
Contents

7 Object recognition 290

7.1 Knowledge representation 291
7.2 Statistical pattern recognition 296

7.2.1 Classi�cation principles 298
7.2.2 Classi�er setting 300
7.2.3 Classi�er learning 303
7.2.4 Cluster analysis 306

7.3 Neural nets 308
7.3.1 Feedforward networks 310
7.3.2 Unsupervised learning 312
7.3.3 Hop�eld neural nets 313

7.4 Syntactic pattern recognition 315
7.4.1 Grammars and languages 317
7.4.2 Syntactic analysis, syntactic classi�er 319
7.4.3 Syntactic classi�er learning, grammar inference 321

7.5 Recognition as graph matching 323
7.5.1 Isomorphism of graphs and subgraphs 323
7.5.2 Similarity of graphs 327

7.6 Optimization techniques in recognition 329
7.6.1 Genetic algorithms 330
7.6.2 Simulated annealing 333

7.7 Fuzzy systems 335
7.7.1 Fuzzy sets and fuzzy membership functions 335
7.7.2 Fuzzy set operators 337
7.7.3 Fuzzy reasoning 339
7.7.4 Fuzzy system design and training 342

7.8 Summary 344
7.9 Exercises 346
7.10 References 353

1

List of Algorithms

7.1 Learning and classi�cation based on estimates of probability densities assuming
the normal distribution 305

7.2 Minimum distance classi�er learning and classi�cation 306
7.3 MacQueen k-means cluster analysis 307
7.4 Back-propagation learning 311
7.5 Unsupervised learning of the Kohonen feature map 313
7.6 Recognition using a Hop�eld net 314
7.7 Syntactic recognition 316
7.8 Graph isomorphism 326
7.9 Maximal clique location 327
7.10 Genetic algorithm 332
7.11 Simulated annealing optimization 334
7.12 Fuzzy system design 342

289

Chapter 7

Object recognition

Not even the simplest machine vision tasks can be solved without the help of recognition.
Pattern recognition is used for region and object classi�cation, and basic methods of pattern
recognition must be understood in order to study more complex machine vision processes.

Classi�cation of objects or regions has been mentioned several times; recognition is then
the last step of the bottom-up image processing approach. It is also often used in other
control strategies for image understanding. Almost always when information about an object
or region class is available, some pattern recognition method is used.

Consider a simple recognition problem. Two di�erent parties take place at the same
hotel at the same time { the �rst is a celebration of a successful basketball season, and
the second a yearly meeting of jockeys. The doorman is giving directions to guests, asking
which party they are to attend. After a while the doorman discovers that no questions are
necessary and he directs the guests to the right places, noticing that instead of questions, he
can just use the obvious physical features of basketball players and jockeys. Maybe he uses
two features to make a decision, the weight and the height of the guests. All small and light
men are directed to the jockey party, all tall and heavier guests are sent to the basketball
party. Representing this example in terms of recognition theory, the early guests answered
the doorman's question as to which party they are going to visit. This information, together
with characteristic features of these guests, resulted in the ability of the doorman to classify
them based only on their features. Plotting the guests' height and weight in a two-dimensional
space (see Figure 7.1), it is clear that jockeys and basketball players form two easily separable
classes and that this recognition task is extremely simple. Although real object recognition
problems are often more di�cult, and the classes do not di�er so substantially, the main
principles remain the same.

The theory of pattern recognition is thoroughly discussed in several references [Fu 82,
Devijver and Kittler 82, Oja 83, Devijver and Kittler 86, Patrick and Fattu 86, Fukunaga
90, Dasarathy 91, Sethi and Jain 91, Schalko� 92, Chen et al. 93, Pavel 93, Nigrin 93,
Cherkassky et al. 94, Hlavac and Sara 95], and here only a brief introduction will be given.
In addition, we will introduce some other related techniques: graph matching, neural nets,
genetic algorithms, simulated annealing, and fuzzy logic.

No recognition is possible without knowledge. Decisions about classes or groups into which
recognized objects are classi�ed are based on such knowledge { knowledge about objects and
their classes gives the necessary information for object classi�cation. Both speci�c knowledge

290

7.1. KNOWLEDGE REPRESENTATION 291

*
* *
**

**
*

** *
*

^^ ^
^^̂^
^̂̂
^

^^ ^

*
*
*

^
^^
Jockeys

Weight

Height

Basketball

players

Figure 7.1: Recognition of basketball players and jockeys; features are weight and height.

about the objects being processed and hierarchically higher and more general knowledge
about object classes is required. First, common knowledge representation techniques will be
introduced because the concept of knowledge representation in suitable form for a computer
may not be straightforward.

7.1 Knowledge representation

Knowledge as well as knowledge representation problems are studied in arti�cial intelligence
(AI), and computer vision takes advantage of these results. Use of AI methods is very common
in higher processing levels and a study of AI is necessary for a full appreciation of computer
vision and image understanding. Here we present a short outline of common techniques as
they are used in AI, and an overview of some basic knowledge representations. More detailed
coverage of knowledge representation can be found in [Michalski et al. 83, Winston 84, Simons
84, Devijver and Kittler 86, Wechsler 90, Reichgelt 91, Lakemeyer and Nebel 94, Masuch and
Polos 94].

Experience shows that a good knowledge representation design is the most important
part of solving the understanding problem. Moreover, a small number of relatively simple
control strategies is often su�cient for AI systems to show complex behavior, assuming an
appropriately complex knowledge base is available. In other words, a high degree of control
sophistication is not required for intelligent behavior, but a rich, well structured representation
of a large set of a priori data and hypotheses is needed [Schutzer 87].

Other terms of which regular use will be made are syntax and semantics [Winston 84].

� The syntax of a representation speci�es the symbols that may be used and the ways
that they may be arranged.

� The semantics of a representation speci�es how meaning is embodied in the symbols
and the symbol arrangement allowed by the syntax.

� A representation is a set of syntactic and semantic conventions that make it possible
to describe things.

The main knowledge representation techniques used in AI are: Formal grammars and lan-
guages, predicate logic, production rules, semantic nets and frames. Even if features and

292 CHAPTER 7. OBJECT RECOGNITION

descriptions are not usually considered knowledge representations, they are added for practi-
cal reasons; these low-level forms of knowledge representation will be mentioned many times
throughout the coming sections.

Note that knowledge representation data structures are mostly extensions of conventional
data structures like lists, trees, graphs, tables, hierarchies, sets, rings, nets and matrices.

Descriptions, features

Descriptions and features cannot be considered pure knowledge representations. Nevertheless,
they can be used for representing knowledge as a part of a more complex representation
structure.

Descriptions usually represent some scalar properties of objects, and are called features.
Typically, a single description is insu�cient for object representation, therefore the descrip-
tions are combined into feature vectors. Numerical feature vectors are inputs for statistical
pattern recognition techniques (see Section 7.2).

Figure 7.2: Feature description of simple objects.

A simple example of feature description of objects is shown in Figure 7.2. The size feature
can be used to represent an area property and the compactness feature describes circularity
(see Section 6.3.1). Then the feature vector x = (size; compactness) can be used for object
classi�cation into the following classes of objects: small, large, circular, noncircular, small
and circular, small and noncircular, etc. assuming information about what is considered
small/large and circular/noncircular is available.

Grammars, languages

If an object's structure needs to be described, feature description is not appropriate. A
structural description is formed from existing primitives and the relations between them.

Primitives are represented by information about their types. The simplest form of struc-
ture representations are chains, trees and general graphs. Structural description of chromo-
somes using border segments as primitives is a classic example of structural object description
[Fu 82] (see Figure 6.14), where borders are represented by a chain of symbols, the symbols
representing speci�c types of border primitives. Hierarchical structures can be represented
by trees { the concavity tree of Figure 6.30 serves as an example. A more general graph
representation is used in Chapter 14 where a graph grammar (Figure 14.6) is used for texture
description. Many examples of syntactic object description may be found in [Fu 74, Fu 77, Fu
80, Fu 82].

7.1. KNOWLEDGE REPRESENTATION 293

One object can be described by a chain, a tree, a graph, etc. of symbols. Nevertheless, the
whole class of objects cannot be described by a single chain, a single tree, etc., but a class of
structurally described objects can be represented by grammars and languages. Grammars
and languages (similar to natural languages) provide rules de�ning how the chains, trees or
graphs can be constructed from a set of symbols (primitives). A more speci�c description of
grammars and languages is given in Section 7.4.

Predicate logic

Predicate logic plays a very important role in knowledge representation { it introduces a
mathematical formalism to derive new knowledge from old knowledge by applying mathe-
matical deduction. Predicate logic works with combinations of logic variables, quanti�ers
(9; 8), and logic operators (and, or, not, implies, equivalent). The logic variables are binary
(true, false). The idea of proof and rules of inference such asmodus ponens and resolution
are the main building blocks of predicate logic [Pospesel 76].

Predicate logic forms the essence of the programming language PROLOG that is widely
used if objects are described by logic variables. Requirements of `pure truth' represent the
main weakness of predicate logic in knowledge representation since it does not allow work
with uncertain or incomplete information. Predicate logic incorporates logic conditions and
constraints into knowledge processing (see Section 8.5), [Hayes 77, Kowalski 79, Clocksin and
Mellish 81].

Production rules

Production rules represent a wide variety of knowledge representations that are based on
condition-action pairs. The essential model of behavior of a system based on production
rules (a production system) can be described as follows:

if condition X holds then action Y is appropriate

Information about what action is appropriate at what time represents knowledge. The proce-
dural character of knowledge represented by production rules is another important property
{ not all the information about objects must be listed as an object property. Consider a
simple knowledge base where the following knowledge is present

if ball then circular (7.1)

Let the knowledge base also include the statements

object A is a ball

object B is a ball

object C is a shoe

etc. (7.2)

To answer the question how many objects are circular?, if enumerative knowledge represen-
tation is used, the knowledge must be listed as

object A is a (ball, circular)

294 CHAPTER 7. OBJECT RECOGNITION

object B is a (ball, circular)

etc.

If procedural knowledge is used, the knowledge base (7.2) together with the knowledge (7.1)
gives the same information in a signi�cantly more e�cient manner.

Both production rule knowledge representation and production systems appear frequently
in computer vision and image understanding problems. Furthermore, production systems
together with a mechanism for handling uncertainty information, form a basis of expert
systems.

Fuzzy logic

Fuzzy logic has been developed [Zadeh 65, Zimmermann et al. 84] to overcome the obvious
limitations of numerical or crisp representation of information. Consider the use of knowledge
represented by equation (7.1) for recognition of balls; using the production rule, the knowledge
about balls may be represented as

if circular then ball (7.3)

If the object in a two-dimensional image is considered circular then it may represent a ball.
Our experience with balls, however, says that they are usually close to, but not perfectly,
circular. Thus, it is necessary to de�ne some circularity threshold so that all reasonably
circular objects from our set of objects are labeled as balls. Here is the fundamental problem
of crisp descriptions; how circular must an object be to be considered circular?

If humans represent such knowledge, the rule for ball circularity may look like

if circularity is HIGH then object is a ball with HIGH con�dence (7.4)

Clearly, high circularity is a preferred property of balls. Such knowledge representation is
very close to common sense representation of knowledge, with no need for exact speci�cation
of the circularity/non-circularity threshold. Fuzzy rules are of the form

if X is A then Y is B (7.5)

where X and Y represent some properties and A and B are linguistic variables. Fuzzy
logic can be used to solve object recognition and other decision making tasks, among others;
this is further discussed in Section 7.7.

Semantic nets

Semantic nets are a special variation of relational data structures (see Chapter 3). The seman-
tics distinguish them from general nets { semantic nets consist of objects, their description,
and a description of relations between objects (often just relations between neighbors). Log-
ical forms of knowledge can be included in semantic nets, and predicate logic can be used
to represent and/or evaluate the local information and local knowledge. Semantic nets can
also represent common sense knowledge that is often imprecise and needs to be treated in
a probabilistic way. Semantic nets have a hierarchical structure; complex representations

7.1. KNOWLEDGE REPRESENTATION 295

consist of less complex representations, which can in turn be divided into simpler ones, etc.
Relations between partial representations are described at all appropriate hierarchical levels.

Evaluated graphs are used as a semantic net data structure; nodes represent objects and
arcs represent relations between objects. The following de�nition of a human face is an
example of a simple semantic net:

� A face is a circular part of the human body that consists of two eyes, one nose, and one
mouth.

� One eye is positioned left of the other eye.

� The nose is between and below the eyes.

� The mouth is below the nose.

� An eye is approximately circular.

� The nose is vertically elongated.

� The mouth is horizontally elongated.

The semantic net representing this knowledge is shown in Figure 7.3.

It is clear that the descriptive structures found in real images match the knowledge rep-
resented by a semantic net with varying degrees of closeness. The question of whether the
described structure is similar to that represented by the semantic net is discussed in Sec-
tion 7.5 and in Chapter 8.

A detailed discussion of semantic nets related to image information can be found in
[Niemann 90], and more general properties of semantic nets are described in [Michalski et al.
83, Sharples et al. 89].

Frames, scripts

Frames provide a very general method for knowledge representation which may contain all
the knowledge representation principles discussed so far. They are sometimes called scripts
because of their similarity to �lm scripts. Frames are suitable for representing common sense
knowledge under speci�c circumstances. Consider a frame called plane start; this frame may
consist of the following sequence of actions:

1. Start the engines

2. Taxi to the runway

3. Increase RPMs of engines to maximum

4. Travel along runway increasing speed

5. Fly

296 CHAPTER 7. OBJECT RECOGNITION

being circular
being circular

inside

left of

below
below

left of
left of

inside

being vertically
elongated

below

being horizontally

elongated

inside

inside

being

circular

Figure 7.3: Semantic nets: A human face model and its net.

Assuming this frame represents knowledge of how planes usually start, the situation of a plane
standing on a runway with engines running causes the prediction that the plane will start in
a short time. The frame can be used as a substitute for missing information which may be
extremely important in vision-related problems.

Assuming that one part of the runway is not visible from the observation point, using the
plane start frame, a computer vision system can overcome the lack of continuous information
between the plane moving at the beginning of the runway and ying when it next appears.
If it is a passenger plane, the frame may have additional items like time of departure, time of

arrival, departure city, arrival city, airline, ight number, etc. because in a majority of cases
it makes sense to be interested in this information if we identify a passenger plane.

From a formal point of view, a frame is represented by a general semantic net accompanied
by a list of relevant variables, concepts, and concatenation of situations. No standard form
of frame exists. Frames represent a tool for organizing knowledge in prototypical objects,
and for description of mutual inuences of objects using stereotypes of behavior in speci�c
situations. Examples of frames can be found elsewhere [Michalski et al. 83, Winston 84,
Schutzer 87, Sharples et al. 89]. Frames are considered high-level knowledge representations.

7.2. STATISTICAL PATTERN RECOGNITION 297

7.2 Statistical pattern recognition

An object is a physical unit, in image analysis and computer vision usually represented by a
region in a segmented image. The set of objects can be divided into disjoint subsets, that,
from the classi�cation point of view, have some common features and are called classes.
The de�nition of how the objects are divided into classes is ambiguous and depends on the
classi�cation goal.

Object recognition is based on assigning classes to objects and the device that does
these assignments is called the classi�er. The number of classes is usually known before-
hand, and typically can be derived from the problem speci�cation. Nevertheless, there are
approaches in which the number of classes may not be known (see Section 7.2.4).

The classi�er (similarly to a human) does not decide about the class from the object itself
{ rather, sensed object properties are used to serve this purpose. For example, to distinguish
steel from sandstone, we do not have to determine their molecular structures, although this
would describe these materials well. Properties like texture, speci�c weight, hardness, etc. are
used instead. This sensed object is called the pattern, and the classi�er does not actually
recognize objects, but recognizes their patterns. Object recognition and pattern recognition
are considered synonymous.

The main pattern recognition steps are shown in Figure 7.4. The block `Construction of
formal description' is based on the experience and intuition of the designer. A set of elemen-
tary properties is chosen which describe some characteristics of the object; these properties
are measured in an appropriate way, and form the description pattern of the object. These
properties can be either quantitative or qualitative in character and their form can vary (nu-
merical vectors, chains, etc.). The theory of recognition deals with the problem of designing
the classi�er for the speci�c (chosen) set of elementary object descriptions.

patternobject classification
Classifier

formal description
of

Construction

Figure 7.4: Main pattern recognition steps.

Statistical object description uses elementary numerical descriptions called features,
x1; x2; : : : ; xn; in image analysis, the features result from object description as discussed
in Chapter 6. The pattern (also referred to as pattern vector, or feature vector) x =
(x1; x2; : : : ; xn) that describes an object is a vector of elementary descriptions, and the set of
all possible patterns forms the pattern space X (also called feature space). If the elemen-
tary descriptions were appropriately chosen, similarity of objects in each class results in the
proximity of their patterns in pattern space. The classes form clusters in the feature space,
which can be separated by a discrimination curve (or hypersurface in a multi-dimensional
feature space) { see Figure 7.5.

If a discrimination hypersurface exists which separates the feature space such that only
objects from one class are in each separated region, the problem is called a recognition task
with separable classes. If the discrimination hypersurfaces are hyperplanes, it is called a
linearly separable task. If the task has separable classes, each pattern will represent only

298 CHAPTER 7. OBJECT RECOGNITION

patterns from class K

*

*

*
*

*
*

** *
* *

*

*

*

patterns from class K

patterns from class K

discrimination

function

K

K

K

1

2

3

1

2

3

Figure 7.5: General discrimination functions.

objects from one class. Intuitively, we may expect that separable classes can be recognized
without errors.

The majority of object recognition problems do not have separable classes, in which case
the locations of the discrimination hypersurfaces in the feature space can never separate the
classes correctly and some objects will always be misclassi�ed.

7.2.1 Classi�cation principles

A statistical classi�er is a device with n inputs and 1 output. Each input is used to enter the
information about one of n features x1; x2; : : : ; xn that are measured from an object to be
classi�ed. An R-class classi�er will generate one of R symbols !1; !2; : : : ; !R as an output,
and the user interprets this output as a decision about the class of the processed object. The
generated symbols !r are the class identi�ers.

The function d(x) = !r describes relations between the classi�er inputs and the output;
this function is called the decision rule. The decision rule divides the feature space into
R disjoint subsets Kr, r = 1; : : : ; R each of which includes all the feature representation
vectors x0 of objects for which d(x0) = !r. The borders between subsets Kr, r = 1; : : : ; R
form the discrimination hypersurfaces mentioned earlier. The determination of discrimination
hypersurfaces (or de�nition of the decision rule) is the goal of classi�er design.

The discrimination hypersurfaces can be de�ned by R scalar functions g1(x), g2(x), . . . ,
gR(x) called discrimination functions. The design of discrimination functions must satisfy
the following formula for all x 2 Kr and for any s 2 f1; : : : ; Rg , s 6= r

gr(x) � gs(x) (7.6)

Therefore, the discrimination hypersurface between class regions Kr and Ks is de�ned by

gr(x)� gs(x) = 0 (7.7)

The decision rule results from this de�nition. The object pattern x will be classi�ed into the

7.2. STATISTICAL PATTERN RECOGNITION 299

class whose discrimination function gives a maximum of all the discrimination functions:

d(x) = !r () gr(x) = max
s=1;:::;R

gs(x) (7.8)

Linear discrimination functions are the simplest and are widely used. Their general form
is

gr(x) = qr0 + qr1x1 + : : :+ qrnxn (7.9)

for all r = 1; : : : ; R. If all the discrimination functions of the classi�er are linear, it is called
a linear classi�er.

