using the following relationships

xc =
m10

m00

(6.45)

yc =
m01

m00

In the binary case, m00 represents the region area (see equations (6.41) and (6.42)). Scale
invariant features can also be found in scaled central moments �pq (scale change x

0 = �x; y0 =
�y),

�pq =
�0pq

(�000)


(6.46)

 =
p+ q

2
+ 1

�0pq =
�pq

�(p+q+2)

and normalized unscaled central moments #pq

#pq =
�pq

(�00)
(6.47)

Rotation invariance can be achieved if the co-ordinate system is chosen such that �11 = 0
[Cash and Hatamian 87]. Many aspects of moment properties, normalization, descriptive
power, sensitivity to noise, and computational cost are discussed in [Savini 88]. A less general
form of invariance was given in [Hu 62] and is discussed in [Maitra 79, Jain 89, Pratt 91], in
which seven rotation, translation, and scale invariant moment characteristics were used.

'1 = #20 + #02 (6.48)

'2 = (#20 � #02)
2 + 4#211 (6.49)

'3 = (#30 � 3#12)
2 + (3#21 � #03)

2 (6.50)

'4 = (#30 + #12)
2 + (#21 + #03)

2 (6.51)

'5 = (#30 � 3#12)(#30 + #12)[(#30+ #12)
2 � 3(#21 + #03)

2] +

(3#21� #03)(#21 + #03)[3(#30+ #12)
2 � (#21 + #03)

2] (6.52)

'6 = (#20 � #02)[(#30 + #12)
2 � (#21 + #03)

2] + 4#11(#30 + #12)(#21 + #03) (6.53)

'7 = (3#21 � #03)(#30 + #12)[(#30+ #12)2 � 3(#21 + #03)2]�
(#30 � 3#12)(#21 + #03)[3(#30+ #12)2 � (#21 + #03)2] (6.54)

where the #pq values can be computed from equation (6.47).
While the seven moment characteristics presented above were shown to be useful, they are

only invariant to translation, rotation, and scaling. Recent algorithms for fast computation
of translation-, rotation-, and scale-invariant moments were given in [Li and Shen 91, Jiang
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and Bunke 91]. However, these approaches do not yield descriptors that are invariant under
general a�ne transforms. A complete set of four a�ne moment invariants derived from
second- and third-order moments was presented in [Flusser and Suk 93].

I1 =
�20�02 � �211

�400
(6.55)

I2 =
�230�

2
03 � 6�30�21�12�03 + 4�30�

3
12 + 4�321�03 � 3�221�

2
12

�1000
(6.56)

I3 =
�20(�21�03 � �212)� �11(�30�03 � �21�12) + �02(�30�12 � �221)

�700
(6.57)

I4 = (�320�
2
03 � 6�220�11�12�03 � 6�220�02�21�03 + 9�220�02�

2
12

+12�20�
2
11�21�03 + 6�20�11�02�30�03 � 18�20�11�02�21�12

�8�311�30�03 � 6�20�202�30�12 + 9�20�202�
2
21

+12�211�02�30�12 � 6�11�202�30�21 + �302�
2
30)=�

11
00 (6.58)

Details of the process for the derivation of invariants and examples of invariant moment
object descriptions can be found in [Flusser and Suk 93], and a complete proof and detailed
discussion of the properties of them are given in [Flusser and Suk 91].

All moment characteristics are dependent on the linear gray level transformations of
regions; to describe region shape properties, we work with binary image data (f(i; j) = 1 in
region pixels) and dependence on the linear gray level transform disappears.

Moment characteristics can be used in shape description even if the region is represented
by its boundary. A closed boundary is characterized by an ordered sequence z(i) that repre-
sents the Euclidean distance between the centroid and all N boundary pixels of the digitized
shape. No extra processing is required for shapes having spiral or concave contours. Trans-
lation, rotation, and scale invariant one-dimensional normalized contour sequence moments
mr; �r are de�ned in [Gupta and Srinath 87]. The rth contour sequence moment mr and the
rth central moment �r can be estimated as

mr =
1

N

NX
i=1

[z(i)]r (6.59)

�r =
1

N

NX
i=1

[z(i)�m1]
r (6.60)

The rth normalized contour sequence moment mr and normalized central contour sequence
moment �r are de�ned as

mr =
mr

(�2)r=2
=

1
N

P
N

i=1[z(i)]
r

[ 1
N

P
N

i=1[z(i)�m1]2]r=2
(6.61)
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�
r
=

�r

(�2)r=2
=

1
N

P
N

i=1[z(i)�m1]
r

[ 1
N

P
N

i=1[z(i)�m1]2]r=2
(6.62)