Another possibility is to construct classi�ers based on the minimum distance princi-
ple. The resulting classi�er is just a special case of classi�ers with discrimination functions,
however they have computational advantages and may easily be implemented on digital com-
puters. Assume that R points are de�ned in the feature space, v1;v2; : : : ;vR that represent
exemplars (sample patterns) of classes !1; !2; : : : ; !R. A minimum distance classi�er clas-
si�es a pattern x into the class to whose exemplar it is closest.

d(x) = !r () jvr � xj = min
s=1;:::;R

jvs � xj (7.10)

Each discrimination hyperplane is perpendicular to the line segment vsvr and bisects it
(Figure 7.6).

Kr

vr

(a) (b)

K

Kr

K

K

s
s

t

v

vr

v

v
s

s

t

Figure 7.6: Minimum distance discrimination functions. (a) 2-class problem, (b) 3-class

problem.

If each class is represented by just one exemplar, a linear classi�er results. If more than
one exemplar represents some class, the classi�er results in piecewise linear discrimination
hyperplanes. An algorithm for learning and classi�cation using a minimum distance classi�er
can be found in Section 7.2.3, Algorithm 7.2.

Nonlinear classi�ers usually transform the original feature space Xn into a new feature
space Xm applying some appropriate nonlinear function � where the superscripts n;m refer
to the space dimensionality.

� = (�1; �2; : : : ; �m) : X
n ! Xm (7.11)

300 CHAPTER 7. OBJECT RECOGNITION

After the nonlinear transformation, a linear classi�er is applied in the new feature space {
the role of the function � is to `straighten' the nonlinear discrimination hypersurfaces of the
original feature space into hyperplanes in the transformed feature space. This approach to
feature space transformation is called a �-classi�er.

The discrimination functions of a �-classi�er are

gr(x) = qr0 + qr1�1(x) + : : :+ qrm�m(x) (7.12)

where r = 1; : : : ; R. We may rewrite the formula in vector representation

gr(x) = qr ��(x) (7.13)

where qr, �(x) are vectors consisting of qr0; : : : ; qrm and �0(x); : : : ; �m(x), respectively,
�0(x) � 1. Nonlinear classi�ers are described in detail in [Sklansky 81, Devijver and Kittler
82].

7.2.2 Classi�er setting

A classi�er based on discrimination functions is a deterministic machine { one pattern x

will always be classi�ed into the same class. Note that the pattern x may represent objects
from di�erent classes, meaning that the classi�er decision may be correct for some objects
and incorrect for others. Therefore, setting of the optimal classi�er should be probabilistic.
Incorrect classi�er decisions cause some losses to the user, and according to the de�nition
of loss, di�erent criteria for optimal classi�er settings will be obtained. Discussing these
optimality criteria from the mathematical point of view, criteria represent the value of the
mean loss caused by classi�cation.

Let the classi�er be considered a universal machine that can be set to represent any
decision rule from the rule set D. The set D may be ordered by a parameter vector q that
refers to particular discrimination rules. The value of the mean loss J(q) depends on the
decision rule that is applied ! = d(x;q). In comparison with the de�nition of decision rule
used in the previous section, the parameter vector q has been added to represent the speci�c
decision rule used by the classi�er. The decision rule

! = d(x;q�) (7.14)

that gives the minimum mean loss J(q) is called the optimum decision rule, and q� is called
the vector of optimal parameters

J(q�) = min
q

J(q); d(x;q) 2 D (7.15)

Theminimum error criterion (Bayes criterion, maximum likelihood) uses loss functions
of the form �(!rj!s), where �(:) is the number that describes quantitatively the loss incurred
if a pattern x which should be classi�ed into the class !s is incorrectly classi�ed into the class
!r

!r = d(x;q) (7.16)

The mean loss is

J(q) =

Z
X

RX
s=1

�(d(x;q)j!s)p(xj!s)P (!s)dx (7.17)

7.2. STATISTICAL PATTERN RECOGNITION 301

where P (!s), s = 1; : : : ; R are the a priori probabilities of classes, and p(xj!s), s = 1; : : : ; R
are the conditional probability densities of objects x in the class !s.

A classi�er that has been set according to the minimum loss optimality criterion is easy
to construct using discrimination functions; usually, unit loss functions are considered

�(!rj!s) = 0 for r = s

= 1 for r 6= s (7.18)

and the discrimination functions are

gr(x) = p(xj!r)P (!r); r = 1; : : : ; R (7.19)

where gr(x) corresponds (up to a multiplicative constant) to the value of the a posteriori
probability P (!r jx).

This probability describes how often a pattern x is from the class !r. Clearly, the optimal
decision is to classify a pattern x to a class !r if the a posteriori probability P (!rjx) is the
highest of all possible a posteriori probabilities

P (!rjx) = max
s=1;:::;R

P (!sjx) (7.20)

A posteriori probability may be computed from a priori probabilities using the Bayes formula

P (!sjx) =
p(xj!s)P (!s)

p(x)
(7.21)

where p(x) is the mixture density. The mean loss is equal to the probability of an incorrect
decision and represents a theoretical optimum { no other classi�er setting can give a lower
probability of the decision loss. Plots of a posteriori probabilities are shown in Figure 7.7, and
corresponding discrimination hypersurfaces for a 3-class classi�er can be seen in Figure 7.8.

Figure 7.7: Minimum error classi�er: A posteriori probabilities.

302 CHAPTER 7. OBJECT RECOGNITION

class 1 class 2 class 3

Figure 7.8: Minimum error classi�er: Discrimination hypersurfaces and resulting classes.

Another criterion is the best approximation criterion which is based on the best
approximation of discrimination functions by linear combinations of predetermined functions
�i(x), i = 1; : : : ; n. The classi�er is then constructed as a �-classi�er.

Analytic minimization of the extrema problem (7.14) is in many practical cases impossible
because the multi-dimensional probability densities are not available. Criteria for loss function
evaluation can be found in [Sklansky 81, Devijver and Kittler 82]. The requirements for
classi�cation correctness, and the set of objects accompanied by information about their
classes are usually available in practical applications { very often this is all the information
that can be used for the classi�er design and setting.

The ability to set classi�cation parameters from a set of examples is very important and
is called classi�er learning. The classi�er setting is based on a set of objects (represented
by their feature vectors), each object being accompanied by information about its proper
classi�cation { this set of patterns and their classes is called the training set. Clearly, the
quality of the classi�er setting depends on the quality and size of the training set, which is
always �nite. Therefore, to design and set a classi�er, it is not possible to use all the objects
which will later need classifying; that is, the patterns that were not used for classi�er design
and setting will also enter the classi�er, not merely the patterns contained in the training set.
The classi�er setting methods must be inductive in the sense that the information obtained
from the elements of the training set must be generalized to cover the whole feature space,
implying that the classi�er setting should be (near) optimal for all feasible patterns, not only
for those patterns that were present in the training set. In other words, the classi�er should
be able to recognize even those objects that it had never `seen' before.

It may be that a solution for a given problem does not exist. If the requirements for
classi�cation correctness together with the set of training examples are given, it may be
impossible to give an immediate answer as to whether the assignment can be ful�lled. The
larger the training set, the better the guarantee that the classi�er may be set correctly {
classi�cation correctness and the size of the training set are closely related. If the statistical
properties of patterns are known, the necessary sizes of the training sets can be estimated,
but the problem is that in reality they are not usually known. The training set is actually
supposed to substitute this missing statistical information. Only after processing of the
training set can the designer know whether it was su�cient, and whether an increase in the

7.2. STATISTICAL PATTERN RECOGNITION 303

training set size is necessary.

The training set size will typically be increased several times until the correct classi�cation
setting is achieved. The problem, which originally could not be solved, uses more and more
information as the training set size increases until the problem speci�cations can be met.

The general idea of sequential increase in training set size can be understood as presenting
small portions of a large training set to the classi�er whose performance is checked after each
portion. The smallest portion size is one element of the training set. Sequential processing
of information (which cannot be avoided in principle) has some substantial consequences in
the classi�er setting process.

All the properties of the classi�er setting methods given have analogies in the learning
process of living organisms. The basic properties of learning can be listed as;

� Learning is the process of automated system optimization based on the sequential
presentation of examples.

� The goal of learning is to minimize the optimality criterion. The criterion may be
represented by the mean loss caused by incorrect decisions.

� The �nite size of the training set requires the inductive character of learning. The goal
of learning must be achieved by generalizing the information from examples, before all
feasible examples have been presented. The examples may be chosen at random.

� The unavoidable requirements of sequential information presentation and the �nite size
of system memory necessitate the sequential character of learning. Therefore,
learning is not a one-step process, but rather a step by step process of improvement.

The learning process searches out the optimal classi�er setting from examples. The classi�er
system is constructed as a universal machine that becomes optimal after processing the train-
ing set examples (supervised learning), meaning that it is not necessary to repeat the di�cult
optimal system design if a new application appears. Learning methods do not depend on the
application; the same learning algorithm can be applied if a medical diagnostics classi�er is
set just as if an object recognition classi�er for a robot is set.

The quality of classi�er decisions is closely related to the quality and amount of informa-
tion that is available. From this point of view, the patterns should represent as complex a de-
scription as possible. On the other hand, a large number of description features would result.
Therefore, the object description is always a trade-o� between the permissible classi�cation
error, the complexity of the classi�er construction, and the time required for classi�cation.
This results in a question of how to choose the best features from a set of available features,
and how to detect the features with the highest contribution to the recognition success. Meth-
ods of determination of informativity and discriminativity of measured features can be
found in [Fu 68, Young and Calvert 74, Devijver and Kittler 82, Pudil et al. 94a, Pudil et al.
94b].

7.2.3 Classi�er learning

Two common learning strategies will be presented in this section:

304 CHAPTER 7. OBJECT RECOGNITION

� Probability density estimation estimates the probability densities p(xj!r) and prob-
abilities P (!r), r = 1; : : : ; R. The discrimination functions are computed according to
the minimum error criterion (equation (7.19)).

� Direct loss minimization �nds the decision rule ! = d(x;q�) by direct minimization
of losses J(q) without estimation of probability densities and probabilities. The criterion
of the best approximation is applied.

Probability density estimation methods di�er in computational di�culty according to
the amount of prior information available about them. If some prior information is avail-
able, it usually describes the shape of probability density functions p(xj!r). The parameters
describing the distribution are not usually known, and learning must �nd the estimate of
these parameters. Therefore, this class of learning methods is sometimes called parametric

learning.
Assume the patterns in the r-th class can be described by a normal distribution. The

probability density for the normal distribution N(�r;	r) can be computed for patterns from
the class !r

p(xj!r) =
1

(2�)
n
2

p
(det	r)

exp [�
1

2
(x� �r)

T 	�1
r (x� �r)] (7.22)

where 	r is the dispersion matrix (and we recall that x, �i are column vectors). Details
about multivariate probability density function estimation may be found in [Rao 65, Johnson
and Wichern 90]. The computation process depends on additional information about the
vector of values �r and 	r; three cases can be distinguished:

1. The dispersion matrix 	r is known, but the mean value vector �r is unknown. One of
the feasible estimates of the mean value may be the average

~�r = x (7.23)

which can be computed recursively

x(k + 1) =
1

k + 1
(k x(k) + xk+1) (7.24)

where x(k) is the average computed from k samples, and xk+1 is the (k+ 1)-st pattern
from the class r from the training set. This estimate is unbiased, consistent, e�cient,
and linear.

Alternatively, if the a priori estimate of the mean ~�r(0) is available, the Bayes approach
to estimation of the normal distribution parameters can be used. Then, the estimate
can be computed recursively

~�r(k + 1) =
a+ k

a+ k + 1
~�r(k) +

1

a+ k + 1
xk+1 (7.25)

The parameter a represents the con�dence in the a priori estimate ~�r(0). In training,
a speci�es the number of steps during which the designer believes more in the a priori
estimate than in the mean value so far determined by training. Note that for a = 0,
the Bayes estimate is identical to that given in equation (7.24).

7.2. STATISTICAL PATTERN RECOGNITION 305

2. The dispersion matrix 	r is unknown, but the mean value vector �r is known. The
estimate of the dispersion matrix 	r if the mean value �r is known is usually taken as

~	r =
1

K

KX
k=1

(xk � �r) (xk � �r)
T (7.26)

or in recursive form

~	r(k+ 1) =
1

k + 1
[k ~	r(k) + (xk+1 � �r) (xk+1 � �r)

T] (7.27)

This estimate is unbiased and consistent.

As another option, if the a priori estimate ~�r(0) of the dispersion matrix 	r is known,
the Bayes estimation approach can be applied. Let K be the number of samples in the
training set, and ~	r(K) be calculated as in equation (7.27). Then,

~�r(K) =
b ~�r(0) +K ~	r(K)

b+K
(7.28)

and ~�r(K) is considered the Bayes estimate of the dispersion matrix 	r. Parameter b
represents the con�dence in the a priori estimate ~�r(0).

3. Both the dispersion matrix 	r and the mean value vector �r are unknown. The fol-
lowing estimates can be used

~�r = x (7.29)

~	r = S =
1

K � 1

KX
k=1

(xk � x) (xk � x)T (7.30)

or in the recursive form

S(k + 1) = 1

k
[(k� 1)S(k) +

(xk+1 � x(k+ 1)) (xk+1 � x(k + 1))T +

k(x(k)� x(k + 1))(x(k)� x(k + 1))T] (7.31)

Alternatively, if the a priori estimate ~�r(0) of the dispersion matrix 	r and the a priori
estimate ~�r(0) of the mean vector for class r are known, the Bayes estimates can be
determined as follows:

~�r(K) =
a~�r(0) +K ~�r(K)

a+K
(7.32)

where K is the number of samples in the training set and ~�r(K) is determined using
equations (7.23) and (7.24). The dispersion matrix estimate is calculated as

~�r(K) = b
b+K

~�r(0) + a~�r(0)~�r(0)
T + (K � 1) ~	r(K)

+K ~�r(K)~�r(K)T � (a+K)~�r(K)~�r(K)T (7.33)

where ~	r(K) is calculated as given in equation 7.27. Then, ~�r(K) and ~�r(K) are
considered the Bayes estimates of the mean vector and the dispersion matrix for class
r, respectively. Again, parameters a; b represent the con�dence in the a priori estimates
of ~�r(0) and ~�r(0).

306 CHAPTER 7. OBJECT RECOGNITION

The a priori probabilities of classes P (!r) are estimated as relative frequencies

P (!r) =
Kr

K
(7.34)

where K is the total number of objects in the training set; Kr is the number of objects from
the class r in the training set.

Algorithm 7.1: Learning and classi�cation based on estimates of

probability densities assuming the normal distribution

1. Learning: Compute the estimates of the mean value vector �r and the dispersion matrix
	r, equations (7.24) and/or (7.27), (7.31).

2. Compute the estimates of the a priori probability densities p(xj!r), equation (7.22).

3. Compute the estimates of the a priori probabilities of classes, equation (7.34).

4. Classi�cation: Classify all patterns into the class r if

!r = max
i=1;:::;s

(p(xj!i)P (!i))

(equations (7.19) and (7.8)).

If no prior information is available (i.e. even the distribution type is not known), the com-
putation is more complex. In such cases, if it is not necessary to use the minimum error
criterion, it is advantageous to use a direct loss minimization method.

No probability densities or probabilities are estimated in the second group of methods
based on direct minimization of losses. The minimization process can be compared to gradient
optimization methods, however pure gradient methods cannot be used because of unknown
probability densities, so the gradient cannot be evaluated. Nevertheless, the minimum can
be found using methods of stochastic approximations that are discussed in [Sklansky 81].

The most important conclusion is that the learning algorithms can be represented by
recursive formulae in both groups of learning methods and it is easy to implement them.

We have noted that the most common and easily implementable classi�er is the minimum
distance classi�er. Its learning and classi�cation algorithm is;

Algorithm 7.2: Minimum distance classi�er learning and classi�ca-

tion

1. Learning: For all classes, compute class exemplars vi based on the training set

vi(ki + 1) =
1

ki + 1
(kivi(ki) + xi(ki + 1)) (7.35)

where xi(ki+1) are objects from the class i and ki denotes the number of objects from
class i used thus far for learning.

7.2. STATISTICAL PATTERN RECOGNITION 307

2. Classi�cation: For an object description vector x determine the distance of x from the
class exemplars vi. Classify the object into the class j if the distance of x from vj is
the minimum such (equation (7.10)).

7.2.4 Cluster analysis

We noted earlier that classi�cation methods exist which do not need training sets for learning.
In particular, they do not need information about the class of objects in the learning stage,
but learn them without a teacher (unsupervised learning). One such group of classi�cation
methods is called cluster analysis. Cluster analysis can be applied in classi�cation if for
any reason the training set cannot be prepared, or if examples with known class evaluation
are not available.

Cluster analysis methods divide the set of processed patterns into subsets (clusters) based
on the mutual similarity of subset elements. Each cluster contains patterns representing
objects that are similar according to the selected object description and similarity criteria.
Objects that are not similar reside in di�erent clusters.

There are two main groups of cluster analysis methods { the �rst is hierarchical and
the second non-hierarchical. Hierarchical methods construct a clustering tree; the set of
patterns is divided into the two most dissimilar subsets, and each subset is divided into
other di�erent subsets, etc. Non-hierarchical methods sequentially assign each pattern to
one cluster. Methods and algorithms for cluster analysis can be found in [Duda and Hart
73, Dubes and Jain 80, Devijver and Kittler 82, Blash�eld et al. 82, Romesburg 84, McQuitty
87, Kaufman and Rousseeuw 90, Schalko� 92, Everitt and Brian 93, Arabie et al. 96].

Non-hierarchical cluster analysis methods are either parametric or non-parametric. Para-
metric approaches are based on known class-conditioned distributions and require distribution
parameter estimation that is similar to that used in minimum error classi�cation described in
Section 7.2.3. Parametric clustering approaches used for threshold-based image segmentation
were also described in Section 5.1.2.

Non-parametric cluster analysis is a popular, simple, and practically useful non-hierarchical
approach to cluster analysis. The MacQueen k-means cluster analysis method is a well-
known example of this approach [MacQueen 67]. We need to assume that the number of
clusters k is known { if it is not, it can be determined as the number of classes that gives
the maximum con�dence in results, or some more complex clustering method can be applied
that does not need this information. The starting cluster points are constructed in the �rst
step, represented by k points in the n-dimensional feature space. These points can either be
selected at random from the clustered set of patterns, or the �rst k patterns from the set can
be chosen. If there are exemplars of clusters available, even if these exemplars are unreliable,
it is worthwhile using them as the starting cluster points. The method has two main stages;
patterns are allocated to one of the existing clusters in the �rst stage according to their dis-
tance from the cluster exemplars, choosing the closest. Then the exemplar is recomputed as
the center of gravity of all patterns in that cluster. If all the patterns from the set have been
processed, the current exemplars of clusters are considered �nal; all the patterns are assigned
to one of the clusters, represented by the exemplars determined in the �rst stage. Then the

308 CHAPTER 7. OBJECT RECOGNITION

patterns are (re-)assigned to clusters according to their distance from the exemplars, patterns
being assigned to the closest cluster. The exemplars are not recomputed in the second stage.
It should be clear that elements that were used for the starting cluster point de�nitions need
not be members of the same clusters at the end.

Algorithm 7.3: MacQueen k-means cluster analysis

1. De�ne the number of clusters.

2. Initialize the cluster starting points (exemplars, initial guesses) v1;v2; . . . ;vk. Usually
some patterns are chosen to serve as cluster starting points, perhaps chosen at random.

3. First Pass: Decide to which cluster each pattern belongs, choosing the closest (do not
process those patterns that were used to initialize clusters). Recompute the relevant
exemplar after an object is added to a cluster, possibly using equation (7.35).

4. Second Pass: Let the �nal exemplars be exemplars of resulting clusters. Classify all
objects (including those used to form starting exemplars) using the �nal exemplars from
the �rst pass. Use the same distance criterion as in the �rst pass.

Because of its simplicity, the MacQueen method has its limitations. There are many variations
on this algorithm; one is to repeat the second stage until convergence. The ISODATA cluster
analysis method [Dubes and Jain 76, Kaufman and Rousseeuw 90] may solve a complex
clustering problem better. ISODATA uses two parameter sets, one which does not change
during the clustering, and another which can be interactively adjusted until an acceptable
clustering result is obtained. ISODATA represents a set of non-hierarchical cluster analysis
methods from which the best can be picked.

Determining the number of clusters has not been mentioned; for example, what metric is
the most suitable in n-dimensional space, etc. Answers to these and many other questions
can be found in [Romesburg 84, McQuitty 87, Kaufman and Rousseeuw 90].

Note that statistical pattern recognition and cluster analysis can be combined. For in-
stance, the minimum distance classi�er can be taught using cluster analysis methods, cluster
exemplars can be considered class exemplars, these exemplars can be assigned appropriate
names and other patterns can be recognized using the resulting classi�er [Sonka 86]. Addition-
ally, fuzzy clustering approaches were reported with good results [Bezdek 81] (Section 7.7).

7.3 Neural nets

Neural nets have seen an explosion of interest since their rediscovery as a pattern recognition
paradigm in the early 1980s. The value of some of the applications for which they are used
may be arguable, but there is no doubt that they represent a tool of great value in various
areas generally regarded as `di�cult', particularly speech and visual pattern recognition.

Most neural approaches are based on combinations of elementary processors (neurons)
each of which takes a number of inputs and generates a single output. Associated with each
input is a weight, and the output (in most cases) is then a function of the weighted sum

7.3. NEURAL NETS 309

v
1

1
w

w
n

w
2

Output y

v

v
2

n

v.wf()

Σ

Figure 7.9: A simple (McCulloch Pitts) neuron

of inputs; this output function may be discrete or continuous, depending on the variety of
network in use. A simple neuron is shown in Figure 7.9 { this model is derived from pioneering
work on neural simulation conducted over 50 years ago [McCulloch and Pitts 43]. The inputs
are denoted by v1; v2, . . . , and the weights by w1; w2, . . . ; the total input to the neuron is
then

x =
nX
i=1

viwi (7.36)

or, more generally,

x =
nX
i=1

viwi � � (7.37)

where � is a threshold associated with this neuron. Also associated with the neuron is a
transfer function f(x) which provides the output; common examples are

f(x) =

(
0 if x � 0
1 if x > 0

(7.38)

f(x) =
1

1 + e�x
(7.39)

This model saw a lot of enthusiastic use during an early phase, culminating in Rosenblatt's
perceptron [Rosenblatt 62].

The general idea of collections (networks) of these neurons is that they are interconnected
(so the output of one becomes the input of another, or others) { this idea mimics the high-
level of interconnection of elementary neurons found in brains which is thought to explain the
damage resistance and recall capabilities of humans. Such an interconnection may then take
some number of external inputs and deliver up some (possibly di�erent) number of external
outputs { see Figure 7.10. What lies between then speci�es the network: This may mean
a large number of heavily interconnected neurons, or some highly structured (e.g. layered)
interconnection, or, pathologically, nothing (so that inputs are connected straight to outputs).

There are many uses to which such a structure may be put; the general task being per-
formed is vector association. Examples may be;

� Classi�cation: If the output vector (m-dimensional) is binary and contains only a single
one, the position of the one classi�es the input pattern into one of m categories.

310 CHAPTER 7. OBJECT RECOGNITION

v
1 1

y

v

v

2

n
y

y
2

m

Figure 7.10: A neural network as a vector associator

� Auto-association: Some uses of neural networks cause them to regenerate the input
pattern at the outputs (so m = n and vi = yi); the purpose of this may be to derive a
more compact vector representation from within the network internals.

� General association: At their most interesting, the vectors v and y represent patterns
in di�erent domains, and the network is forming a correspondence between them. One
of the most quoted examples of this is NetTalk [Sejnowski and Rosenberg 87], in which
the inputs represent a stream of written text and the outputs are phonemes { thus the
network is a speech generator.

7.3.1 Feedforward networks

The �rst neural networks involved no `internals' (so the box in Figure 7.10 was empty);
these early perceptrons had a training algorithm developed which was shown to converge if
a solution to the problem at hands exists [Minsky 88]; unfortunately, this caveat proved very
restrictive, requiring that the classi�cation being performed be linearly separable (vector
clusters of interest lay in distinct half-spaces). This restriction was overcome by the now very
popular back-propagation algorithm [Rumelhart and McClelland 86] which trains strictly
layered networks in which it is assumed that at least one layer exists between input and
output (it fact, it can be shown that two such `hidden' layers always su�ce [Kolmogorov
63, Hecht-Nielson 87]). Such a network is shown in Figure 7.11, and is an example of a
feed-forward network, in which data are admitted at the inputs and travel in one direction
toward the outputs, at which the `answer' may be read.

The standard approach to use of such networks is to obtain a training set of data { a set
of vectors for which the `answer' is already known. This is used to teach a network with some
training algorithm, such that the network can perform the association accurately. Then, in
classi�cation (or `live') mode, unknown patterns are fed into the net and it produces answers
based on generalizing what it has learned.

Back-propagation proceeds by comparing the output of the network to that expected, and
computing an error measure based on sum of square di�erences. This is then minimized using
gradient descent by altering the weights of the network. Denoting a member of the training
set by vi, the actual outputs by yi and the desired outputs by !i, the error is

E =
X
i

X
j

(yij � !ij)
2

7.3. NEURAL NETS 311

1

y
1

ij
2w

vInput

Output

v v v
2 3 4

y y
2 3

wij
1

Figure 7.11: A three-layered neural net structure.

(thus summing square di�erence over the entire training set) and the algorithm performs the
updates

wij(k + 1) = wij(k)� �
@E

@wij
(7.40)

iteratively until `good' performance is seen (k here counts the iterations of the updates).
The literature on back-propagation is large and thorough and we present here a summary

of the algorithm only;

Algorithm 7.4: Back-propagation learning

1. Assign small random numbers to the weights wij .

2. Input a pattern v from the training set and evaluate the neural net output y.

3. Learning: If y does not match the required output vector !, the weights must be
adjusted

wij(k+ 1) = wij(k) + ��jzi(k) (7.41)

where � is called the learning constant or learning rate, zi(k) is the output of the
node i, k is the iteration number, �j is an error associated with the node j in the
adjacent upper level

�j =

(
yj(1� yj)(!j � yj) for output node j
zj(1� zj)(

P
l �lwjl) for hidden node j

(7.42)

4. Go to 2 and fetch the next input pattern.

5. Repeat steps 2 to 4 until each training pattern outputs a suitably good approximation
to that expected. Each circuit of this loop is termed an epoch.

312 CHAPTER 7. OBJECT RECOGNITION

The convergence process can be very slow and there is an extensive literature on speeding
the algorithm (see, for example, [Haykin 94]). The best known of these techniques is the
introduction of momentum , which accelerates convergence across plateaux of the cost
surface, and controls behavior in steep ravines. This approach rewrites equation (7.40) as

�wij = �
@E

@wij

and updates it to

�wij := �
@E

@wij
+ ��wij

which updates equation (7.41) to

wij(k + 1) = wij(k) + ��jzi(k) + �(wij(k)� wij(k � 1)) (7.43)

� is called the momentum constant, and is chosen to be between 0 and 1, having the
e�ect of contributing a proportion of the update of the previous iteration into the current
one. Thus, in areas of very low gradient, some movement continues.

7.3.2 Unsupervised learning

A di�erent class of networks exists which are self-teaching { that is, they do not depend on
the net being exposed to a a training set with known information about classes, but are able
to self-organize themselves to recognize patterns automatically. Various types of network
exist under this general heading, of which the best known are Kohonen feature maps.

Kohonen maps will take as input n-dimensional data vectors and generate an n dimen-
sional output that, within the domain of the problem at hand, `best represents' the particular
input given. More precisely, the network has a layer of neurons each of which is connected
to all n input vector components; each neuron calculates its input (equation 7.36), and that
with the largest input is regarded as the `winner'; the n weights associated with the input
arcs to this node then represent the output. Figure 7.12 illustrates this. The weights are

Inputs

Determine maximal response

v

Kohonen neuron layer

Figure 7.12: Kohonen self-organizing neural net.

updated using a learning algorithm that �nds for itself the data structure (that is, no prior
classi�cation is needed or indeed known). It may be clear that such a network is performing
the role of clustering { similar inputs will generate the same output.

7.3. NEURAL NETS 313

The theory underlying Kohonen networks is derived from the operation of biological neu-
rons which are known to exist in locally 2D layers, and in which neural responses are known
to cluster. The derivation of the algorithm may be found in various standard texts [Kohonen
88, Kohonen 95], but may be summarized as;

Algorithm 7.5: Unsupervised learning of the Kohonen feature map

1. Assign random numbers with a small variance around the average values of the input
feature vector elements to the weights wij.

2. Collect a sample of vectors V = fvg from the set to be analyzed.

3. Select a new vector v 2 V , determine the neuron with the biggest input;

j� = argmaxj
X
i

wijvi

4. For all neurons nj within a neighborhood of radius r of nj� , perform the weight update
with step size � > 0 (learning rate)

wij := wij + �(vi � wij) (7.44)

5. Go to 3

6. Reduce r and �, and go to 3.

Kohonen networks have enjoyed considerable use, often as components of larger system which
may include other varieties of neural network.

Several other varieties of self-teaching net exist, of which the best known is perhaps ART
(Adaptive Resonance Theory) [Carpenter and Grossberg 87b, Carpenter and Grossberg 87a].
More specialized texts will provide ample detail.

7.3.3 Hop�eld neural nets

Hop�eld nets are mostly used in optimization problems [Hop�eld and Tank 85, Hop�eld and
Tank 86]; however it is possible to represent recognition as an optimization task { �nd the
maximum similarity between a pattern x and one of the existing exemplars v.

In the Hop�eld neural model, the network does not have designated inputs and outputs,
but rather the current con�guration represents its state. The neurons, which are fully in-
terconnected, have discrete (0/1 or -1/1) outputs, calculated from equation 7.38. Weights
between neurons do not evolve (learn), but are computed from a set of known exemplars at
initialization;

wij =
X
r

(vri v
r
j) (i 6= j) (7.45)

where wij is the interconnection weight between nodes i and j; and vri is the i
th element of

the rth exemplar; wii = 0 for any i.

314 CHAPTER 7. OBJECT RECOGNITION

1

N-1 N1 2

1,N

N,2 N,N-1 N-1,N

yy y
2 N

N,1

2,1 1,2 1,N-1

w w w w

wwww

Figure 7.13: Hop�eld recurrent neural net.

The Hop�eld net acts as an associative memory where the exemplars are stored; its
architecture is shown in Figure 7.13. When used for recognition, the feature vector to be
classi�ed enters the net in the form of initial values of node outputs. The Hop�eld net then
recurrently iterates using existing interconnections with �xed weights until a stable state
is found { that such a state is reached can be proved under certain conditions (for which
equation (7.45) is su�cient). The resulting stable state should be equal to the values of
the exemplar that is closest to the processed feature vector in the Hamming metric sense.
Supposing these class exemplars v r are known, the recognition algorithm is:

Algorithm 7.6: Recognition using a Hop�eld net

1. Based on existing exemplars v i of r classes, compute the interconnection weights wij
(equation (7.45)).

2. Apply an unknown feature vector x as initial outputs y(0) of the net.

3. Iterate until the net converges (output y does not change):

yj(k + 1) = f(
NX
i=1

(wijyi(k))) (7.46)

The �nal output vector y represents the exemplar of the class into which the processed feature
vector x is classi�ed. In other words, a Hop�eld neural net transforms a non-ideal represen-
tation of an object (fuzzy, noisy, incomplete, etc.) to the ideal exemplar representation. The
transformation of a noisy binary image of characters to a clear letter is one vision-related ap-
plication; binary image recognition examples can be found in [Kosko 91, Rogers and Kabrisky
91].

The Hop�eld neural net converges by seeking a minimum of a particular function { this is
usually a local minimum, which may mean that the correct exemplar (the global minimum) is
not found. Moreover, the number of local minima grows rapidly with the number of exemplars

7.4. SYNTACTIC PATTERN RECOGNITION 315

stored in the associative network. It can be shown that the minimum number of nodes N
required is about seven times the number of memories M to be stored (this is known as the
0:15N � M rule) [McEliece et al. 87, Amit 89], causing a rapid increase in the number of
necessary nodes.

This overview has shown only the main principles of neural nets and their connections
to conventional statistical pattern recognition, and we have not discussed many alternative
neural net techniques, methods, and implementations. The state of the art and many refer-
ences may be found in a set of selected papers [Carpenter and Grossberg 91] and in [Amit
89, Hecht-Nielsen 90, Judd 90, Simpson 90, Mozer 91, Zhou 92, Masters 95], and various
useful introductory texts [Wasserman 89, Carling 92, Nigrin 93, Fausett 94, Braspenning et
al. 95]. Some interesting applications, many in the visual domain, may be found in [Linggard
et al. 92].

7.4 Syntactic pattern recognition

Quantitative description of objects using numeric parameters (the feature vector) is used in
statistical pattern recognition, while qualitative description of an object is a characteristic
of syntactic pattern recognition. The object structure is contained in the syntactic descrip-
tion. Syntactic object description should be used whenever feature description is not able
to represent the complexity of the described object and/or when the object can be repre-
sented as a hierarchical structure consisting of simpler parts. The elementary properties of
the syntactically described objects are called primitives (Section 6.2.4 covered the syntactic
description of object borders using border primitives, these border primitives representing
parts of borders with a speci�c shape). Graphical or relational descriptions of objects where
primitives represent subregions of speci�c shape is another example (see Sections 6.3.3 to
6.3.5). After each primitive has been assigned a symbol, relations between primitives in the
object are described, and a relational structure results (Chapters 3 and 6). As in statistical
recognition, the design of description primitives and their relation is not algorithmic. The
design is based on the analysis of the problem, designer experience and abilities. However,
there are some principles that are worth following:

1. The number of primitive types should be small.

2. The primitives chosen must be able to form an appropriate object representation.

3. Primitives should be easily segmentable from the image.

4. Primitives should be easily recognizable using some statistical pattern recognition method.

5. Primitives should correspond with signi�cant natural elements of the object (image)
structure being described.

For example, if technical drawings are described, primitives are line and curve segments,
binary relations describe relations such as to be adjacent, to be left of, to be above, etc. This
description structure can be compared with the structure of a natural language. The text
consists of sentences, sentences consist of words, words are constructed by concatenation of
letters. Letters are considered primitives in this example; the set of all letters is called the

316 CHAPTER 7. OBJECT RECOGNITION

alphabet. The set of all words in the alphabet that can be used to describe objects from
one class (the set of all feasible descriptions) is named the description language which
represents descriptions of all objects in the speci�c class. In addition, a grammar exists
to represent a set of rules that must be followed when words of the speci�c language are
constructed from letters (of the alphabet). Grammars can describe in�nite languages as well.
These de�nitions will be considered in more detail in Section 7.4.1.

Assume that the object is appropriately described by some primitives and their relations.
Moreover, assume that the grammar is known for each class that generates descriptions of all
objects of the speci�ed class. Syntactic recognition decides whether the description word is
or is not syntactically correct according to the particular class grammars, meaning that each
class consists only of objects whose syntactic description can be generated by the particular
grammar. Syntactic recognition is a process that looks for the grammar that can generate
the syntactic word that describes an object.

We mentioned relational structure in the correspondence with the syntactic description of
objects. Each relational structure with multiple relations can be transformed to a relational
structure with at most binary relations; the image object is then represented by a graph
which is planar if relations with adjacent regions only are considered. A graphical description
is very natural, especially in the description of segmented images { examples were given
in Section 6.3. Each planar graph can be represented either by a graph grammar or by
a sequence of symbols (chain, word, etc.) over an alphabet. Sequential representation is
not always advantageous in image object recognition because the valuable correspondence
between the syntactic description and the object may be lost. Nevertheless, work with chain
grammars is more straightforward and understandable and all the main features of more
complex grammars are included in chain grammars. Therefore, we will principally discuss
sequential syntactic descriptions and chain grammars. More precise and detailed discussion of
grammars, languages, and syntactic recognition methods can be found in [Fu 74, Fu 77, Chen
76, Pavlidis 77, Rosenfeld 79b, Fu 80, Pavlidis 80].

The syntactic recognition process is described by the following algorithm.

Algorithm 7.7: Syntactic recognition

1. Learning: Based on the problem analysis, de�ne the primitives and their possible rela-
tions.

2. Construct a description grammar for each class of objects using either hand analysis of
syntactic descriptions or automated grammar inference (see Section 7.4.3).

3. Recognition: For each object, extract its primitives �rst; recognize the primitives'
classes and describe the relations between them. Construct a description word rep-
resenting an object.

4. Based on the results of the syntactic analysis of the description word, classify an ob-
ject into that class for which its grammar (constructed in step (2)) can generate the
description word.

7.4. SYNTACTIC PATTERN RECOGNITION 317

It can be seen that the main di�erence between statistical and syntactic recognition is in the
learning process. Grammar construction can rarely be algorithmic using today's approaches,
requiring signi�cant human interaction. It is usually found that the more complex the prim-
itives are, the simpler is the grammar, and the simpler and faster is the syntactic analysis.
More complex description primitives on the other hand make step (3) of the algorithm more
di�cult and more time consuming; also, primitive extraction and evaluation of relations may
not be simple.

7.4.1 Grammars and languages

Assuming that the primitives have been successfully extracted, all the inter-primitive relations
can then be syntactically described as n-ary relations; these relations form structures (chains,
trees, graphs) called words that represent the object or the pattern. Each pattern is therefore
described by a word. Primitive classes can be understood as letters from the alphabet of
symbols called terminal symbols. Let the alphabet of terminal symbols be Vt.

The set of patterns from a particular class corresponds to a set of words. This set of
words is called the formal language which is described by a grammar. The grammar is a
mathematical model of a generator of syntactically correct words (words from the particular
language); it is a quadruple

G = [Vn; Vt; P; S] (7.47)

where Vn and Vt are disjoint alphabets, elements of Vn are called non-terminal symbols,
and elements of Vt are terminal symbols. De�ne V

� to be the set of all empty or non-empty
words built from the terminal and/or non-terminal symbols. The symbol S is the grammar
axiom or the start symbol. The set P is a non-empty �nite subset of the set V � � V �;
elements of P are called the substitution rules. The set of all words that can be generated by
the grammar G is called the language L(G). Grammars that generate the same language
are called equivalent.