While the set of invariant moments mr; �r can be directly used for shape representation,
less noise-sensitive results can be obtained from the following shape descriptors [Gupta and
Srinath 87]

F1 =
(�2)

1=2

m1

=
[ 1
N

P
N

i=1[z(i)�m1]
2]1=2

1
N

P
N

i=1 z(i)
(6.63)

F2 =
�3

(�2)3=2
=

1
N

P
N

i=1[z(i)�m1]
3

[ 1
N

P
N

i=1[z(i)�m1]2]3=2
(6.64)

F3 =
�4

(�2)2
=

1
N

P
N

i=1[z(i)�m1]
4

[ 1
N

P
N

i=1[z(i)�m1]2]2
(6.65)

F4 = �5 (6.66)

Lower probabilities of error classi�cation were obtained using contour sequence moments
than area based moments (equation (6.48) { 6.54) in a shape recognition test; also, contour
sequence moments are less computationally demanding.

6.3.3 Convex hull

A region R is convex if and only if for any two points x1;x2 2 R, the whole line segment
x1x2 de�ned by its end-points x1;x2 is inside the region R. The convex hull of a region is
the smallest convex region H which satis�es the condition R � H { see Figure 6.26. The
convex hull has some special properties in digital data which do not exist in the continuous
case. For instance, concave parts can appear and disappear in digital data due to rotation,
and therefore the convex hull is not rotation invariant in digital space [Gross and Latecki 95].
The convex hull can be used to describe region shape properties and can be used to build a
tree structure of region concavity.

A discrete convex hull can be de�ned by the following algorithm which may also be used
for convex hull construction. This algorithm has complexity O(n2) and is presented here
as an intuitive way of detecting the convex hull. Algorithm 6.7 describes a more e�cient
approach.

Algorithm 6.6: Region convex hull construction

1. Find all pixels of a region R with the minimum row co-ordinate; among them, �nd the
pixel P1 with the minimum column co-ordinate.
Assign Pk = P1, v = (0;�1); the vector v represents the direction of the previous line
segment of the convex hull.

2. Search the region boundary in an anti-clockwise direction (Algorithm 5.8) and compute
the angle orientation 'n for every boundary point Pn which lies after the point P1

(in the direction of boundary search { see Figure 6.26). The angle orientation 'n is
the angle of vector PkPn. The point Pq satisfying the condition 'q = minn 'n is an
element (vertex) of the region convex hull.
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Figure 6.26: Convex hull.

3. Assign v = PkPq, Pk = Pq.

4. Repeat steps (2) and (3) until Pk = P1.

The �rst point P1 need not be chosen as described in the given algorithm, but it must be an
element of a convex segment of the inner region boundary.

As has been mentioned, more e�cient algorithms exist, especially if the object is de�ned
by an ordered sequence P = fv1;v2; : : : ;vng of n vertices vi representing a polygonal bound-
ary of the object. Many algorithms [Toussaint 85] exist for detection of the convex hull with
computational complexity O(n logn) in the worst case; these algorithms and their implemen-
tations vary in speed and memory requirements. As discussed in [Toussaint 91], the code of
[Bhattacharya and Toussaint 83] (in which a Fortran listing appears) seems to be the fastest
to date using only 5n storage space.

If the polygon P is a simple polygon (self-non-intersecting polygon) which is always the
case in a polygonal representation of object borders, the convex hull may be found in linear
time O(n). In the past two decades, many linear-time convex hull detection algorithms
have been published, however more than half of them were later discovered to be incorrect
[Toussaint 85, Toussaint 91], with counter-examples published. The algorithm of [McCallum
and Avis 79] was the �rst correct linear-time one. The simplest correct convex hull algorithm
was given in [Melkman 87] and was based on previous work [Lee 83, Bhattacharya and Gindy
84, Graham and Yao 84]. Melkman's convex hull detection algorithm is now discussed further.

Let the polygon for which the convex hull is to be determined be a simple polygon P =
fv1;v2; : : : ;vng and let the vertices be processed in this order. For any three vertices x,y,z
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in an ordered sequence, a directional function � may be evaluated (Figure 6.27)

�(x;y; z) = 1 if z is to the right of the directed line xy
= 0 if z is collinear with the directed line xy
= �1 if z is to the left of the directed line xy

The main data structureH is a list of vertices (deque) of polygonal vertices already processed.

x

y z

x y z

z y

x

(a) (b) (c)

Figure 6.27: Directional function �: (a) �(x;y; z) = 1, (b) �(x;y; z) = 0, (c) �(x;y; z) = �1.

The current contents of H represents the convex hull of the currently processed part of the
polygon, and after the detection is completed, the convex hull is stored in this data structure.
Therefore, H always represents a closed polygonal curve, H = fdb; : : : ; dtg where db points to
the bottom of the list and dt points to its top. Note that db and dt always refer to the same
vertex simultaneously representing the �rst and the last vertex of the closed polygon.

Here are the main ideas of the algorithm. The �rst three vertices A;B;C from the sequence
P form a triangle (if not collinear) and this triangle represents a convex hull of the �rst three
vertices { Figure 6.28a. The next vertex D in the sequence is then tested for being located
inside or outside the current convex hull. If D is located inside, the current convex hull does
not change { Figure 6.28b. If D is outside of the current convex hull, it must become a new
convex hull vertex (Figure 6.28c) and based on the current convex hull shape, either none,
one, or several vertices must be removed from the current convex hull { Figure 6.28c,d. This
process is repeated for all remaining vertices in the sequence P .

D

A A

C

D

C

A

C

D

B B

A

CB B

(c)(b)(a) (d)

Figure 6.28: Convex hull detection: (a) First three vertices A;B;C form a triangle, (b) if the

next vertex D is positioned inside the current convex hull ABC, current convex hull does not

change, (c) if the next vertex D is outside of the current convex hull, it becomes a new vertex

of the new current convex hull ABCDA, (d) in this case, vertex B must be removed from the

current convex hull and the new current convex hull is ADCA.

Following the terminology used in [Melkman 87], the variable v refers to the input vertex
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under consideration, and the following operations are de�ned:

push v : t := t + 1; dt ! v

pop dt : t := t � 1
insert v : b := b� 1; db ! v

remove db : b := b+ 1
input v : next vertex is entered from sequence P , if P is empty, stop.

where ! means `points to'. The algorithm is then;

Algorithm 6.7: Simple polygon convex hull detection

1. Initialize;
. t := �1;
. b := 0;
. input v1; input v2; input v3;

. if ( �(v1;v2;v3) > 0 )

. f push v1;

. push v2; g

. else

. f push v2;

. push v1; g

. push v3;

. insert v3;

2. If the next vertex v is inside the current convex hull H , enter and check a new vertex;
otherwise process steps (3) and (4);
. input v;

. while ( �(v; db; db+1) � 0 AND �(dt�1; dt;v) � 0 )

. input v;

3. Rearrange vertices in H , top of the list.
. while ( �(dt�1; dt;v) � 0 )

. pop dt;

. push v;

4. Rearrange vertices in H , bottom of the list.
. while ( �(v; db; db+1) � 0 )

. remove db;

. insert v;

. go to step (2);

The algorithm as presented may be di�cult to follow, however, a less formal version would
be impossible to implement; a formal proof is given in [Melkman 87]. The following example
makes the algorithm more understandable.
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Let P = fA;B;C;D;Eg as shown in Figure 6.29a. The data structure H is created in
the �rst step;

t; b : : : �1 0 1 2
H = C A B C

db dt

In the second step, vertex D is entered (Figure 6.29b);

�(D; db; db+1) = �(D;C;A) = 1 > 0
�(dt�1; dt; D) = �(B;C;D) = �1 < 0

Based on the values of the directional function �, in this case, no other vertex is entered
during this step. Step (3) results in the following current convex hull H ;

�(B;C;D) = �1 �! pop dt �!
t; b : : : �1 0 1 2
H = C A B C

db dt

�(A;B;D) = �1 �! pop dt �!
t; b : : : �1 0 1 2
H = C A B C

db dt

�(C;A;D) = 1 �! push D �!
t; b : : : �1 0 1 2
H = C A D C

db dt

In step (4) { Figure 6.29c;

�(D;C;A) = 1 �! insert D �!
t; b : : : �2 �1 0 1 2
H = D C A D C

db dt

Go to step (2); vertex E is entered { Figure 6.29d;

�(E;D;C) = 1 > 0
�(A;D;E) = 1 > 0

A new vertex should be entered from P , however there is no unprocessed vertex in the
sequence P and the convex hull generating process stops. The resulting convex hull is de�ned
by the sequence H = fdb; : : : ; dtg = fD;C;A;Dg which represents a polygon DCAD, always
in the clockwise direction { Figure 6.29e.