A simple example will illustrate this terminology. Let the words generated by the grammar
be squares of arbitrary size with sides parallel to the co-ordinate axes, and let the squares
be represented by the Freeman chain code of the border in 4-connectivity (see Section 6.2.1).
There are four terminal symbols (primitives) of the grammar in this case, Vt = f0; 1; 2; 3g. Let
the non-terminal symbols be Vn = fs; a; b; c; dg. Note that the terminal symbols correspond
to natural primitives of the 4-connectivity Freeman code; the non-terminal symbols were
chosen from an in�nite set of feasible symbols. The set of substitution rules P demonstrates
how the start symbol S = s can be transformed to words corresponding to the Freeman chain
code description of squares:

P : (1) s ! abcd

(2) aAbBcCdD ! a1Ab2Bc3Cd0D
(3) aAbBcCdD ! ABCD

(7.48)

where A (B;C;D, respectively) is a variable representing any chain (including an empty one)
consisting only of terminal symbols 1 (2; 3; 0). Rule (3) stops the word generating process.
For example, a square with a side length l = 2 with the Freeman chain description 11223300
is generated by the following sequence of substitution rules (see Figure 7.14)

s!1 abcd!2 a1b2c3d0!2 a11b22c33d00!3 11223300

318 CHAPTER 7. OBJECT RECOGNITION

where the arrow superscript refers to the appropriate substitution rule. The simple analysis
of generated words shows that the language generated consists only of Freeman chain code
representations of squares with sides parallel to the plane co-ordinates.

2

3

3

0 0

1

1

22

0
1

3

Figure 7.14: Square shape description.

Grammars can be divided into four main groups ordered from the general to the speci�c
[Chomsky 66, Chomsky et al. 71]:

1. Type 0 { General Grammars

There are no limitations for the substitution rules.

2. Type 1 { Context-Sensitive Grammars

Substitution rules can be of the form

W1�W2 ! W1UW2 (7.49)

that can contain the substitution rule S ! e where e is an empty word; wordsW1;W2; U

consist of elements of V �, U 6= e, � 2 Vn. This means that the non-terminal symbols
can be substituted by the word U in the context of words W1 and W2.

3. Type 2 { Context-Free Grammars

Substitution rules have the form
�! U (7.50)

where U 2 V �, U 6= e, � 2 Vn. Grammars can contain the rule S ! e. This means that
the non-terminal symbol can be substituted by a word U independently of the context
of �.

4. Type 3 { Regular Grammars

The substitution rules of regular grammars are of the form

�! x� or �! x (7.51)

where �; � 2 Vn, x 2 Vt. The substitution rule S ! e may be included.

All the grammars discussed so far have been non-deterministic. The same left hand
side might appear in several substitution rules with di�erent right hand sides, and no rule
exists that speci�es which rule should be chosen. A non-deterministic grammar generates

7.4. SYNTACTIC PATTERN RECOGNITION 319

a language in which no words are `preferred'. If it is advantageous to generate some words
(those more probable) more often than others, substitution rules can be accompanied by
numbers (for instance by probabilities) that specify how often the substitution rule should
be applied. If the substitution rules are accompanied by probabilities, the grammar is called
stochastic. If the accompanying numbers do not satisfy the properties of probability (unit
sum of probabilities for all rules with the same left hand side), the grammar is called fuzzy
[Zimmermann et al. 84].

Note, that the evaluation of the frequency with which each substitution rule should be
used can substantially increase the e�ciency of syntactic analysis in the recognition stage [Fu
74].

7.4.2 Syntactic analysis, syntactic classi�er

If appropriate grammars exist that can be used for representation of all patterns in their
classes, the last step is to design a syntactic classi�er which assigns the pattern (the word) to
an appropriate class. It is obvious that the simplest way is to construct a separate grammar
for each class; an unknown pattern x enters a parallel structure of blocks that can decide
if x 2 L(Gj) where j = 1; 2; : : :R and R is the number of classes; L(Gj) is the language
generated by the jth grammar. If the jth block's decision is positive, the pattern is accepted
as a pattern from the jth class and the classi�er assigns the pattern to the class j. Note that
generally more than one grammar can accept a pattern as belonging to its class.

The decision of whether or not the word can be generated by a particular grammar is
made during syntactic analysis. Moreover, syntactic analysis can construct the pattern
derivation tree which can represent the structural information about the pattern.

If a language is �nite (and of a reasonable size), the syntactic classi�er can search for
a match between the word being analyzed and all the words of the language. Another
simple syntactic classi�er can be based on comparisons of the chain word descriptions with
typical representatives of classes comparing primitive type presence only. This method is very
fast and easily implemented, though it does not produce reliable results since the syntactic
information is not used at all. However, impossible classes can be rejected in this step which
can speed up the syntactic analysis process.

Syntactic analysis is based on e�orts to construct the tested pattern by the application
of some appropriate sequence of substitution rules to the start symbol. If the substitution
process is successful, the analysis process stops and the tested pattern can be generated by
the grammar. The pattern can be classi�ed into the class represented by the grammar. If the
substitution process is unsuccessful, the pattern is not accepted as representing an object of
this class.

If the class description grammar is regular (type 3), syntactic analysis is very simple.
The grammar can be substituted with a �nite non-deterministic automaton and it is easy to
decide if the pattern word is accepted or rejected by the automaton [Fu 82]. If the grammar is
context-free (type 2), the syntactic analysis is more di�cult. Nevertheless, it can be designed
using stack automata.

Generally, which process of pattern word construction is chosen is not important; the
transformation process can be done in top-down or bottom-up manner.

A top-down process begins with the start symbol and substitution rules are applied in

320 CHAPTER 7. OBJECT RECOGNITION

the appropriate way to obtain the same pattern word as that under analysis. The �nal
goal of syntactic analysis is to generate the same word as the analyzed word; every partial
substitution creates a set of subgoals, just as new branches are created in the generation
tree. E�ort is always devoted to ful�ll the current subgoal. If the analysis is not successful
in ful�lling the subgoal, it indicates an incorrect choice of the substitution rule somewhere in
the previous substitutions, and backtracking is invoked to get back to the nearest higher tree
level (closer to the root), and to pick another applicable rule. The process of rule applications
and backtracking is repeated until the required pattern word results. If the whole generating
process ends unsuccessfully, the grammar does not generate the word, and the analyzed
pattern does not belong to the class.

This top-down process is a series of expansions starting with the start symbol S. A
bottom-up process starts with the analyzed word, which is reduced by applying reverse
substitutions, the �nal goal being to reduce the word to the start symbol S. The main
principle of bottom-up analysis is to detect subwords in the analyzed word that match the
pattern on the right hand side of some substitution rule, then the reduction process substitutes
the former right hand side with the left hand side of the rule in the analyzed word. The
bottom-up method follows no subgoals, all the e�ort is devoted to obtaining a reduced and
simpli�ed word pattern until the start symbol is obtained. Again, if the process is not
successful, the grammar does not generate the analyzed word.

The pure top-down approach is not very e�cient since too many incorrect paths are
generated. The number of misleading paths can be decreased by application of consistency
tests. For example, if the word starts with a non-terminal symbol I , only rules with the
right hand side starting with I should be considered. Many more consistency tests can be
designed that take advantage of prior knowledge. This approach is also called tree pruning
(See Figure 7.15) [Nilsson 71, Nilsson 82].

Tree pruning is often used if an exhaustive search cannot be completed because the search
e�ort would exceed any reasonable bounds. Note that pruning can mean that the �nal solution
is not optimal or may not be found at all (especially if tree search is used to �nd the best path
through the graph, Section 5.2.4). This depends on the quality of the a priori information
that is applied during the pruning process.

(b)(a)

Figure 7.15: Tree pruning: (a) Original tree, (b) pruning decreases size of the searched tree.

7.4. SYNTACTIC PATTERN RECOGNITION 321

There are two main principles for recovery from following a wrong path. The �rst one is
represented by the backtracking mechanism already mentioned, meaning that the generation
of words returns to the nearest point in the tree where another substitution rule can be
applied which has not yet been applied. This approach requires the ability to reconstruct the
former appearances of generated subwords and/or remove some branches of the derivation
tree completely.

The second approach does not include backtracking. All possible combinations of the
substitution rules are applied in parallel and several generation trees are constructed simul-
taneously. If any tree succeeds in generating the analyzed word, the generation process ends.
If any tree generation ends with a non-successful word, this tree is abandoned. The latter
approach uses more brute force, but the algorithm is simpli�ed by avoiding backtracking.

It is di�cult to compare the e�ciency of these two and the choice depends on the applica-
tion; Bottom-up analysis is more e�cient for some grammars, and top-down is more e�cient
for others. As a general observation, the majority of syntactic analyzers which produce all
generated words is based on the top-down principle. This approach is appropriate for most
grammars but is usually less e�cient.

Another approach to syntactic analysis uses example relational structures of classes. The
syntactic analysis consists of matching the relational structure that represents the analyzed
object with the example relational structure. The main goal is to �nd an isomorphism

of both relational structures. These methods can be applied to n-ary relational structures
as well. Relational structure matching is a perspective approach to syntactic recognition, a
perspective way of image understanding (see Section 7.5). A simple example of relational
structure matching is shown in Figure 7.16. A detailed description of relational structure
matching approaches can be found in [Barrow and Popplestone 71, Pavlidis 77, Ballard and
Brown 82, Baird 84].

(a) (b) (c)

Figure 7.16: Matching relational structures: (a) and (b) match assuming nodes and relations

of the same type, (c) does not match either (a) or (b).

7.4.3 Syntactic classi�er learning, grammar inference

To model a language of any class of patterns as closely as possible, the grammar rules should
be extracted from a training set of example words. This process of grammar construction
from examples is known as grammar inference, the essence of which can be seen in Figure
7.17.

322 CHAPTER 7. OBJECT RECOGNITION

The source of words generates �nite example words consisting of the terminal symbols.
Assume that these examples include structural features that should be represented by a
grammar G which will serve as a model of this source. All the words that can be generated
by the source are included in the language L(G) and the words that cannot be generated
by the source represent a residuum of this set LC(G). This information enters the inference
algorithm whose goal is to �nd and describe the grammar G. Words that are included in the
language L(G) can be acquired simply from the source of examples. However, the elements
of LC(G) must be presented by a teacher that has additional information about the grammar
properties [Gonzalez and Thomason 74, Barrero 91, Schalko� 92].

representing

the source

Grammar

Source of sample

words

Inference

algorithm

Teacher

C
x L (G)

x L(G)

j

i
G

Figure 7.17: Grammar inference.

Note that the number of example words generated by the source is �nite and it is therefore
not su�cient to de�ne the possibly in�nite language L(G) unambiguously. Any �nite set of
examples can be represented by an in�nite set of languages, making it impossible to identify
unambiguously the grammar that generated the examples. Grammar inference is expected to
construct the grammar that describes the training set of examples, plus another set of words
that in some sense have the same structure as the examples.

The inference methods can be divided into two groups, based on enumeration and
induction. Enumeration detects the grammar G from the �nite setM of grammars that can
generate the entire training set of examples or its main part. The di�culty is in the de�nition
of the set M of grammars and in the procedure to search for the grammar G. Induction
based methods start with the analysis of words from the training set; the substitution rules
are derived from these examples using patterns of similar words.

There is no general method for grammar inference that constructs a grammar from a
training set. Existing methods can be used to infer regular and context-free grammars,
and may furthermore be successful in some other special cases. Even if simple grammars
are considered, the inferred grammar usually generates a language that is much larger than
the minimum language that can be used for appropriate representation of the class. This
property of grammar inference is extremely unsuitable for syntactic analysis because of the
computational complexity. Therefore, the main role in syntactic analyzer learning is still
left to a human analyst, and the grammar construction is based on heuristics, intuition,
experience, and prior information about the problem.

If the recognition is based on sample relational structures, the main problem is in its
automated construction. The conventional method for the sample relational structure con-

7.5. RECOGNITION AS GRAPH MATCHING 323

struction is described in [Winston 75] where the relational descriptions of objects from the
training set are used. The training set consists of examples and counter-examples. The
counter-examples should be chosen to have only one typical di�erence in comparison with a
pattern that is a representative of the class.

7.5 Recognition as graph matching

The following section is devoted to recognition methods based on graph comparisons. Graphs
with evaluated nodes and evaluated arcs will be considered as they appear in the image
description using relational structures. The aim is to decide whether the reality represented
by an image matches prior knowledge about the image incorporated into the graphical models.
An example of a typical graph matching task is in Figure 7.18.

If this task is presented as an object recognition problem, the object graph must match
the object model graph exactly. If the problem is to �nd an object (represented by a model
graph) in the graphical representation of the image, the model must match a subgraph in the
image graph exactly. An exact match of graphs is called graph isomorphism { for example,
the graphs in Figure 7.18 are isomorphic.

Model Model graph Reality Reality graph 1 Reality graph 2Reality 2

Figure 7.18: Graph matching problem.

Graph isomorphism and subgraph isomorphism evaluation is a classical problem in graph
theory and is important from both practical and theoretical points of view. Graph theory
is covered in [Harary 69, Berge 76, Mohring 91, Nagl 90, Tucker 95], and graph theoreti-
cal algorithms can be studied in [Even 79, Lau 89, McHugh 90]. The problem is actually
more complex in reality, since the requirement of an exact match is very often too strict in
recognition problems.

Because of imprecise object descriptions, image noise, overlapping objects, lighting condi-
tions, etc., the object graph usually does not match the model graph exactly. Graph matching
is a di�cult problem and evaluation of graph similarity is not any easier. An important
problem in evaluation of graph similarity is to design a metric which determines how similar
two graphs are.

324 CHAPTER 7. OBJECT RECOGNITION

7.5.1 Isomorphism of graphs and subgraphs

Regardless of whether graph or subgraph isomorphism is required, the problems can be di-
vided into three main classes [Harary 69, Berge 76, Ballard and Brown 82]

1. Graph isomorphism. Given two graphs G1 = (V1; E1) and G2 = (V2; E2), �nd a
one-to-one and onto mapping (an isomorphism) f between V1 and V2 such that for each
edge of E1 connecting any pair of nodes v; v0 2 V1, there is an edge of E2 connecting
f(v) and f(v0); further, if f(v) and f(v0) are connected by an edge in G2, v and v0 are
connected in G1.

2. Subgraph isomorphism. Find an isomorphism between a graph G1 and subgraphs
of another graph G2. This problem is more di�cult than the previous one.

3. Double subgraph isomorphism. Find all isomorphisms between subgraphs of a
graph G1 and subgraphs of another graph G2. This problem is of the same order of
di�culty as number 2.

The subgraph isomorphism and the double subgraph isomorphism problems areNP -complete,
meaning that using known algorithms the solution can only be found in time proportional to
an exponential function of the length of the input. It is still not known whether the graph
isomorphism problem is NP -complete (see [Even 79, Sedgewick 84, Blum and Rivest 88] for
details and examples). Despite extensive e�ort, there is neither an algorithm that can test for
graph isomorphism in polynomial time, nor is there a proof that such an algorithm cannot
exist. However, non-deterministic algorithms for graph isomorphism that use heuristics and
look for suboptimal solutions give a solution in polynomial time in both graph and subgraph
isomorphism testing.

Isomorphism testing is computationally expensive for both non-evaluated and evaluated
graphs. Evaluated graphs are more common in recognition and image understanding, where
nodes are evaluated by properties of regions they represent, and graph arcs are evaluated by
relations between nodes they connect (see Section 7.1).

The evaluations can simplify the isomorphism testing. More precisely, the evaluation may
make disproof of isomorphism easier. Isomorphic evaluated graphs have the same number of
nodes with the same evaluation, and the same number of arcs with the same evaluation. An
isomorphism test of two evaluated graphs G1 = (V1; E1) and G2 = (V2; E2) can be based on
partitioning the node sets V1 and V2 in a consistent manner looking for inconsistencies in the
resulting set partitions. The goal of the partitioning is to achieve a one-to-one correspondence
between nodes from sets V1 and V2 for all nodes of the graphs G1 and G2. The algorithm
consists of repeated node set partitioning steps, and the necessary conditions of isomorphism
are tested after each step (the same number of nodes of equivalent properties in corresponding
sets of both graphs). The node set partitioning may, for example, be based on the following
properties:

� Node attributes (evaluations)

� The number of adjacent nodes (connectivity)

� The number of edges of a node (node degree)

7.5. RECOGNITION AS GRAPH MATCHING 325

� Types of edges of a node

� The number of edges leading from a node back to itself (node order)

� The attributes of adjacent nodes

(e) (f)

1

11

11

22

21

21

2

21

11 21

11

13 23

12 (a) (b)

(d)(c)

W W

WW

V
V

V

V

V V W W

V

V

Figure 7.19: Graph isomorphism: (a) Testing cardinality in corresponding subsets, (b) par-

titioning node subsets, (c) generating new subsets, (d) subset isomorphism found, (e) graph

isomorphism disproof, (f) situation when arbitrary search is necessary.

After the new subsets are generated based on one of the listed criteria, the cardinality of
corresponding subsets of nodes in graphs G1 and G2 are tested, see Figure 7.19a. Obviously, if
v1i is in several subsets V1j then the corresponding node v2i must also be in the corresponding
subsets V2j , or the isomorphism is disproved

v2i 2
\

jjv1i2V1j

V2j (7.52)

If all the generated subsets satisfy the necessary conditions of isomorphism in step i, the
subsets are split into new sets of nodes W1n;W2n (Figure 7.19b)

W1i

T
W1j = ; for i 6= j

W2i

T
W2j = ; for i 6= j

(7.53)

326 CHAPTER 7. OBJECT RECOGNITION

Clearly, if V1j = V2j and if v1i =2 V1k then v2i 2 V C
2k, where V

C is the set complement. There-
fore, by equation (7.52), corresponding elements v1i; v2i of W1n;W2n must satisfy [Niemann
90]

v2i 2 f
\

fjjv1i2W1jg

W2jg \ f
\

fkjv1i =2W1k^W1k=W2kg

WC
2kg (7.54)

The cardinality of all the corresponding sets W1n;W2n is tested to disprove the graph iso-
morphism.

The same process is repeated in the following steps applying di�erent criteria for graph
node subset generation. Note that the new subsets are generated independently in W1i;W2i

(Figure 7.19c).
The process is repeated unless one of three cases occurs:

1. The set partitioning reaches the stage when all the corresponding sets W1i;W2i contain
one node each. The isomorphism is found (Figure 7.19d).

2. The cardinality condition is not satis�ed in at least one of the corresponding subsets.
The isomorphism is disproved (Figure 7.19e).

3. No more new subsets can be generated before one of the previous cases occurs. In that
situation, either the node set partitioning criteria are not su�cient to establish an iso-
morphism, or more than one isomorphism is possible. If this is the case, the systematic
arbitrary assignment of nodes that have more than one possible corresponding node
and cardinality testing after each assignment may provide the solution (Figure 7.19f).

The last part of the process based on systematic assignment of possibly corresponding nodes
and isomorphism testing after each assignment may be based on backtracking principles. Note
that the backtracking approach can be used from the very beginning of the isomorphism test-
ing, however it is more e�cient to start the test using all the available prior information about
the matched graphs. The backtracking process is applied if more than one potential corre-
spondence between nodes is encountered. Backtracking tests for directed graph isomorphism
and a recursive algorithm is given in [Ballard and Brown 82] together with accompanying
hints for improving the e�ciency of backtrack searches [Bittner and Reingold 75, Haralick
and Elliott 79, Nilsson 82]. The process presented above, graph isomorphism testing, is sum-
marized in the following algorithm

Algorithm 7.8: Graph isomorphism

1. Take two graphs G1 = (V1; E1); G2 = (V2; E2).

2. Use a node property criterion to generate subsets V1i; V2i of the node sets V1 and V2.
Test whether the cardinality conditions hold for corresponding subsets. If not, the
isomorphism is disproved.

3. Partition the subsets V1i; V2i into subsets W1j ;W2j satisfying the conditions given in
equation (7.53) (no two subsets W1j or W2j contain the same node). Test whether
the cardinality conditions hold for all the corresponding subsets W1j ;W2j. If not, the
isomorphism is disproved.

7.5. RECOGNITION AS GRAPH MATCHING 327

4. Repeat steps (2) and (3) using another node property criterion in all subsets W1j ;W2j

generated so far. Stop if one of the three above mentioned situations occurs.

5. Based on the situation that stopped the repetition process, the isomorphism either was
proved, disproved, or some additional procedures (like backtracking) must be applied
to complete the proof or disproof.

A classic approach to subgraph isomorphism can be found in [Ullmann 76]. A brute force
enumeration process is described as a depth-�rst tree-search algorithm. As a way of improving
the e�ciency of the search, a re�nement procedure is entered after each node is searched in the
tree { the procedure reduces the number of node successors which yields a shorter execution
time. An alternative approach testing isomorphism of graphs and subgraphs transforms the
graph problem into a linear programming problem [Zdrahal 81].

The double subgraph isomorphism problem can be translated into a subgraph isomorphism
problem using the clique { a complete (totally connected) subgraph { approach. A clique is
said to be maximal if no other clique properly includes it. Note that a graph may have more
than one maximal clique; however, it is often important to �nd the largest maximal clique
(that with the largest number of elements). (Other de�nitions exist which consider a clique
always to be maximal [Harary 69].)

The search for the maximal clique is a well-known problem in graph theory. An example
algorithm for �nding all cliques of an undirected graph can be found in [Bron and Kerbosch
73]. The maximal clique Gclique = (Vclique; Eclique) of the graph G = (V;E) can be found as
follows [Niemann 90];

Algorithm 7.9: Maximal clique location

1. Take an arbitrary node vj 2 V ; construct a subset Vclique = fvjg.

2. In the set V C
clique search for a node vk that is connected with all nodes in Vclique. Add

the node vk to a set Vclique.

3. Repeat step (2) as long as new nodes vk can be found.

4. If no new node vk can be found, Vclique represents the node set of the maximal clique
subgraph Gclique (the maximal clique that contains the node vj).

To �nd the largest maximal clique, an additional maximizing search is necessary. Other
clique-�nding algorithms are discussed in [Ballard and Brown 82, Yang et al. 89].

The search for isomorphism of two subgraphs (the double subgraph isomorphism) is trans-
formed to a clique search using the assignment graph [Ambler 75]. A pair (v1; v2), v1 2 V1,
v2 2 V2 is called an assignment if the nodes v1 and v2 have the same node property descrip-
tions, and two assignments (v1; v2) and (v01; v

0
2) are compatible if (in addition) all relations

between v1 and v
0
1 also hold for v2 and v02 (graph arcs between v1,v

0
1 and v2,v

0
2 must have the

same evaluation, including the no-edge case). The set of assignments de�nes the set of nodes

328 CHAPTER 7. OBJECT RECOGNITION

Va of the assignment graph Ga. Two nodes in Va (two assignments) are connected by an arc
in the assignment graph Ga if these two nodes are compatible. The search for the maximum
matching subgraphs of graphs G1 and G2 is a search for the maximum totally connected
subgraph in Ga (the maximum totally compatible subset of assignments).

The maximum totally connected subgraph is a maximal clique and the maximal clique
�nding algorithm can be applied to solve this problem.

7.5.2 Similarity of graphs

All the approaches mentioned above tested for a perfect match between graphs and/or sub-
graphs. This cannot be anticipated in real applications, and these algorithms are not able
to distinguish between a small mismatch of two very similar graphs and the case when the
graphs are not similar at all. Moreover, if graph similarity is tested, the main stress is given
to the ability to quantify the similarity. Having three graphs G1; G2; G3 the question as to
which two are the most similar is a natural one [Buckley 90].

The similarity of two strings (chains) can be based on the Levenshtein distance which
is de�ned as the smallest number of deletions, insertions and substitutions necessary to con-
vert one string into the other. Transformations of string elements can be assigned a speci�c
transition cost to make the computed similarity (distance) more exible and more sensitive.
This principle can be applied to graph similarity as well. The set of feasible transformations
of nodes and arcs (insertion, deletion, substitution, relabeling) is de�ned, and these transfor-
mations are accompanied by transition costs. Any sequence of transformations is assigned a
combination of single step costs (like the sum of individual costs). The set of transformations
that has the minimum cost and transforms one graph to another graph de�nes a distance
between them [Niemann 90, Shapiro and Haralick 80].

Note that similarity can be searched for in hierarchical graph structures. The graphs
consist of a number of subgraphs in which isomorphism (or similarity) has already been
proved. The next step is to detect, describe and evaluate relations between these subgraphs
(Figure 7.20, cf. Figure 7.18).

To explain the principles, a physical analogy of templates and springs [Fischler and
Elschlager 73] is usually considered. The templates (subgraphs) are connected by springs
(relations between subgraphs). The quality of the match of two graphs relates to the quality
of the local �t (in corresponding templates) and to the amount of energy used to stretch the
springs to match one graph onto the second (reference) graph. To make the graph similarity
measure more exible, extra costs may be added for missing parts of the graph as well as for
some extra ones. The spring energy penalty may be made highly nonlinear better to reect
the descriptive character in particular applications.

7.6 Optimization techniques in recognition

Optimization itself is much more exible than is usually recognized. Considering image recog-
nition and understanding, the best image representation is sought (the best matching between
the image and the model is required, the best image understanding is the goal). Whenever
`the best' is considered, some objective function of goodness must be available, implying that

7.6. OPTIMIZATION TECHNIQUES IN RECOGNITION 329

(a) (b) (c)

Figure 7.20: Templates and springs principle: (a) Di�erent objects having the same descrip-

tion graphs, (b),(c) nodes (templates) connected by springs, graph nodes may represent other

graphs in �ner resolution.

an optimization technique can be applied which looks for the evaluation function maximum
. . . for the best.

A function optimization problem may be de�ned as follows: given some �nite domain D

and a function f : D ! R, R being the set of real numbers, �nd the best value in D under
f . Finding the best value in D is understood as �nding a value x 2 D yielding either the
minimum (function minimization) or the maximum (function maximization) of the function
f :

fmin(x) = min
x2D

f(x); fmax(x) = max
x2D

f(x) (7.55)

The function f is called the objective function. Maximization of the objective function will
be considered here as it is typical in image interpretation applications, discussed in Chapter 8.
However, optimization methods for seeking maxima and minima are logically equivalent, and
optimization techniques can be equally useful if either an objective function maximum or
function minimum is required.

It should be noted that no optimization algorithm can guarantee �nding a good solution to
the problem if the objective function does not reect the goodness of the solution. Therefore,
the design of the objective function is a key factor in the performance of any optimization
algorithm (similarly, appropriate feature selection is necessary for the success of a classi�er).

Most of the conventional approaches to optimization use calculus-based methods which
can be compared to climbing a hill (in the case of maximization) { the gradient of the objective
function gives the steepest direction to climb. The main limitation of calculus based methods
is their local behavior; the search can easily end in a local maximum and the global maximum
can be missed (see Figure 7.21).

There are several methods which improve the probability of �nding the global maximum;
to start the hill-climbing at several points in the search space, to apply enumerative searches
like dynamic programming, to apply random searches, etc. Among these possibilities are
genetic algorithms and simulated annealing.

330 CHAPTER 7. OBJECT RECOGNITION

local maximum

(a) (b)

global maximum

Figure 7.21: Limitations of hill-climbing methods.

7.6.1 Genetic algorithms

Genetic algorithms (GA) use natural evolution mechanisms to search for the maximum of an
objective function; as with any optimization technique, they can be used in recognition and
machine learning.

Genetic algorithms do not guarantee that the global optimum will be found, however
empirical results from many applications show that the �nal solution is usually very close
to it. This is very important in image understanding applications as will be seen in the
next chapter. There are almost always several consistent (feasible) solutions that are locally
optimal in image understanding, or matching, and only one of those possible solutions is
the best one represented by the global maximum. The opportunity to �nd the (near) global
optimum is very valuable in these tasks.

Genetic algorithms di�er substantially from other optimization methods in the following
ways [Goldberg 89];

1. GAs work with a coding of the parameter set, not the parameters themselves. Genetic
algorithms require the natural parameter set of the optimization problem to be coded
as a �nite length string over some �nite alphabet. This implies that any optimization
problem representation must be transformed to a string representation; binary strings
are often used (the alphabet consists of the symbols 0 and 1 only). The design of the
problem representation as a string is an important part of the GA method.

2. GAs search from a population of points, not a single point. The population of solutions
that is processed in each step is large, meaning that the search for the optimum is
simultaneously driven from many places in the search space. This gives a better chance
of �nding the global optimum.

3. GAs use the objective function directly, not derivatives or other auxiliary knowledge.
The search for new, better solutions depends on the values of the evaluation function
only. Note that as in other recognition methods, the GAs �nd the (near) global optimum
of the evaluation function but there is no guarantee at all that the evaluation function is
relevant to the problem. The evaluation function describes the goodness of the particular
string. The value of the evaluation function is called �tness in GAs.

7.6. OPTIMIZATION TECHNIQUES IN RECOGNITION 331

4. GAs use probabilistic transition rules, not deterministic rules. Rules of transition from
the current population of strings to a new and better population of strings are based
on the natural idea of supporting good strings with higher �tness and removing poor
strings with lower �tness. This is the key idea of genetic algorithms. The best strings
representing the best solutions are allowed to survive the evolution process with a higher
probability.

The survival of the �ttest and the death of the poor code strings is achieved by applying
three basic operations: reproduction, crossover, and mutation.

The population of strings represents all the strings that are being processed in the current
step of the GA. The sequence of reproduction, crossover, and mutation generates a new
population of strings from the previous population.

Reproduction

The reproduction operator is responsible for the survival of the �ttest and for the death of
others based on a probabilistic treatment.

The reproduction mechanism copies strings with highest �tness into the next generation
of strings. The selection process is usually probabilistic, the probability that a string is
reproduced into the new population being given by its relative �tness in the current population
{ this is their mechanism of survival. The lower the �tness of the string the lower the chances
for survival. This process results in a set of strings where some strings of higher �tness
may be copied more than once into the next population. The total number of strings in
the population usually remains unchanged, and the average �tness of the new generation is
higher than it was before.

Crossover

There are many variations on the crossover. The basic idea is to mate the newly reproduced
strings at random, randomly choosing a position for the border of each pair of strings, and
to produce new strings by swapping all characters between the beginning of the string pairs
and the border position, see Figure 7.22.

Not all newly reproduced strings are subject to the crossover. There is a probability
parameter representing the number of pairs which will be processed by crossover; also, it may
be performed such that the best reproduced strings are kept in an unchanged form.

The crossover operation together with reproduction represent the main power of GAs.
However, there is one more idea in the crossover operation; blocks of characters can be de-
tected in the strings that have locally correct structure even if the string as a whole does
not represent a good solution. These blocks of characters in strings are called schemata.
Schemata are substrings that can represent building blocks of the string, and can be under-
stood as the local pattern of characters. Clearly, if schemata can be manipulated as locally
correct blocks, the optimal solution can be located faster than if all the characters are handled
independently. In every generation of n strings, about n3 schemata are processed. This is
called the implicit parallelism of genetic algorithms [Goldberg 89].

332 CHAPTER 7. OBJECT RECOGNITION

Figure 7.22: Principle of crossover. Two strings before (left) and after the crossover (right).

Mutation

The mutation operator plays only a secondary role in GAs. Its principle is randomly to change
one character of some string of the population from time to time { it might, for example, take
place approximately once per thousand bit transfers (i.e. one bit mutation per one thousand
bits transferred from generation to generation). The main reason for mutation is the fact
that some local con�gurations of characters in strings of the population can be totally lost
as a result of reproduction and crossover operations. Mutation protects GAs against such
irrecoverable loss of good solution features.

Population convergence in GAs is a serious question. For practical purposes this ques-
tion becomes one of when to stop generating the new string populations. A common and
practically proven criterion recommends that the population generating process be stopped
when the maximum achieved �tness in the population has not improved substantially through
several previous generations.

We have not yet discussed how to create the starting population, which usually consists of
a large number of strings, the number depending on the application. The starting population
can be generated at random, assuming the alphabet of characters and the desired length
of strings are known. Nevertheless, as always, if there is some prior knowledge about the
solution available (i.e. the probable local patterns of characters, the probable percentages
of characters in strings, etc.), then it is advantageous to use this information to make the
starting population as �t as possible. The better the starting population, the easier and faster
the search for the optimum.

The simpli�ed version of the genetic algorithm is as follows:

Algorithm 7.10: Genetic algorithm

1. Create a starting population of code strings, and �nd the value of their objective func-
tions.

2. Probabilistically reproduce high �tness strings in the new population, remove poor
�tness strings (reproduction).

3. Construct new strings combining reproduced code strings from the previous population
(crossover).

7.6. OPTIMIZATION TECHNIQUES IN RECOGNITION 333

4. From time to time change one character of some string at random (mutation).

5. Order code strings of the current population according to the value of their objective
function (�tness).

6. If the maximum achieved string �tness does not increase over several steps, stop. The
desired optimum is represented by the current string of maximum �tness. Otherwise,
repeat the sequence of steps starting at step 2.

See Section 8.6.2 for an example of the algorithm. A more detailed and precise description
of genetic algorithms can be found in [Goldberg 89, Rawlins 91, Michalewicz 94, Adeli and
Hung 95, Chambers 95, Mitchell 96]. Many examples and descriptions of related techniques
are included there as well, such as knowledge implementation into mutation and crossover,
GA learning systems, hybrid techniques that combine good properties of conventional hill-
climbing searches and GAs, etc.

7.6.2 Simulated annealing

Simulated annealing [Kirkpatrick et al. 83, Cerny 85] represents another group of robust
optimization methods. Similarly to genetic algorithms, simulated annealing searches for
a minimum of an objective function (cost function) that represents the goodness of some
complex system. Searching for minima is considered in this section because it simpli�es
energy-related correspondences with the natural behavior of matter. Simulated annealing may
be suitable for NP -complete optimization problems; simulated annealing does not guarantee
that the global optimum is found, but the solution is usually near-optimal.

Cerny [Cerny 85] often uses the following example to explain the principle of simulated
annealing optimization. Imagine a sugar bowl freshly �lled with cube sugar. Usually, some
cubes do not �t in the sugar bowl and the lid cannot be closed. From experience, everybody
knows that shaking the sugar bowl will result in better placement of the cubes inside the
bowl and the lid will close properly. In other words, considering the number of cubes that
can be inside the bowl as an evaluation function, shaking the bowl results in a near-minimal
solution (considering sugar space requirements). The degree of shaking is a parameter of this
optimization process and corresponds to the heating and cooling process as described below.

Simulated annealing combines two basic optimization principles, divide and conquer

and iterative improvement (hill-climbing). This combination avoids getting stuck in local
optima. A strong connection between statistical mechanics or thermodynamics, and multi-
variate or combinatorial optimization is the basis for annealing optimization.

In statistical mechanics, only the most probable change of state of a system in thermal
equilibrium at a given temperature is observed in experiments; each con�guration (state)
de�ned by the set of atomic positions fxig of the system is weighted by its Boltzmann
constant probability factor

exp

�
�E(fxig)

kBT

�
(7.56)

where E(fxig) is the energy of the state, kB is the Boltzmann constant, and T is the tem-
perature [Kirkpatrick et al. 83].

334 CHAPTER 7. OBJECT RECOGNITION

One of the main characteristics of the Boltzmann density is that at high temperature
each state has an almost equal chance of becoming the new state, but at low temperature
only states with low energies have a high probability of becoming current. The optimization
can be compared with the ability of matter to form a crystalline structure that represents
an energy minimum if the matter is melted and cooled down slowly. This minimum can be
considered the optimization minimum for the energy function playing the role of the objective
function. The crystalization process depends on the cooling speed of the molten liquid; if the
cooling is too fast, the crystal includes many local defects and the global energy minimum is
not reached.

Simulated annealing consists of downhill iteration steps combined with controlled uphill
steps that make it possible to escape from local minima (see Figure 7.23).

Figure 7.23: Uphill steps make it possible to get out of local minima; the dotted line shows a

possible convergence route.

The physical model of the process starts with heating the matter until it melts; then the
resulting liquid is cooled down slowly to keep the quasi-equilibrium. The cooling algorithm
[Metropolis et al. 53] consists of repeated random displacements (state changes) of atoms in
the matter, and the energy change �E is evaluated after each state change. If �E � 0 (lower
energy), the state change is accepted, and the new state is used as the starting state of the
next step. If �E > 0, the state is accepted with probability

P (�E) = exp(
��E

kBT
) (7.57)

To apply this physical model to an optimization problem, the temperature parameter T must
be decreased in a controlled manner during optimization. The random part of the algorithm
can be implemented by generating random numbers uniformly distributed in the interval
(0,1); one such random number is selected and compared with P (�E).

7.6. OPTIMIZATION TECHNIQUES IN RECOGNITION 335

Algorithm 7.11: Simulated annealing optimization

1. Let x be a vector of optimization parameters; compute the value of the objective func-
tion J(x).

2. Repeat steps 3 and 4 n(T) times.

3. Perturb the parameter vector x slightly, creating the vector xnew , and compute the new
value of the optimization function J(xnew).

4. Generate a random number r 2 (0; 1), from a uniform distribution in the interval (0,1).
If

r < exp(
�(J(xnew)� J(x))

kBT
) (7.58)

then assign x = xnew and J(x) = J(xnew).

5. Repeat step 2 to 4 until a convergence criterion is met.

6. The parameter vector x now represents the solution of the optimization problem.

Note that nothing is known beforehand about how many steps n, what perturbations to
the parameter (state changes), what choice of temperatures T , and what speed of cooling
down should be applied to achieve the best (or even good) results, although some general
guidelines exist and appropriate parameters can be found for particular problems. It is only
known that the annealing process must continue long enough to reach a steady state for
each temperature. Remember the sugar bowl example, the shaking is much stronger at the
beginning and gradually decreases for the best results.

The sequence of temperatures and the number n of steps necessary to achieve equilib-
rium in each temperature is called the annealing schedule. Large values of n and small
decrements of T yield low �nal values of the optimization function (the solution is close to
the global minimum) but require long computation time. A small number of repetitions n
and large decrements in T proceed faster but the results may not be close to the global min-
imum. The values T and n must be chosen to give a solution close to the minimum without
wasting too much computation time. There is no known practically applicable way to design
an optimal annealing schedule.

The annealing algorithm is easy to implement. Annealing has been applied to many
optimization problems including pattern recognition, graph partitioning, and many others
and has been demonstrated to be of great value (although examples of optimization problems
exist in which it performs less well than standard algorithms and other heuristics). In the
computer vision area, applications include stereo correspondence [Barnard 87], boundary
detection [Geman et al. 90], texture segmentation [Bouman and Liu 91] and edge detection
[Tan et al. 92]. Implementation details and annealing algorithm properties together with an
extensive list of references can be found in [Aarts and van Laarhoven 86, van Laarhoven and
Aarts 87, van Laarhoven 88, Otten and van Ginneken 89, Azencott 92].