A region concavity tree is another shape representation option [Sklansky 72]. A tree
is generated recursively during the construction of a convex hull. A convex hull of the whole
region is constructed �rst, and convex hulls of concave residua are found next. The resulting
convex hulls of concave residua of the regions from previous steps are searched until no concave
residuum exists. The resulting tree is a shape representation of the region. Concavity tree
construction can be seen in Figure 6.30.
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Figure 6.29: Example of convex hull detection: (a) The processed region { polygon ABCDEA,

(b) vertex D is entered and processed, (c) vertex D becomes a new vertex of the current convex

hull ADC, (d) vertex E is entered and processed, E does not become a new vertex of the

current convex hull, (e) the resulting convex hull DCAD.

6.3.4 Graph representation based on region skeleton

This method corresponds signi�cantly curving points of a region boundary to graph nodes.
The main disadvantage of boundary-based description methods is that geometrically close
points can be far away from one another when the boundary is described { graphical repre-
sentation methods overcome this disadvantage. Shape properties are then derived from the
graph properties.

The region graph is based on the region skeleton, and the �rst step is the skeleton con-
struction. There are four basic approaches to skeleton construction:

� thinning { iterative removal of region boundary pixels

� wave propagation from the boundary

� detection of local maxima in the distance-transformed image of the region

� analytical methods

Most thinning procedures repeatedly remove boundary elements until a pixel set with max-
imum thickness of one or two is found. The following algorithm constructs a skeleton of
maximum thickness two.

Algorithm 6.8: Skeleton by thinning

1. Let R be the set of region pixels, Hi(R) its inner boundary, and Ho(R) its outer bound-
ary. Let S(R) be a set of pixels from the region R which have all their neighbors in
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Figure 6.30: Concavity tree construction: (a) Convex hull and concave residua, (b) concavity

tree.

8-connectivity either from the inner boundary Hi(R) or from the background { from
the residuum of R. Assign Rold = R.

2. Construct a region Rnew which is a result of one-step thinning as follows

Rnew = S(Rold) [ [Rold �Hi(Rold)] [ [Ho(S(Rold))\ Rold]

3. If Rnew = Rold, terminate the iteration and proceed to step (4). Otherwise assign
Rold = Rnew and repeat step (2).

4. Rnew is a set of skeleton pixels, the skeleton of the region R.

Steps of this algorithm are illustrated in Figure 6.31. If there are skeleton segments which
have a thickness of two in the skeleton, one extra step can be added to reduce those to a
thickness of one, although care must be taken not to break the skeleton connectivity.

A large number of thinning algorithms can be found in the image processing literature
[Hildich 69, Pavlidis 78]. If special prior conditions apply, these algorithms can be much sim-
pler. Thinning is generally a time-consuming process, although sometimes it is not necessary
to look for a skeleton, and one side of a parallel boundary can be used for skeleton-like region
representation. Mathematical morphology is a powerful tool used to �nd the region skeleton,
and thinning algorithms which use mathematical morphology are given in Chapter 11; see
also [Maragos and Schafer 86] where the morphological approach is shown to unify many
other approaches to skeletonization.

Thinning procedures often use a medial axis transform (also symmetric axis transform) to
construct a region skeleton [Blum 73, Pavlidis 77, Samet 85, Arcelli and Sanniti di Baja 86,
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Figure 6.31: Skeleton by thinning (Algorithm 6.8).

Pizer et al. 87, Lam et al. 92, Wright and Fallside 93]. Under the medial axis de�nition, the
skeleton is the set of all region points which have the same minimum distance from the region
boundary for at least two separate boundary points. Examples of skeletons resulting from
this condition are shown in Figures 6.32 and 6.33. Such a skeleton can be constructed using
a distance transform which assigns a value to each region pixel representing its (minimum)
distance from the region's boundary. The skeleton can be determined as a set of pixels
whose distance from the region's border is locally maximal. As a post-processing step, local
maxima can be detected using operators that detect linear features and roof pro�les [Canny
83, Petrou 90, Wright and Fallside 93]. Every skeleton element can be accompanied by
information about its distance from the boundary { this gives the potential to reconstruct
a region as an envelope curve of circles with center points at skeleton elements and radii
corresponding to the stored distance values. Shape descriptions, as discussed in Section 6.3.1
can be derived from this skeleton but, with the exception of elongatedness, the evaluation can
be di�cult. In addition, this skeleton construction is time-consuming and a resulting skeleton
is highly sensitive to boundary noise and errors. Small changes in the boundary may cause
serious changes in the skeleton { see Figure 6.32. This sensitivity can be removed by �rst
representing the region as a polygon, then constructing the skeleton. Boundary noise removal
can be absorbed into the polygon construction. A multi-resolution (scale-space) approach to
skeleton construction may also result in decreased sensitivity to boundary noise [Pizer et al.
87, Maragos 89]. Similarly, the approach using the Marr-Hildreth edge detector with varying
smoothing parameter facilitates scale-based representation of the region's skeleton [Wright
and Fallside 93].