336 CHAPTER 7. OBJECT RECOGNITION

7.7 Fuzzy systems

Fuzzy systems are capable of representing diverse, non-exact, uncertain, and inaccurate
knowledge or information. They use quali�ers that are very close to the human way of
expressing knowledge, like bright, medium dark, dark, etc. Fuzzy systems can represent
complex knowledge and even knowledge from contradictory sources. They are based on
fuzzy logic, which represents a powerful approach to decision-making [Zadeh 65, Kaufmann
75, Bezdek 81, Kandel 82, Pal and Majumder 86, Zimmermann 87, Pal 91, Zimmermann
91, Zadeh and Kacprzyk 92, Kosko 92, Cox 94, Furuhashi 95, Pedrycz 95, Adeli and Hung
95]. The fundamental principles of fuzzy logic were presented in Section 7.1; here, fuzzy
sets, fuzzy membership functions, and fuzzy systems are introduced and fundamental
fuzzy reasoning approaches are presented.

7.7.1 Fuzzy sets and fuzzy membership functions

If humans describe objects, they often use imprecise descriptors like bright, large, rounded,

elongated, etc. For instance, fair-weather clouds may be described as small, medium dark
or bright, somewhat rounded regions; thunderstorm clouds may be described as dark or
very dark, large regions { people are quite comfortable with such descriptions. However,
if the task is to recognize clouds from photographs of the sky automatically using pattern
recognition approaches, it becomes obvious that crisp boundaries (discrimination functions)
must be drawn that separate the cloud classes. It may be quite arbitrary to make a decision
about the boundary location { a decision that a cloud region R1 characterized by the average
gray level g, roundness r and size s represents a thunderstorm cloud while the region R2

characterized by the average gray level g + 1, the same roundness r and size s does not.
It may be more appropriate to consider a region R1 as belonging to the set of fair-weather
clouds with some degree of membership and belonging to the set of thunderstorm clouds with
another degree of membership. Similarly, another region R2 might belong to both cloud sets
with some other degrees of membership. Fuzzy logic thus facilitates simultaneous membership
of regions in di�erent fuzzy sets. Figures 7.24a,b demonstrate the di�erence between the crisp
and fuzzy sets representing the average gray level of the cloud regions.

A fuzzy set S in a fuzzy space X is a set of ordered pairs

S = f(x; �S(x))jx 2 Xg (7.59)

where �S(x) represents the grade of membership of x in S. The range of the membership
function is a subset of non-negative real numbers whose supremum is �nite. For convenience,
a unit supremum is widely used

sup
x2X

�S(x) = 1 (7.60)

The fuzzy sets are often denoted solely by its membership function.
The description of dark regions presented in Figure 7.24b is a classical example of a fuzzy

set and illustrates the properties of fuzzy spaces. The domain of the fuzzy set is depicted
along the x- axis and ranges from black to white (0{255). The degree of membership �(x) can
be seen along the vertical axis. The membership is between zero and one, zero representing
no membership and one representing the complete membership. Thus, a white region with

7.7. FUZZY SYSTEMS 337

x

µ()x

0 255

x

µ()x

0 255 x

µ()x

0 255

x

µ()x

0 255

DARK

DARKDARK

DARK

(a) (b)

(c) (d)

Figure 7.24: Crisp and fuzzy sets representing cloud regions of the same size and roundness,

varying average gray level g. (a) Crisp set showing the Boolean nature of the dark set, (b)

fuzzy set dark, (c) another possible membership function associated with the fuzzy set dark,

(d) yet another possible membership function.

average gray level of 255 has zero membership in the dark fuzzy set while the black region
(average gray level = 0) has complete membership in the dark fuzzy set. As shown in
Figure 7.24b, the membership function may be linear, however a variety of other curves may
also be used (Figure 7.24c,d).

Consider average gray levels of fair-weather and thunderstorm clouds; Figure 7.25 shows
possible membership functions associated with the fuzzy sets dark, medium dark, bright.
As the Figure shows, a region with a speci�c average gray level g may simultaneously belong
to several fuzzy sets. Thus, the memberships �DARK(g), �MEDIUM DARK(g), �BRIGHT (g)
represent the fuzziness of the description since they assess the degree of certainty about
the membership of the region in the particular fuzzy set. The maximum membership value
associated with any fuzzy set is called the height of the fuzzy set.

In fuzzy system design, normalized versions of membership functions are used. The min-

imum normal form requires at least one element of the fuzzy set domain to have a mem-
bership value of one, and the maximum normal form is such minimum normal forms for
which at least one element of the domain has a membership value of zero.

In fuzzy reasoning systems, fuzzy membership functions are usually generated in the
minimum normal form; a long list of possible fuzzy membership functions (linear, sigmoid,
beta curve, triangular curve, trapezoidal curve, shouldered curve, arbitrary curve, etc.), fuzzy
numbers, fuzzy quantities, and fuzzy counts can be found together with their de�nitions in
[Cox 94].

Shape of fuzzy membership functions can be modi�ed using fuzzy set hedges. Hedges
may intensify, dilute, form a complement, narrowly or broadly approximate, etc. the member-
ship of the fuzzy set elements. Zero or more hedges and the associated fuzzy set constitute
a single semantic entity called a linguistic variable. Suppose �DARK(x) represents the

338 CHAPTER 7. OBJECT RECOGNITION

membership function of the fuzzy set dark; then the intensi�ed fuzzy set very dark will
have the membership function (Figure 7.26a)

�VERY DARK(x) = �2DARK(x) (7.61)

Similarly, a diluting hedge creating a fuzzy set somewhat dark will have a membership
function (Figure 7.26b)

�SOMEWHAT DARK(x) =
q
�DARK(x) (7.62)

Multiple hedges can be applied to a single fuzzy membership function and a fuzzy set
very very dark can be created as

�V ERY VERY DARK(x) = �2DARK(x) � �
2

DARK(x) = �4DARK(x) (7.63)

There are no theoretically solid reasons for these hedge formulae, but they have the merit of
success in practice { they simply `seem to work' [Cox 94].

0 255 x

DARK DARK
MEDIUMµ()

BRIGHT

x
1

BRIGHT

g
xµ ()

DARK

µ ()x
MED_DARK

xµ ()

Figure 7.25: Membership functions associated with fuzzy sets dark, medium dark, and

bright. Note, that several membership values may be associated with a speci�c average gray

level g.

x0 255x0 255 x0 255

µ()x µ()x µ()x
1 1 1

(a) (b) (c)

Figure 7.26: Fuzzy set hedges. Fuzzy set dark is shown in Figure 7.24b. (a) Fuzzy set

very dark, (b) fuzzy set somewhat dark, (c) fuzzy set not very dark.

7.7.2 Fuzzy set operators

Rarely can a recognition problem be solved using a single fuzzy set and the associated single
membership function. Therefore, tools must be made available that combine various fuzzy

7.7. FUZZY SYSTEMS 339

sets and allow to determine membership functions of such combinations. In conventional
logic, membership functions are either zero or one (Figure 7.24) and for any class set S, a
rule of noncontradiction holds: An intersection of a set S with its complement Sc is an empty
set.

S \ Sc = ; (7.64)

Clearly, this rule does not hold in fuzzy logic since domain elements may simultaneously
belong to fuzzy sets and their complements; there are three basic Zadeh operators on fuzzy
sets: fuzzy intersection, fuzzy union, and fuzzy complement. Let �A(x) and �B(y) be
two membership functions associated with two fuzzy sets A and B with domains X and Y .
Then, the intersection, union, and complement are pointwise de�ned for all x 2 X; y 2 Y

(note that other de�nitions also exist)

Intersection A \B : �A\B(x; y) = min(�A(x); �B(y))

Union A [B : �A[B(x; y) = max(�A(x); �B(y)) (7.65)

Complement Ac : �Ac(x) = 1� �A(x)

Note that the fuzzy set operators may be combined with the hedges and new fuzzy sets
may be constructed, e.g. a fuzzy set not very dark would be constructed as not (very

(dark))

�NOT V ERY DARK(x) = 1� �2DARK(x)

(see Figure 7.26).

7.7.3 Fuzzy reasoning

In fuzzy reasoning, information carried in individual fuzzy sets is combined to make a decision.
The functional relationship determining the degree of membership in related fuzzy member-
ship functions is called method of composition (method of implication) and results in the
de�nition of a fuzzy solution space. To arrive at the decision, a defuzzi�cation (decom-
position) process determines a functional relationship between the fuzzy solution space and
the decision. Processes of composition and defuzzi�cation form the basis of fuzzy reasoning
(Figure 7.27), which is performed in the context of a fuzzy system model that consists of
control, solution, and working data variables; fuzzy sets; hedges; fuzzy rules; and a control
mechanism. Fuzzy models use a series of unconditional and conditional propositions called
fuzzy rules. Unconditional fuzzy rules are of the form

x is A (7.66)

and conditional fuzzy rules have the form

if x is A then w is B (7.67)

where A and B are linguistic variables and x and w represent scalars from their respective
domains. The degree of membership associated with an unconditional fuzzy rule is simply
�A(x). Unconditional fuzzy propositions are used either to restrict the solution space or to
de�ne a default solution space. Since these rules are unconditional, they are directly applied
to the solution space by applying fuzzy set operators.

340 CHAPTER 7. OBJECT RECOGNITION

Solution
space

Defuzzification

Decision

Hedges

Fuzzy
rules

Fuzzy
variables

Fuzzy
composition

Figure 7.27: Fuzzy reasoning { composition and defuzzi�cation.

Considering conditional fuzzy rules, there are several approaches to arrive at the decision.
Monotonic fuzzy reasoning is the simplest approach that can produce a solution directly
without composition and defuzzi�cation. Let again x represent a scalar gray level describing
darkness of a cloud, and w the severity of a thunderstorm. The following fuzzy rule may
represent our knowledge of thunderstorm severity

if x is dark then w is severe (7.68)

The algorithm for monotonic fuzzy reasoning is shown in Figure 7.28. Based on determination
of the cloud gray level (x=80 in our case), the membership value �DARK(80) = 0:35 is
determined. This value is used to represent the membership value �SEV ERE(w) = �DARK(x)
and the decision is made about the expected severity of the thunderstorm; in our case severity
w = 4:8 on a scale between 0 and 10. This approach may also be applied to complex predicates
of the form

if (x is A) � (y is B) � : : :� (u is F) then w is Z (7.69)

where � represents the conjunctive AND or disjunctive OR operations. Fuzzy intersection
and union operators can be used to combine the complex predicates; AND corresponds to
fuzzy intersection and OR corresponds to fuzzy union. While the monotonic approach shows
the fundamental concept of fuzzy reasoning, it can only be used for a monotonic single
fuzzy variable controlled by a single fuzzy rule (possibly with a complex predicate). As
the complexity of the predicate proposition increases, the validity of the decision tends to
decrease.

Fuzzy Composition

Knowledge related to the decision-making process is usually contained in more than one fuzzy
rule. A large number of fuzzy rules may take part in the decision making process and all fuzzy
rules are �red in parallel during that process. Clearly, not all fuzzy rules contribute equally
to the �nal solution and rules that have no degree of truth in their premises do not contribute
to the outcome at all. Several composition mechanisms exist that facilitate rule combination;
the most frequently used approach, called the min{max rule, will be discussed.

7.7. FUZZY SYSTEMS 341

y0x0

µ()x µ()y
1 1 SEVEREDARK

80

0.350.35

4.8255 10
(a) (b)

Figure 7.28: Monotonic fuzzy reasoning based on a single fuzzy rule: If the gray level of the

cloud is dark then the thunderstorm will be severe

In the min{max composition approach, a sequence of minimizations and maximizations
is applied. First, the minimum of the predicate truth (correlation minimum) �Ai

(x) is
used to restrict the consequent fuzzy membership function �Bi

(w). Let the rules be in the
form speci�ed in equation (7.67), and let i represent the i-th rule. Then, the consequent
fuzzy membership functions Bi are updated in a pointwise fashion and the fuzzy membership
functions B+

i are formed (Figure 7.29).

�B+

i
(w) = min(�Bi

(w); �Ai
(x)) (7.70)

Second, the pointwise maxima of these minimized fuzzy sets form the solution fuzzy mem-
bership function.

�S(w) = max
i
(�B+

i
(w)) (7.71)

Figure 7.29 demonstrates the min{max composition process; again, complex predicates may
be considered.

��������
��������
��������
��������

��������
��������
��������
��������

��������������

�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������x0

µ()x
1

w0x’0

Solution fuzzy set

µ()x’
1 1

Rule 1
A

A’ B’

minimization

w0

w
1

µ()

B

w0

w
1

µ()

maximization

Rule 2

wµ()

Predicate fuzzy set Consequent fuzzy set

Figure 7.29: Fuzzy min{max composition using correlation minimum.

342 CHAPTER 7. OBJECT RECOGNITION

The correlation minimum described above is the most common approach to performing
the �rst step of the min{max composition. An alternative approach called correlation

product exists that scales the original consequent fuzzy membership functions instead of
truncating them. While correlation minimum is computationally less demanding and easier
to defuzzify, correlation product represents in many ways a better method of minimization
since the original shape of the fuzzy set is retained (Figure 7.30).

������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������������

��������
��������
��������
��������

��������
��������
��������
��������

x0

µ()x
1

w0x’0

Solution fuzzy set

µ()x’
1 1

Rule 1
A

A’ B’

minimization

w0

w
1

µ()

B

w0

w
1

µ()

maximization

Rule 2

wµ()

Predicate fuzzy set Consequent fuzzy set

Figure 7.30: Fuzzy min{max composition using correlation product.

Defuzzi�cation

Fuzzy composition produces a single solution fuzzy membership function for each solution
variable. To �nd the actual crisp solution that will be used for decision making, it is necessary
to �nd a vector of scalar values (one value for each solution variable) that best represents the
information contained in the solution fuzzy sets. This process is performed independently
for each solution variable and is called defuzzi�cation. Two defuzzi�cation methods, called
composite moments and composite maximum, are commonly used; many other varieties
exist.

Composite moments look for the centroid c of the solution fuzzy membership function {
Figure 7.31a shows how the centroid method converts the solution fuzzy membership func-
tion into a crisp solution variable c. Composite maximum identi�es the domain point with
the highest membership value in the solution fuzzy membership function. If this point is
ambiguous (on a plateau or if there are two or more equal global maxima), the center of the
plateau (or the point halfway between the leftmost and rightmost global maximum) provides
the crisp solution c0 (Figure 7.31b). The composite moments approach produces a result
that is sensitive to all the rules, while solutions determined using the composite maximum
method are sensitive to the membership function produced by the single rule that has the
highest predicate truth. While composite moments are mostly used in control applications,
recognition applications usually use the composite maximum method.

7.7. FUZZY SYSTEMS 343

�����
�����
�����
�����

�����
�����
�����
�����
��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

c c’w0

Solution fuzzy setw
1

µ()

w0

w
1

µ()

a) b)

Solution fuzzy set

Figure 7.31: Defuzzi�cation. (a) Composite moments, (b) composite maximum.

7.7.4 Fuzzy system design and training

Fuzzy system design consists of several main steps that are outlined in the following algorithm.

Algorithm 7.12: Fuzzy system design

1. Design functional and operational characteristics of the system { determine the system
inputs, basic processing approaches, and system outputs. In object recognition, the
inputs are patterns and the output represents the decision.

2. De�ne fuzzy sets by decomposing each input and output variable of the fuzzy system
into a set of fuzzy membership functions. The number of fuzzy membership functions
associated with each variable depends on the task at hand. Typically, an odd number
of three to nine fuzzy membership functions are created for each variable. It is recom-
mended that the neighboring fuzzy membership functions overlap by 10{50%. The sum
of the membership values of the overlap are recommended to be less than one.

3. Convert problem-speci�c knowledge into the fuzzy if{then rules that represent a fuzzy
associative memory. The number of designed rules is related to the number of input
variables. For N variables each of which is divided in M fuzzy membership functions,
MN rules are required to cover all possible input combinations.

4. Perform fuzzy composition and defuzzi�cation as described in Section 7.7.3.

5. Using a training set, determine the system's performance. If the fuzzy system's be-
havior does not meet the requirements, modify the fuzzy set descriptions and/or fuzzy
rules and/or the fuzzy composition and/or defuzzi�cation approaches. The speed and
success of this �ne-tuning step depend on the problem complexity, designer's level of
understanding of the problem, and level of designer's experience.

As can be seen from the description of steps (3) and (5) of the previous algorithm, the design
of fuzzy rules may be a tedious and time consuming process if the rules are to be designed from
human experts as has been typical in most existing applications. Recently, several approaches

344 CHAPTER 7. OBJECT RECOGNITION

have been reported that generate fuzzy if { then rules automatically using a training set as
the source of knowledge and/or for automated adjusting membership functions of fuzzy sets
[Horikawa et al. 92, Simpson 92, Ishibuchi et al. 92, Ishibuchi et al. 95, Abe and Lan
95, Homaifar and McCormick 95]. Some of the approaches use neural networks or genetic
algorithms to control the learning process. A genetic algorithm-based method for selecting a
small number of signi�cant rules from a training set of examples was given in [Ishibuchi et al.
95], in which the rule-selection problem is formulated as a combinatorial optimization problem
and uses genetic algorithm optimization. The optimization process is designed to maximize
the classi�cation correctness and minimize the number of fuzzy if { then rules. An approach
based on iterative splitting of the feature space that was introduced in [Park 96] generates
a smaller number of fuzzy rules compared to the approach of Ishibuchi. While Ishibuchi's
approach used equal spacing for partitioning of the feature space, Park proposed to use an
adaptive grid de�ned by minimum and maximum values of individual features for each class.
This adaptivity is mostly responsible for the more e�cient feature space partitioning and is
reected in the smaller number of generated fuzzy rules.

Many applications of fuzzy systems exist in pattern recognition and image processing.
In the �eld of pattern recognition, fuzzy logic has been used for supervised and nonsuper-
vised recognition, sequential learning, fuzzy decision theoretic and syntactic classi�ers, feature
extraction, etc. [Bezdek 81, Kandel 82, Pal 91, Zadeh and Kacprzyk 92]. In image process-
ing and vision, fuzzy logic was applied to image quality assessment, edge detection, image
segmentation, color image segmentation, etc. [Pal 91]. Extensive work has been done in de-
veloping fuzzy geometry approaches [Rosenfeld 79a, Rosenfeld 83, Rosenfeld 84a, Rosenfeld
84b, Rosenfeld 85]. Recently, a fuzzy approach to object de�nition and connectedness and
its application to image segmentation was presented in [Dellepiane and Fontana 95, Udupa
and Samarasekera 96]; fuzzy connectivity in mathematical morphology is discussed in [Bloch
93]; good performance of fuzzy systems in medical image segmentation and interpretation
applications was reported in [Udupa and Samarasekera 96, Park et al. 96].

7.8 Summary

� Object recognition, pattern recognition

{ Pattern recognition is used for region and object classi�cation, and represents
an important building block of complex machine vision processes.

{ No recognition is possible without knowledge. Speci�c knowledge about both
the objects being processed and hierarchically higher and more general knowledge
about object classes is required.

� Knowledge representation

{ Descriptions and features

{ Grammars and languages

{ Predicate logic

{ Production rules

{ Fuzzy logic

7.8. SUMMARY 345

{ Semantic nets

{ Frames, scripts

� Statistical pattern recognition

{ Object recognition is based on assigning classes to objects and the device that
does these assignments is called the classi�er. The number of classes is usually
known beforehand, and typically can be derived from the problem speci�cation.

{ The classi�er does not decide about the class from the object itself { rather, sensed
object properties called patterns are used.

{ For statistical pattern recognition, quantitative description of objects is char-
acteristic, elementary numerical descriptions { features are used. The set of all
possible patterns forms the pattern space or feature space. The classes form
clusters in the feature space, that can be separated by discrimination hyper-

surfaces.