A method of skeleton construction based on the Fourier coe�cients of a boundary Tn
and Sn (see Section 6.2.3) is given in [Persoon and Fu 77]. Neural networks [Krishnapuram
and Chen 91] and a Voronoi diagram approach [Brandt and Algazi 92, Ogniewicz and Ilg
92, Mayya and Rajan 95] can also be applied to �nd the skeleton. Fast parallel algorithms for
thinning are given in [Guo and Hall 92]. Use of the intensity axis of symmetry represents an
unconventional approach to skeletonization that does not require explicit region segmentation
[Gauch and Pizer 93]. If derived from boundary data considering the scale, the intensity axes
of symmetry are often called cores [Morse et al. 93, Fritsch et al. 97]. The cores are invariant
to translation, rotation, linear variation of intensity, and scale, and are insensitive to small-



270 CHAPTER 6. SHAPE REPRESENTATION AND DESCRIPTION

Figure 6.32: Region skeletons; small changes in border can have a signi�cant e�ect on the

skeleton.

(a) (b)

Figure 6.33: Region skeletons, see Figures 5.1a and 6.2a for original images; thickened for

visibility.

scale noise (spatially uncorrelated), small-scale blurring (compared to the object's width),
and small-scale local deformation.

Skeleton construction algorithms do not result in graphs but the transformation from
skeletons to graphs is relatively straightforward. Consider �rst the medial axis skeleton, and
assume that a minimum radius circle has been drawn from each point of the skeleton which
has at least one point common with a region boundary. Let contact be each contiguous subset
of the circle which is common to the circle and to the boundary. If a circle drawn from its
center A has one contact only, A is a skeleton end-point. If the point A has two contacts,
it is a normal skeleton point. If A has three or more contacts, the point A is a skeleton
node-point.

Algorithm 6.9: Region graph construction from skeleton

1. Assign a point description to all skeleton points { end-point, node-point, normal-point.

2. Let graph node-points be all end-points and node-points. Connect any two graph nodes
by a graph edge if they are connected by a sequence of normal-points in the region
skeleton.
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It can be seen that boundary points of high curvature have the main inuence on the graph.
They are represented by graph nodes, and therefore inuence the graph structure.

If other than medial axis skeletons are used for graph construction, end-points can be
de�ned as skeleton points having just one skeleton neighbor, normal-points as having two
skeleton neighbors, and node-points as having at least three skeleton neighbors. It is no
longer true that node-points are never neighbors and additional conditions must be used to
decide when node-points should be represented as nodes in a graph and when they should
not.

6.3.5 Region decomposition

The decomposition approach is based on the idea that shape recognition is a hierarchical
process. Shape primitives are de�ned at the lower level, primitives being the simplest
elements which form the region. A graph is constructed at the higher level { nodes result
from primitives, arcs describe the mutual primitive relations. Convex sets of pixels are one
example of simple shape primitives.

(a) (b) (c) (d)

Figure 6.34: Region decomposition: (a) Region, (b) primary regions, (c) primary subregions

and kernels, (d) decomposition graph.

The solution to the decomposition problem consists of two main steps: The �rst step
is to segment a region into simpler subregions (primitives) and the second is the analysis
of primitives. Primitives are simple enough to be successfully described using simple scalar
shape properties (see Section 6.3.1). A detailed description of how to segment a region
into primary convex subregions, methods of decomposition to concave vertices and graph
construction resulting from a polygonal description of subregions are given in [Pavlidis 77].
The general idea of decomposition is shown in Figure 6.34 where the original region, one
possible decomposition, and the resulting graph are presented. Primary convex subregions
are labeled as primary subregions or kernels. Kernels (shown striped in Figure 6.34c) are
subregions which belong to several primary convex subregions. If subregions are represented
by polygons, graph nodes bear the following information;

1. Node type representing primary subregion or kernel.

2. Number of vertices of the subregion represented by the node.

3. Area of the subregion represented by the node.
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4. Main axis direction of the subregion represented by the node.

5. Center of gravity of the subregion represented by the node.

If a graph is derived using attributes 1-4, the �nal description is translation invariant. A
graph derived from attributes 1-3 is translation and rotation invariant. Derivation using the
�rst two attributes results in a description which is size invariant in addition to possessing
translation and rotation invariance.