{ A statistical classi�er is a device with n inputs and 1 output. Each input is
used to enter the information about one of n features measured from an object
to be classi�ed. An R-class classi�er generates one of R symbols !r, the class
identi�ers.

{ Classi�cation parameters are determined from a training set of examples dur-
ing classi�er learning. Two common learning strategies exist { probability

density estimation and direct loss minimization.

{ Classi�cation methods exist which do not need training sets for learning. Cluster
analysis methods divide the set of processed patterns into subsets (clusters) based
on the mutual similarity of subset elements.

� Neural nets

{ Most neural approaches are based on combinations of elementary processors (neu-
rons), each of which takes a number of inputs and generates a single output. As-
sociated with each input is a weight, and the output is a function of the weighted
sum of inputs. Pattern recognition is one of many application areas of neural
networks.

{ Feedforward networks are common in pattern recognition problems, their train-
ing uses a training set of examples and is often based on the back-propagation
algorithm.

{ Self-organizing networks do not require a training set to cluster the processed
patterns.

{ Hop�eld neural networks do not have designated inputs and outputs, but rather
the current con�guration represents the state. The Hop�eld net acts as an asso-
ciative memory where the exemplars are stored.

� Syntactic pattern recognition

346 CHAPTER 7. OBJECT RECOGNITION

{ For syntactic pattern recognition, qualitative description of objects is character-
istic. The elementary properties of the syntactically described objects are called
primitives. Relational structures are used to describe relations between the
object primitives.

{ The set of all primitives is called the alphabet. The set of all words in the alphabet
that can describe objects from one class is named the description language. A
grammar represents a set of rules that must be followed when words of the speci�c
language are constructed from the alphabet.

{ Grammar construction usually requires signi�cant human interaction. In simple
cases, an automated process of grammar construction from examples called gram-

mar inference can be applied.

{ The recognition decision of whether or not the word can be generated by a partic-
ular grammar is made during syntactic analysis.

� Recognition as graph matching

{ Matching of a model and an object graph description can be used for recognition.
An exact match of graphs is called graph isomorphism. Determination of graph
isomorphism is computationally expensive.

{ In the real world, the object graph usually does not match the model graph ex-
actly. Graph isomorphism cannot assess the level of mismatch. To identify objects
represented by similar graphs, graph similarity can be determined.

� Optimization techniques in recognition

{ Optimization problems seek minimization or maximization of an objective func-
tion. Design of the objective function is a key factor in the performance of opti-
mization algorithms.

{ Most conventional approaches to optimization use calculus-based hill-climbing

methods. For these, the search can easily end in a local maximum and the global
maximum can be missed.

{ Genetic algorithms use natural evolution mechanisms of the survival of the
�ttest to search for the maximum of an objective function. Potential solutions are
represented as strings. Genetic algorithms search from a population of potential
solutions, not a single solution. The sequence of reproduction, crossover, and
mutation generates a new population of strings from the previous population.

The �ttest string represents the �nal solution.

{ Simulated annealing combines two basic optimization principles, divide and

conquer and iterative improvement (hill-climbing). This combination avoids
getting stuck in local optima.

� Fuzzy systems

{ Fuzzy systems are capable of representing diverse, non-exact, uncertain, and in-
accurate knowledge or information. They use quali�ers that are very close to the
human way of expressing knowledge.

7.9. EXERCISES 347

{ Fuzzy reasoning is performed in the context of a fuzzy system model that
consists of control, solution, and working data variables; fuzzy sets; hedges; fuzzy
rules; and a control mechanism.

{ Fuzzy sets represent properties of fuzzy spaces. Membership functions repre-
sent the fuzziness of the description and assess the degree of certainty about the
membership of an element in the particular fuzzy set. Shape of fuzzy membership
functions can be modi�ed using fuzzy set hedges. A hedge and its fuzzy set
constitute a single semantic entity called a linguistic variable.

{ Fuzzy if { then rules represent fuzzy associative memory in which knowledge is
stored.

{ In fuzzy reasoning, information carried in individual fuzzy sets is combined to make
a decision. The functional relationship determining the degree of membership
in related fuzzy regions is called the method of composition and results in
de�nition of a fuzzy solution space. To arrive at the decision, defuzzi�cation
is performed. Processes of composition and defuzzi�cation form the basis of fuzzy
reasoning.

7.9 Exercises

Short-answer questions

1. De�ne the syntax and semantics of knowledge representation.

2. Describe the following knowledge representations, giving for each one at least one example that
is di�erent from examples given in the text.

(a) descriptions (features)

(b) grammars

(c) predicate logic

(d) production rules

(e) fuzzy logic

(f) semantic nets

(g) frames (scripts)

3. De�ne the following terms:

(a) pattern

(b) class

(c) classi�er

(d) feature space

4. Describe the main steps of pattern recognition.

5. De�ne the following terms:

(a) class identi�er

(b) decision rule

348 CHAPTER 7. OBJECT RECOGNITION

(c) discrimination function

6. Explain the main concepts and derive a mathematical representation of the discrimination
functions for:

(a) a minimum distance classi�er

(b) a minimum error classi�er

7. What is a training set? How is it designed? What inuences its desired size?

8. Explain why learning should be inductive and sequential.

9. Describe the conceptual di�erences between supervised and unsupervised learning.

10. Draw schematic diagrams of a feed-forward and Hop�eld neural networks. Discuss their major
architectural di�erences.

11. For what is the back-propagation algorithm used? Explain its main steps.

12. What is the reason for including the momentum constant in back-propagation learning?

13. Explain the functionality of Kohonen neural networks. How can they be used for unsupervised
pattern recognition?

14. Explain how Hop�eld networks can be used for pattern recognition.

15. Compare classi�cation approaches used by statistical pattern recognition and neural networks.

16. De�ne the following terms:

(a) primitive

(b) alphabet

(c) description language

(d) grammar

17. Describe the main steps of syntactic pattern recognition.

18. Give a formal de�nition of a grammar.

19. When are two grammars equivalent?

20. True or false? A regular grammar is a context-free grammar.

21. Name the main approaches to syntactic analysis.

22. What is grammar inference? Give its block diagram.

23. Formally de�ne:

(a) a graph

(b) graph isomorphism

(c) subgraph isomorphism

(d) double subgraph isomorphism

24. De�ne Levenshtein distance. Explain its application to assessing string similarity.

25. Explain why hill-climbing optimization approaches may converge to local instead of global op-
tima.

26. Explain the concept and functionality of genetic algorithm optimization. What are the roles of
reproduction, crossover, and mutation in genetic algorithms?

7.9. EXERCISES 349

27. Explain the concept of optimization based on simulated annealing. What is the annealing
schedule?

28. List the advantages and disadvantages of genetic algorithms and simulated annealing compared
to optimization approaches based on derivatives.

29. De�ne the following terms:

(a) fuzzy set

(b) fuzzy membership function

(c) minimum normal form of a fuzzy membership function

(d) maximum normal form of a fuzzy membership function

(e) fuzzy system

(f) domain of a fuzzy set

(g) hedge

(h) linguistic variable

30. Use Zadeh's de�nitions to de�ne formally:

(a) fuzzy intersection

(b) fuzzy union

(c) fuzzy complement

31. Explain fuzzy reasoning based on composition and defuzzi�cation. Draw a block diagram of
fuzzy reasoning.

Problems

1. Let a minimum distance classi�er be used to recognize 2-dimensional patterns from 3 classes
K1;K2;K3. The training set consists of 5 patterns from each class:

K1 :=

��
0
6

�
;

�
1
6

�
;

�
2
6

�
;

�
1
5

�
;

�
1
7

��

K2 :=

��
4
1

�
;

�
5
1

�
;

�
6
1

�
;

�
5
0

�
;

�
5
2

��

K3 :=

��
8
6

�
;

�
9
6

�
;

�
10
6

�
;

�
9
5

�
;

�
9
7

��

Determine (sketch) the discrimination functions in the 2-dimensional feature space.

2. Let a minimum error classi�er be used to recognize 2-dimensional patterns from 2 classes, each
having a normal distribution N (�

r
;	r):

�
1
=

�
2
5

�
;	1 =

�
1 0
0 1

�
; �

2
=

�
4
3

�
;	2 =

�
1 0
0 1

�

Assume unit loss functions and equal a priori probabilities of classes P (!1) = P (!2) = 0:5.
Determine (sketch) the discrimination function in the 2-dimensional feature space.

3. Repeat Problem 7.2 with P (!1) = P , P (!2) = 1 � P . Show, how the discrimination function
locations in the 2-dimensional feature space change as a function of P .

350 CHAPTER 7. OBJECT RECOGNITION

4. Repeat Problem 7.2 considering modi�ed parameters of the normal distributions:

�
1
=

�
2
5

�
;	1 =

�
1 0
0 3

�
; �

2
=

�
4
3

�
;	2 =

�
1 0
0 3

�

5. Repeat Problem 7.4 with P (!1) = P , P (!2) = (1� P). Show, how the discrimination function
locations in the 2-dimensional feature space change as a function of P .

6. Consider the training set speci�ed in Problem 7.1. Assume that the three pattern classes
have normal distributions and that a priori probabilities of classes are equal P (!1) = P (!2) =
P (!3) = 1=3. Determine (sketch) the discrimination functions of the minimumerror classi�er in
the 2-dimensional feature space. Discuss under what circumstances the discrimination functions
of a minimumdistance classi�er are identical to discrimination functions of the minimum error
classi�er if both were trained using the same training set.

7. Create the following training and testing sets of feature vectors named TRAIN1, TEST1;
TRAIN2, TEST2. The training and testing sets will be used in the experiments below.

TRAIN1

!i !1 !1 !1 !1 !1 !2 !2 !2 !2 !2
x1 2 4 3 3 4 10 9 8 9 10

x2 3 2 3 2 3 7 6 6 7 6

TEST1

!i !1 !1 !1 !1 !1 !2 !2 !2 !2 !2
x1 3 6 5 5 6 13 12 11 11 13

x2 5 3 4 3 5 10 8 8 9 8

TRAIN2

!i !1 !1 !1 !1 !1 !2 !2 !2 !2 !2
x1 2 6 -2 7 5 -2 -6 2 -4 -5

x2 400 360 520 -80 180 -200 -200 -400 -600 -400

!i !3 !3 !3 !3 !3
x1 -10 -8 -15 -12 -14

x2 200 140 100 50 300

TEST2

!i !1 !1 !1 !1 !1 !2 !2 !2 !2 !2
x1 4 8 -3 9 6 -1 -4 3 -2 -3

x2 600 540 780 -120 270 -250 -250 -470 -690 -470

!i !3 !3 !3 !3 !3
x1 -15 -13 -6 -17 -16

x2 230 170 130 80 450

8. Develop a program for training and classi�cation using the minimum distance classi�er. Assess
classi�cation correctness.

(a) Train and test using data sets TRAIN1 and TEST1.

(b) Train and test using data sets TRAIN2 and TEST2.

9. Develop a program for training and classi�cation using the minimumerror classi�er, considering
unit loss functions. Assume the training data have normal distribution. Assess classi�cation
correctness.

(a) Train and test using data sets TRAIN1 and TEST1.

7.9. EXERCISES 351

(b) Train and test using data sets TRAIN2 and TEST2.

10. Develop a program for cluster analysis using the k-means approach. Vary the initialization of
cluster starting points and explore its inuence on clustering results. Vary the number of classes
and discuss the results.

(a) Use a combined data set TRAIN1 and TEST1.

(b) Use a combined data set TRAIN2 and TEST2.

11. Create a training set and a testing set of feature vectors using the shape description program
developed in Problem 6.14 to determine shape feature vectors. Use simple shapes (e.g. triangles,
squares, rectangles, circles, etc.) of di�erent sizes. Select up to �ve discriminative features to
form the feature vectors of analyzed shapes. The training as well as the testing sets should
consist of at least 10 patterns from each class. The training and testing sets will be used in the
experiments below.

12. Apply the program developed in Problem 7.8 to the training and testing sets created in Prob-
lem 7.11. Assess classi�cation correctness.

13. Apply the program developed in Problem 7.9 to the training and testing sets created in Prob-
lem 7.11. Assume normal distributions, and that you have a su�cient number to determine
representative dispersion matrices and mean values from the training set. Assess classi�cation
correctness in the testing set. Compare with the performance of the minimumdistance classi�er
used in Problem 7.12.

14. Apply the program developed in Problem 7.10 to the testing set created in Problem 7.11. First,
assume that the number of classes is known. Assess clustering correctness and compare it with
that of the supervised methods used in Problems 7.12 and 7.13. Then, vary the initialization of
cluster starting points and explore the inuence on clustering results.

15. Develop a program for back-propagation training and classi�cation using a three-layer feed-
forward neural network. Train and test using arti�cial data from a two-dimensional feature
space representing patterns from at least three separable classes.

16. Apply the program developed in Problem 7.15 to the testing set created in Problem 7.11.
Assess classi�cation correctness and compare it with that of the statistical classi�cation methods
assessed in Problems 7.12 and 7.13.

17. Choice of width of layers is often a problem. Repeat Problems 7.15 and 7.16, paying attention
to the size of the hidden layer. Draw some conclusions about network performance and training
time as the size of this layer varies.

18. Implement Algorithm 7.5. For some datasets devised by you, or extracted from some known

application, run the algorithm. Compare its performance for di�erent sizes and topologies of
output layer, and various choices of parameters.

19. Implement a Hop�eld network. Train it on digitised patterns of the digits 0 { 9; study its
performance at pattern recall (e.g., of noisy examples of digits) for various resolutions of the
patterns.

20. Design a grammar G that can generate a language L(G) of equilateral triangles of any size;
primitives with 0o, 60o, and 120o orientation form the set of terminal symbols Vt = fa; b; cg.

21. Design three di�erent grammars producing the language L(G) = fabng for n = 1; 2; : : :

22. Design a grammar that generates all characters P or d of the following properties:

� character P is represented by a square with an edge length equal to one, a vertical line is
attached to the bottom left corner of the square and may have any length,

352 CHAPTER 7. OBJECT RECOGNITION

� character d is represented by a square with an edge length equal to one, a vertical line is
attached to the top right corner of the square and may have any length.

Obviously, there are in�nitely many such characters. Use the following set of terminal symbols
Vt = fN;W; S;Eg, terminal symbols correspond to directions of the chain code { north, west,
south, east. Design your set of non-terminal symbols, use a start symbol s. Validate your
grammar design on examples. Show all steps of generating at least two P and two d characters.

23. Using Algorithm 7.8 prove or disprove isomorphism of the graphs shown in Figure 7.32.

A A

C

B

C B

B

a) b) c)

A

B

C B

AB

A
B

BA

B

Figure 7.32: Problem 7.23.

24. Determine the Levenshtein distance for the following string pairs:

(a) S1 = abadcdefacde S2 = abadddefacde

(b) S1 = abadcdefacde S3 = abadefaccde

(c) S1 = abadcdefacde S4 = cbadcacdae

25. Using genetic algorithm optimization, determine the maximum of the following function (this
function has several local maxima; its visualization is, e.g. available in Matlab by typing peaks,
see Figure 7.33):

z(x; y) = 3(1� x)2 exp
�
�x2 � (y + 1)2

�
� 10

�
x

5
� x3 � y5

�
exp

�
�x2 � y2

�
�1

3
exp

�
�(x + 1)2 � y2

�
Develop a program for genetic algorithm-based optimization following Algorithm 7.10. (Alter-
natively, use one of the many genetic algorithm programs freely available on the World Wide
Web.) Design the code string as consisting of n bits for the x value and n bits for the y value,
the value of z(x; y) represents the string �tness. Limit your search space to x 2 (�4; 4) and
y 2 (�4; 4). Explore the role of the starting population, population size S, mutation rate M ,
and string bit length 2n on the speed of convergence and solution accuracy. For several values
of S;M; n plot the function values of maximum string �tness, average population �tness, and
minimum string �tness as a function of the generation number.

26. Using the de�nition of the fuzzy set severe as given in Figure 7.28b, sketch the following fuzzy
membership functions:

(a) very severe

(b) somewhat severe

(c) somewhat not severe

27. Using the fuzzy sets dark and bright as given in Figure 7.25, sketch the single fuzzy mem-
bership function (not very dark AND not very bright).

7.10. REFERENCES 353

Figure 7.33: Problem 7.25.

28. Considering the fuzzy sets A and B given in Figure 7.34, derive intersection, union, and com-
plement of the two fuzzy sets.

00
a) b)

80 100

B

x 100 x30

1
µ ()xA

1
µ ()x

Figure 7.34: Problem 7.28.

29. Use the composite moments and composite maximum approaches to defuzzi�cation to �nd the
representative value of the fuzzy set provided in Figure 7.35.

30. Flash ood represents a potential danger in many areas, and its prediction is an important part

of meteorological forecasting. Clearly, the following conditions increase the ood danger: 1)
rain amount in the past three days, 2) water saturation of soil, and 3) the rainfall expected in
the next 24 hours. Assuming the above speci�ed information is available, design a fuzzy logic
system to determine the expected ood danger within the next 24 hours.

31. Develop a program implementation of the fuzzy logic system designed in Problem 7.30. Explore,
how di�erent membership function shapes, and fuzzy logic composition and decomposition
methods inuence the achieved results.

7.10 References

[Aarts and van Laarhoven 86] E H L Aarts and P J M van Laarhoven. Simulated annealing: a pedes-
trian review of the theory and some applications. In P A Devijver and J Kittler, editors,

354 CHAPTER 7. OBJECT RECOGNITION

w

0

µ ()

0.8

0.6

0.4

0.2

w20 30 45 75 90 100

Figure 7.35: Problem 7.29.

Pattern Recognition Theory and Applications, pages 179{192. Springer Verlag, Berlin-New
York-Tokyo, 1986.

[Abe and Lan 95] S Abe and M Lan. A method for fuzzy rules extraction directly from numerical data
and its application to pattern classi�cation. IEEE Trans. on Fuzzy Systems, 3(2):129{139,
1995.

[Adeli and Hung 95] H Adeli and S L Hung. Machine Learning : Neural Networks, Genetic Algo-

rithms, and Fuzzy Systems. Wiley, New York, 1995.

[Ambler 75] A P H Ambler. A versatile system for computer controlled assembly. Arti�cial Intelli-
gence, 6(2):129{156, 1975.

[Amit 89] D J Amit. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge
University Press, Cambridge, England; New York, 1989.

[Arabie et al. 96] P Arabie, L J Hubert, and G De Soete, editors. Clustering and Classi�cation. World
Scienti�c, River Edge, NJ, 1996.

[Azencott 92] R Azencott, editor. Simulated Annealing : Parallelization Techniques. Wiley, New
York, 1992.

[Baird 84] H S Baird. Model-Based Image Matching using Location. MIT Press, Cambridge, Ma,
1984.

[Ballard and Brown 82] D H Ballard and C M Brown. Computer Vision. Prentice-Hall, Englewood
Cli�s, NJ, 1982.

[Barnard 87] Barnard. Stereo matching by hierarchical microcanonical annealing. Perception, 1:832,
1987. Vision based application of Simulated Annealing.

[Barrero 91] A Barrero. Inference of tree grammars using negative samples. Pattern Recognition,
24(1):1{8, 1991.

[Barrow and Popplestone 71] H G Barrow and R J Popplestone. Relational descriptions in picture
processing. Machine Intelligence, 6, 1971.

[Berge 76] C Berge. Graphs and Hypergraphs. American Elsevier, New York, 2nd edition, 1976.