A decomposition of a region uses its structural properties, and a syntactic graph de-
scription is the result. Problems of how to decompose a region and how to construct the
description graph are still open; an overview of some techniques that have been investigated
can be found in [Feng and Pavlidis 75, Moayer and Fu 75, Pavlidis 77, Stallings 76, Shapiro
80, di Baja and Thiel 94, Held and Abe 94]. Shape decomposition into a complete set of
convex parts ordered by size is described in [Cortopassi and Rearick 88], and a morphological
approach to skeleton decomposition is used to decompose complex shapes into simple compo-
nents in [Zhou and Venetsanopoulos 89, Pitas and Venetsanopoulos 90, Kanungo and Haralick
92, Loncaric and Dhawan 95, Xiaoqi and Baozong 95, Wang et al. 95, Reinhardt and Higgins
96]; the decomposition is shown to be invariant to translation, rotation, and scaling. Recur-
sive subdivision of shape based on second central moments is another translation, rotation,
scaling, and intensity shift invariant decomposition technique [Zhu and Poh 88]. Hierarchical
decomposition and shape description that uses region and contour information, addresses
issues of local versus global information, scale, shape parts, and axial symmetry is given in
[Rom and Medioni 92, Rom and Medioni 93]. Multiresolution approaches to decomposition
are reported in [Loncaric and Dhawan 93, Cinque and Lombardi 95].

6.3.6 Region neighborhood graphs

Any time a region decomposition into subregions or an image decomposition into regions is
available, the region or image can be represented by a region neighborhood graph (the region
adjacency graph described in Section 3.2.3 being a special case). This graph represents every
region as a graph node, and nodes of neighboring regions are connected by edges. A region
neighborhood graph can be constructed from a quadtree image representation, from run-
length encoded image data, etc. Binary tree shape representation is described in [Leu 89]
where merging of boundary segments results in shape decomposition into triangles, their
relations being represented by the binary tree.

Very often, the relative position of two regions can be used in the description process {
for example, a region A may be positioned to the left of a region B, or above B, or close to

B, or a region C may lie between regions A and B, etc. We know the meaning of all of the
given relations if A;B;C are points, but, with the exception of the relation to be close, they
can become ambiguous if A;B;C are regions. For instance (see Figure 6.35), the relation to

be left of can be de�ned in many di�erent ways;

� All pixels of A must be positioned to the left of all pixels of B.

� At least one pixel of A must be positioned to the left of some pixel of B.

� The center of gravity of A must be to the left of the center of gravity of B.
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Figure 6.35: Binary relation to be left of; see text.

All of these de�nitions seem to be satisfactory in many cases but they can sometimes be
unacceptable because they do not meet the usual meaning of being left of. Human observers
are generally satis�ed with the de�nition:

� The center of gravity of A must be positioned to the left of the leftmost point of B
and (logical AND) the rightmost pixel of A must be left of the rightmost pixel of B
[Winston 75].

Many other inter-regional relations are de�ned in [Winston 75] where relational descriptions
are studied in detail.

An example of applying geometrical relations between simply shaped primitives to shape
representation and recognition may be found in [Shariat 90], where recognition is based on
a hypothesize and verify control strategy. Shapes are represented by region neighbor-
hood graphs that describe geometrical relations among primitive shapes. The model-based
approach increases the shape recognition accuracy and makes partially occluded object recog-
nition possible. Recognition of any new object is based on a de�nition of a new shape model.

6.4 Shape classes

Representation of shape classes is considered a challenging problem of shape description
[Hogg 93]. The shape classes are expected to represent the generic shapes of the objects
belonging to the class well and emphasize shape di�erences between classes, while the shape
variations allowed within classes should not inuence the description.

There are many ways to deal with such requirements. A widely used representation of
in-class shape variations is determination of class-speci�c regions in the feature space. The
feature space can be de�ned using a selection of shape features described earlier in this chapter
(for more information about feature spaces, see Chapter 7). Another approach to shape class
de�nition is to use a single prototype shape and determine a planar warping transform that
if applied to the prototype produces shapes from the particular class. The prototype shape
may be derived from examples.
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If a set of landmarks can be identi�ed on the regions belonging to speci�c shape classes, the
landmarks can characterize the classes in a simple and powerful way. Landmarks are usually
selected as easily recognizable border or region points. For planar shapes, a co-ordinate system
can be de�ned that is invariant to similarity transforms of the plane (rotation, translation,
scaling) [Bookstein 91, Rangarajan et al. 97]. If such a landmark model uses n points per 2D
object, the dimensionality of the shape space is 2n. Clearly, only a subset of the entire shape
space corresponds to each shape class and the shape class de�nition reduces to the de�nition
of the shape space subsets. In [Cootes et al. 92], principal components in the shape space
are determined from training sets of shapes after the shapes are iteratively aligned. The �rst
few principal components characterize the most signi�cant variations in shape. Thus, a small
number of shape parameters represent the major shape variation characteristics associated
with the shape class. Such a shape class representation is referred to as point distribution
models and is discussed in detail in Section 8.3 in the context of image interpretation.

6.5 Summary

� Shape representation and description

{ Region description generates a numeric feature vector or a non-numeric syntac-
tic description word, which characterize properties (for example, shape) of the
described region.

{ While many practical shape description methods exist, there is no generally ac-
cepted methodology of shape description. Further, it is not known what in shape
is important.

{ Shape may change substantially with image resolution. Conventional shape de-
scriptions change discontinuously with changes in resolution. A scale-space ap-
proach aims to obtain continuous shape descriptions for continuous resolution
changes.

{ The shape classes represent the generic shapes of the objects belonging to the
same classes. Shape classes should emphasize shape di�erences among classes
while the shape variations within classes should not be reected in the shape class
description.

� Region identi�cation

{ Region identi�cation assigns unique labels to image regions.

{ If nonrepeating ordered numerical labels are used, the largest integer label gives
the number of regions in the image.

� Contour-based shape descriptors

{ Chain codes describe an object by a sequence of unit-size line segments with a
given orientation, called Freeman's code.

{ Simple geometric border representations are based on geometric properties
of described regions, e.g.:
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� Boundary length

� Curvature

� Bending energy

� Signature

� Chord distribution

{ Fourier shape descriptors can be applied to closed curves, co-ordinates of which
can be treated as periodic signals.

{ Shape can be represented as a sequence of segments with speci�ed properties.
If the segment type is known for all segments, the boundary can be described
as a chain of segment types, a code-word consisting of representatives of a type
alphabet.

{ B-splines are piecewise polynomial curves whose shape is closely related to their
control polygon { a chain of vertices giving a polygonal representation of a curve.
B-splines of the third-order are most common, representing the lowest order which
includes the change of curvature.

{ Shape invariants represent properties of geometric con�gurations that remain
unchanged under an appropriate class of transforms; machine vision is especially
concerned with the class of projective transforms.

� Region-based shape descriptors

{ Simple geometric region descriptors use geometric properties of described regions:

� Area

� Euler's number

� Projections

� Height, width

� Eccentricity

� Elongatedness

� Rectangularity

� Direction

� Compactness

{ Statistical moments interpret a normalized gray level image function as a prob-
ability density of a 2D random variable. Properties of this random variable can be
described using statistical characteristics { moments. Moment-based descriptors
can be de�ned to be independent of scaling, translation and rotation.

{ The convex hull of a region is the smallest convex region H which satis�es the
condition R � H .

{ More complicated shapes can be described using region decomposition into smaller
and simpler subregions. Objects can be represented by a planar graph with nodes
representing subregions resulting from region decomposition. Region shape can
then be described by the graph properties. There are two general approaches to
acquiring a graph of subregions:
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� Region thinning

� Region decomposition

{ Region thinning leads to the region skeleton that can be described by a graph.
Thinning procedures often use a medial axis transform to construct a region skele-
ton. Under the medial axis de�nition, the skeleton is the set of all region points
which have the same minimum distance from the region boundary for at least two
separate boundary points.

{ Region decomposition considers shape recognition to be a hierarchical process.
Shape primitives are de�ned at the lower level, primitives being the simplest
elements which form the region. A graph is constructed at the higher level { nodes
result from primitives, arcs describe the mutual primitive relations.

{ Region neighborhood graphs represents every region as a graph node, and
nodes of neighboring regions are connected by edges. The region adjacency

graph is a special case of the region neighborhood graph.

� Shape classes

{ Shape classes represent the generic shapes of the objects belonging to the class
and emphasize shape di�erences among classes.

{ A widely used representation of in-class shape variations is determination of class-
speci�c regions in the feature space.

6.6 Exercises

Short-answer questions

1. What are the prerequisites of shape description?

2. What are the main distinguishing aspects among various shape representation and shape de-
scription methods?

3. Explain how the problem of scale a�ects shape description.

4. Explain what shape classes are and why are they important.

5. Explain the rationale behind projection-invariant shape descriptors.

6. De�ne the three most common representations of region borders.

7. De�ne the boundary chain code in 4- and 8-connectivity.

8. De�ne the chain code derivative in 4- and 8-connectivity.

9. De�ne the following border-based region descriptors:

(a) boundary length

(b) curvature

(c) bending energy

(d) signature

(e) chord distribution

(f) Fourier transform of boundaries using Tn descriptors
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(g) Fourier transform of boundaries using Sn descriptors

(h) polygonal segment representation

(i) constant curvature representation

(j) tolerance interval representation

10. Explain the concept of multiscale curve description using interval trees in the scale-space.

11. Describe the concept of B-spline curve interpolation.

12. Explain the role of the spline order.

13. De�ne the following projection-invariant shape descriptors:

(a) cross ratio

(b) system of four coplanar concurrent lines

(c) system of �ve coplanar concurrent lines

(d) system of �ve coplanar points

(e) plane conics

14. Describe a subclass of boundary shapes to which the invariants listed in Question 6.13 can be
applied.

15. Describe how di�erential invariants can help with invariant description of general shapes.

16. Explain the di�erence between local and global invariants.

17. De�ne the following region shape descriptors:

(a) area

(b) Euler's number

(c) horizontal and vertical projections

(d) eccentricity

(e) elongatedness

(f) rectangularity

(g) direction

(h) compactness

(i) statistical moments

(j) convex hull

(k) region concavity tree

18. List the advantages of graph-based region shape descriptors.

19. Describe the principles of region skeletonization by thinning.

20. Describe the medial axis transform.

21. Describe the principles of shape description using graph decomposition.
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Problems

1. Write a function (subroutine) for region identi�cation in 4-neighborhood connectivity.

2. Write a function (subroutine) for region identi�cation in 8-neighborhood connectivity.

3. Develop a program for region identi�cation and region counting that will use function(s) devel-
oped in Problems 6.1 and 6.2. Test on binary segmented images.

4. Modify the program developed in Problem 6.3 to accept multi-level segmented images, assuming
that the background gray level is known.

5. Develop a program for region identi�cation and region counting in run-length encoded image
data. Use the program developed in Problem 3.2 to generate run-length encoded image data.

6. Develop a program for region identi�cation and region counting in quadtrees. Use the program
developed in Problem 3.5 to generate quadtree image data.

7. Write a function (subroutine) for chain code generation in 4-connectivity. Test on images in
which the regions have been identi�ed using one of the programs developed in Problems 6.3{6.6.

8. Write a function (subroutine) for chain code generation in 8-connectivity. Test on images in
which the regions have been identi�ed using one of the programs developed in Problems 6.3{6.6.

9. An object is described by the following chain code in 4-connectivity: 10123230.

(a) Determine the normalized version of the chain code.

(b) Determine the derivative of the original chain code.

10. Determine the Euler number of the following characters: 0, 4, 8, A, B, C, D.

11. Prove the statement that the most compact region in a Euclidean space is a circle. Compare the
compactness values of a square and a rectangle of any aspect ratio { what can you conclude?

12. Write functions (subroutines) determining the following border descriptors:

(a) boundary length

(b) curvature

(c) bending energy

(d) signature

(e) chord distribution

(f) Fourier transform of boundaries using Tn descriptors

(g) Fourier transform of boundaries using Sn descriptors

Use the functions in a program to determine shape features of binary objects.

13. Write functions (subroutines) determining the following region shape descriptors:

(a) area

(b) area from chain code border representation

(c) area from quadtree region representation

(d) Euler's number

(e) horizontal and vertical projections

(f) eccentricity

(g) elongatedness
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(h) rectangularity

(i) direction

(j) compactness

(k) a�ne transform invariant statistical moments

Use the functions in a program to determine shape features of binary objects.

14. Develop a program to determine the shape features listed in Problems 6.12{6.13 in images
containing several objects simultaneously. The program should report the features in a table,
and the objects should be identi�ed by their centroid co-ordinates.

15. Develop a program to determine the shape features listed in Problems 6.12{6.13 from shapes
encoded using run-length code and/or quadtree image data.

16. Develop a program to generate digital images of simple shapes (rectangle, diamond, circle, etc.)
in various sizes and rotations. Using the functions prepared in Problems 6.12{6.13, compare the
shape features determined by individual shape descriptors as a function of size and a function
of rotation.

17. Develop a program for simple polygon convex hull detection.

18. Develop a program for region concavity tree construction.

19. Determine a medial axis skeleton of a circle, square, rectangle, and triangle.

20. Develop a program constructing a medial axis of a binary region.

(a) Apply the program to computer-generated letters and numerals.

(b) Apply the program to printed letters and numerals after their digitization using a video
camera or a scanner.

(c) Explain the di�erences in performance of your algorithm.

(d) Develop a practically-applicable thinning algorithmthat constructs line shapes from scanned
characters.
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