[Bezdek 81] L C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum
Press, New York, 1981.

[Bittner and Reingold 75] J R Bittner and E M Reingold. Backtrack programming techniques. Com-
munications of the ACM, 18(11):651{656, 1975.

7.10. REFERENCES 355

[Blash�eld et al. 82] R K Blash�eld, M S Aldenderfer, and L C Morey. Cluster analysis software. In
P R Krishniah and L N Kanal, editors, Handbook of Statistics, pages 245{266. North Holland,
Amsterdam, 1982.

[Bloch 93] I Bloch. Fuzzy connectivity and mathematical morphology. Pattern Recognition Letters,
14:483{488, 1993.

[Blum and Rivest 88] A Blum and R L Rivest. Training a three node neural network is np-complete.
In Proceedings of IEEE Conference on Neural Information Processing Systems, page 494,
1988.

[Bouman and Liu 91] C Bouman and B Liu. Multiple resolution segmentation of textured images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2):99{113, 1991.

[Braspenning et al. 95] P J Braspenning, F Thuijsman, and A J M M Weijters, editors. Arti�cial

Neural Networks : An Introduction to ANN Theory and Practice. Springer Verlag, Berlin;
New York, 1995.

[Bron and Kerbosch 73] C Bron and J Kerbosch. Finding all cliques of an undirected graph. Com-

munications of the ACM, 16(9):575{577, 1973.

[Buckley 90] F Buckley. Distance in Graphs. Addison-Wesley, Redwood City, Ca, 1990.

[Carling 92] A Carling. Introducing Neural Networks. Sigma, 1992.

[Carpenter and Grossberg 87a] G A Carpenter and S Grossberg. ART2: Self organization of stable
category recognition codes for analog input patterns. Applied Optics, 26:4919{4930, 1987.

[Carpenter and Grossberg 87b] G A Carpenter and S Grossberg. A massively parallel architecture
for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and

Image Processing, 37:54{115, 1987.

[Carpenter and Grossberg 91] G A Carpenter and S Grossberg. Pattern Recognition by Self-

organizing Neural Networks. MIT Press, Cambridge, Ma, 1991.

[Cerny 85] V Cerny. Thermodynamical approach to the travelling salesman problem: An e�cient
simulation algorithm. Journal of Optimization Theory and Applications, 45:41{51, 1985.

[Chambers 95] L Chambers, editor. Practical Handbook of Genetic Algorithms. CRC Press, Boca
Raton, FL, 1995.

[Chen 76] C H Chen, editor. Pattern Recognition and Arti�cial Intelligence. Academic Press, New
York, 1976.

[Chen et al. 93] C H Chen, L F Pau, and P S P Wang, editors. Handbook of Pattern Recognition and

Computer Vision. World Scienti�c, Singapore; River Edge, NJ, 1993.

[Cherkassky et al. 94] V Cherkassky, J H Friedman, and H Wechsler, editors. From Statistics to

Neural Networks. Springer Verlag, Berlin; New York, 1994.

[Chomsky 66] N Chomsky. Syntactic Structures. Mouton, Hague, 6th edition, 1966.

[Chomsky et al. 71] N Chomsky, J P B Allen, and P Van Buren. Chomsky: Selected Readings. Oxford
University Press, London-New York, 1971.

[Clocksin and Mellish 81] W F Clocksin and C S Mellish. Programming in Prolog. Springer Verlag,
Berlin-New-York-Tokyo, 1981.

[Cox 94] E Cox. The Fuzzy Systems Handbook. AP Professional, Cambridge, 1994.

[Dasarathy 91] B V Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classi�cation Techniques.
IEEE Comp. Society Press, Los Alamitos, Ca, 1991.

356 CHAPTER 7. OBJECT RECOGNITION

[Dellepiane and Fontana 95] S Dellepiane and F Fontana. Extraction of intensity connectedness for
image processing. Pattern Recognition Letters, 16:313{324, 1995.

[Devijver and Kittler 82] P A Devijver and J Kittler. Pattern Recognition: A Statistical Approach.
Prentice-Hall, Englewood Cli�s, NJ, 1982.

[Devijver and Kittler 86] P A Devijver and J Kittler. Pattern Recognition Theory and Applications.
Springer Verlag, Berlin-New York-Tokyo, 1986.

[Dubes and Jain 76] R C Dubes and A K Jain. Clustering techniques: The user's dilemma. Pattern
Recognition, 8:247{260, 1976.

[Dubes and Jain 80] R C Dubes and A K Jain. Clustering methodologies in exploratory data analysis.
In M Yovits, editor, Advances in Computers, pages 113{228.Academic Press, New York, 1980.

[Duda and Hart 73] R O Duda and P E Hart. Pattern Classi�cation and Scene Analysis. John Wiley
and Sons, New York, 1973.

[Even 79] S Even. Graph Algorithms. Computer Science Press, Rockville, Md, 1979.

[Everitt and Brian 93] B Everitt and S E Brian. Cluster Analysis. E Arnold, Halsted Press, New
York; London, 3rd edition, 1993.

[Fausett 94] L Fausett. Fundamentals of Neural Networks. Prentice-Hall, 1994.

[Fischler and Elschlager 73] M A Fischler and R A Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on Computers, C-22(1):67{92, 1973.

[Fu 68] K S Fu. Sequential Methods in Pattern Recognition and Machine Learning. Academic Press,
New York, 1968.

[Fu 74] K S Fu. Syntactic Methods in Pattern Recognition. Academic Press, New York, 1974.

[Fu 77] K S Fu. Syntactic Pattern Recognition { Applications. Springer Verlag, Berlin, 1977.

[Fu 80] K S Fu. Picture syntax. In S K Chang and K S Fu, editors, Pictorial Information Systems,
pages 104{127. Springer Verlag, Berlin, 1980.

[Fu 82] K S Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cli�s,
NJ, 1982.

[Fukunaga 90] K Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, Boston,
2nd edition, 1990.

[Furuhashi 95] T Furuhashi, editor. Advances in Fuzzy Logic, Neural Networks, and Genetic Algo-

rithms. Springer Verlag, Berlin ; New York, 1995.

[Geman et al. 90] D Geman, S Geman, C Gra�gne, and P Dong. Boundary detection by constrained
optimisation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 1990.

[Goldberg 89] D E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Ma, 1989.

[Gonzalez and Thomason 74] R C Gonzalez and M G Thomason. On the inference of tree grammars
for pattern recognition. In Proceedings of the IEEE International Conference on System,

Man and Cybernetics, pages 2{4. IEEE, 1974.

[Haralick and Elliott 79] R M Haralick and G L Elliott. Increasing tree search e�ciency for constraint
satisfaction problems. In Proceedings of 6th IJCAI-79, pages 356{364, 1979.

[Harary 69] F Harary. Graph Theory. Addison-Wesley, Reading, Ma, 1969.

[Hayes 77] P J Hayes. In defense of logic. In Proceedings of 5th IJCAI, Cambridge, Ma, 1977.

7.10. REFERENCES 357

[Haykin 94] S Haykin. Neural Networks. Macmillan, 1994.

[Hecht-Nielsen 90] R Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, Ma, 1990.

[Hecht-Nielson 87] R Hecht-Nielson. Kolmogorov's mapping neural network existence theorem. In
Proceedings of the First IEEE International Conference on Neural Networks, volume 3, pages
11{14. IEEE, 1987.

[Hlavac and Sara 95] V Hlavac and R Sara, editors. Computer Analysis of Images and Patterns.
Springer Verlag, Berlin; New York, 1995.

[Homaifar and McCormick 95] A Homaifar and E McCormick. Simultaneous design of memebership
functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. on Fuzzy

Systems, 3(2):129{139, 1995.

[Hop�eld and Tank 85] J J Hop�eld and D W Tank. Neural computation of decisions in optimization
problems. Biological Cybernetics, 52:141{152, 1985.

[Hop�eld and Tank 86] J J Hop�eld and D W Tank. Computing with neural circuits: A model.
Science, 233:625{633, 1986.

[Horikawa et al. 92] S Horikawa, T Furuhashi, and Y Uchikawa. On fuzzy modeling using fuzzy neural
networks with the back-propagation algorithm. IEEE Trans. on Neural Networks, 3(5):801{
806, 1992.

[Ishibuchi et al. 92] H Ishibuchi, K Nozaki, and H Tanaka. Distributed representation of fuzzy rules
and its application to pattern classi�cation. Fuzzy Sets and Syst., 52:21{32, 1992.

[Ishibuchi et al. 95] H Ishibuchi, K Nozaki, N Yamamoto, and H Tanaka. Selecting fuzzy if-then rules
for classi�cation problems using genetic algorithms. IEEE Transactions on Fuzzy Systems,
3:260{270, 1995.

[Johnson and Wichern 90] R A Johnson and D WWichern. Applied Multivariate Statistical Analysis.
Prentice-Hall, Englewood Cli�s, NJ, 2nd edition, 1990.

[Judd 90] J S Judd. Neural Network Design and the Complexity of Learning. MIT Press, Cambridge,
Ma, 1990.

[Kandel 82] A Kandel. Fuzzy Techniques in Pattern Recognition. Wiley, New York, 1982.

[Kaufman and Rousseeuw 90] L Kaufman and P J Rousseeuw. Finding Groups in Data: An Intro-

duction to Cluster Analysis. John Wiley and Sons, New York, 1990.

[Kaufmann 75] A Kaufmann. Introduction to the Theory of Fuzzy Subsets{Fundamental Theoretical

Elements, Vol 1. Academic Press, New York, 1975.

[Kirkpatrick et al. 83] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by simulated an-
nealing. Science, 220:671{680, 1983.

[Kohonen 88] T Kohonen. The \neural" phonetic typewriter. Computer, pages 11{22, March 1988.

[Kohonen 95] T Kohonen. Self-organizing Maps. Springer Verlag, Berlin; New York, 1995.

[Kolmogorov 63] A N Kolmogorov. On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. Doklady Akademii

Nauk SSSR, 144:679{681, 1963. (AMS Translation, 28, 55-59).

[Kosko 91] B Kosko. Adaptive bidirectional associative memories. In G A Carpenter and S Grossberg,
editors, Pattern Recognition by Self-Organizing Neural Networks, pages 425{450. MIT Press,
Cambridge, Ma, 1991.

[Kosko 92] B Kosko. Neural Networks and Fuzzy Systems. Prentice Hall, Englewood Cli�s, NJ, 1992.

358 CHAPTER 7. OBJECT RECOGNITION

[Kowalski 79] R Kowalski. Logic for Problem Solving. North Holland, Amsterdam, 1979.

[Lakemeyer and Nebel 94] G Lakemeyer and B Nebel, editors. Foundations of Knowledge Represen-

tation and Reasoning. Springer Verlag, Berlin; New York, 1994.

[Lau 89] H T Lau. Algorithms on Graphs. TAB Professional and Reference Books, Blue Ridge
Summit, Pa, 1989.

[Linggard et al. 92] R Linggard, C Nightingale, and D Myers, editors. Neural networks for vision,

speech and natural language. Chapman and Hall, 1992.

[MacQueen 67] J MacQueen. Some methods for classi�cation and analysis of multivariate observa-
tions. In Proceedings of the 5th Berkeley Symposium { 1, pages 281{297, 1967.

[Masters 95] T Masters. Advanced Algorithms for Neural Networks : A C++ Sourcebook. Wiley, New
York, 1995.

[Masuch and Polos 94] M Masuch and L Polos, editors. Knowledge Representation and Reasoning

under Uncertainty : Logic at Work. Springer Verlag, Berlin; New York, 1994.

[McCulloch and Pitts 43] W S McCulloch and W Pitts. A logical calculus of ideas immanent in
nervous activity. Bull. Math. Biophysics, 5:115{133, 1943.

[McEliece et al. 87] R J McEliece, E C Posner, E R Rodemich, and S S Venkatesh. The capacity of
the Hop�eld associative memory. IEEE Transactions on Information Theory, 33:461, 1987.

[McHugh 90] J A McHugh. Algorithmic Graph Theory. Prentice-Hall, Englewood Cli�s, NJ, 1990.

[McQuitty 87] L L McQuitty. Pattern-Analytic Clustering: Theory, Method, Research, and Con�gural

Findings. University Press of America, Lanham, NY, 1987.

[Metropolis et al. 53] N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, and E Teller.
Equation of state calculation by fast computing machines. Journal of Chemical Physics,
21:1087{1092, 1953.

[Michalewicz 94] Z Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer Verlag, Berlin; New York, 2nd edition, 1994.

[Michalski et al. 83] R SMichalski, J G Carbonell, and T MMitchell. Machine Learning I, II. Morgan
Kaufmann Publishers, Los Altos, Ca, 1983.

[Minsky 88] M L Minsky. Perceptrons: An Introduction to Computational Geometry. MIT Press,
Cambridge, Ma, 2nd edition, 1988.

[Mitchell 96] M Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

[Mohring 91] R H Mohring, editor. Graph-Theoretic Concepts in Computer Science - 16th WG'90,
Berlin-New York-Tokyo, 1991. Springer Verlag.

[Mozer 91] M C Mozer. The Perception of Multiple Objects: A Connectionist Approach. MIT Press,
Cambridge, Ma, 1991.

[Nagl 90] M Nagl, editor. Graph-Theoretic Concepts in Computer Science - 15th WG'89, Berlin-New
York-Tokyo, 1990. Springer Verlag.

[Niemann 90] H Niemann. Pattern Analysis and Understanding. Springer Verlag, Berlin-New York-
Tokyo, 2nd edition, 1990.

[Nigrin 93] A Nigrin. Neural Networks for Pattern Recognition. MIT Press, Cambridge, MA, 1993.

[Nilsson 71] N J Nilsson. Problem Solving Methods in Arti�cial Intelligence. McGraw Hill, New York,
1971.

7.10. REFERENCES 359

[Nilsson 82] N J Nilsson. Principles of Arti�cial Intelligence. Springer Verlag, Berlin, 1982.

[Oja 83] E Oja. Subspace Methods of Pattern Recognition. Research Studies Press, Letchworth, Eng-
land, 1983.

[Otten and van Ginneken 89] R H J M Otten and L P P P van Ginneken. The Annealing Algorithm.
Kluwer Academic Publishers, Norwell, Ma, 1989.

[Pal 91] S K Pal. Fuzzy tools for the management of uncertainty in pattern recognition, image
analysis, vision, and expert systems. International Journal of System Science, 22:511{548,
1991.

[Pal and Majumder 86] S K Pal and D D Majumder. Fuzzy Mathematical Approach to Pattern Recog-

nition. Wiley, New York, 1986.

[Park 96] W Park. Automated Determination of Fuzzy Rules and Membership Functions: Application

to Analysis of Pulmonary CT Images. PhD thesis, The University of Iowa, 1996.

[Park et al. 96] W Park, E A Ho�man, and M Sonka. Fuzzy logic approach to extraction of intratho-
racic airway trees from three-dimensional CT images. In Image Processing, Proceedings SPIE
Vol. 2710, pages 210{219, SPIE, Bellingham, WA, 1996.

[Patrick and Fattu 86] E A Patrick and J M Fattu. Arti�cial Intelligence with Statistical Pattern

Recognition. Prentice-Hall, Englewood Cli�s, NJ, 1986.

[Pavel 93] M Pavel. Fundamentals of Pattern Recognition. M Dekker, New York, 2nd edition, 1993.

[Pavlidis 77] T Pavlidis. Structural Pattern Recognition. Springer Verlag, Berlin, 1977.

[Pavlidis 80] T Pavlidis. Structural descriptions and graph grammars. In S K Chang and K S Fu,
editors, Pictorial Information Systems, pages 86{103, Springer Verlag, Berlin, 1980.

[Pedrycz 95] W Pedrycz. Fuzzy Sets Engineering. CRC Press, Boca Raton, FL, 1995.

[Pospesel 76] H Pospesel. Predicate Logic. Prentice-Hall, Englewood Cli�s, NJ, 1976.

[Pudil et al. 94a] P Pudil, J Novovicova, and J Kittler. Floating search methods in feature selection.
Pattern Recognition Letters, 15:1119{1125, 1994.

[Pudil et al. 94b] P Pudil, J Novovicova, and J Kittler. Simultaneous learning of decision rules and
important atrtributes for classi�cation problems in image analysis. Image and Vision Com-

puting, 12:193{198, 1994.

[Rao 65] C R Rao. Linear Statistical Inference and its Application. John Wiley and Sons, New York,
1965.

[Rawlins 91] G J E Rawlins. Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo,
Ca, 1991.

[Reichgelt 91] H Reichgelt. Knowledge Representation: An AI Perspective. Ablex Publishing Corpo-
ration, Norwood, NJ, 1991.

[Rogers and Kabrisky 91] S K Rogers and M Kabrisky. An Introduction to Biological and Arti�cial

Neural Networks for Pattern Recognition. SPIE, Bellingham, Wa, 1991.

[Romesburg 84] H C Romesburg. Cluster Analysis for Researchers. Lifetime Learning Publications,
Belmont, Ca, 1984.

[Rosenblatt 62] R Rosenblatt. Principles of Neurodynamics. Spartan books, Washington, D.C., 1962.

[Rosenfeld 79a] A Rosenfeld. Fuzzy digital topology. Information Control, 40:76{87, 1979.

360 CHAPTER 7. OBJECT RECOGNITION

[Rosenfeld 79b] A Rosenfeld. Picture Languages { Formal Models for Picture Recognition. Academic
Press, New York, 1979.

[Rosenfeld 83] A Rosenfeld. On connectivity properties of grayscale pictures. Information Control,
16:47{50, 1983.

[Rosenfeld 84a] A Rosenfeld. The diameter of a fuzzy set. Fuzzy Sets and Systems, 13:241{246, 1984.

[Rosenfeld 84b] A Rosenfeld. The fuzzy geometry of image subsets. Pattern Recognition Letters,
2:311{317, 1984.

[Rosenfeld 85] A Rosenfeld. The perimeter of a fuzzy set. Pattern Recognition, 18:125{130, 1985.

[Rumelhart and McClelland 86] D Rumelhart and J McClelland. Parallel Distributed Processing.
MIT Press, Cambridge, Ma, 1986.

[Schalko� 92] R J Schalko�. Pattern Recognition: Statistical, Structural and Neural Approaches.
Wiley, New York, 1992.

[Schutzer 87] D Schutzer. Arti�cial Intelligence, An Application-Oriented Approach. Van Nostrand
Reinhold, New York, 1987.

[Sedgewick 84] R Sedgewick. Algorithms. Addison-Wesley, Reading, Ma, 2nd edition, 1984.

[Sejnowski and Rosenberg 87] T J Sejnowski and C R Rosenberg. Parallel systems that learn to
pronounce English text. Complex Systems, 1:145{168, 1987.

[Sethi and Jain 91] I K Sethi and A K Jain, editors. Arti�cial Neural Networks and Statistical Pattern
Recognition : Old and New Connections. North-Holland, Amsterdam; New York, 1991.

[Shapiro and Haralick 80] L G Shapiro and R M Haralick. Algorithms for inexact matching. In Pro-

ceedings 5th International Conference on Pattern Recognition, pages 202{207, IEEE Comp.
Society Press, Los Alamitos, Ca, 1980.

[Sharples et al. 89] M Sharples, D Hogg, C Hutchinson, S Torrance, and D Young. Computers and

Thought, A Practical Introduction to Arti�cial Intelligence. The MIT Press, Cambridge, Ma,
1989.

[Simons 84] G L Simons. Introducing Arti�cial Intelligence. NCC Publications, Manchester, 1984.

[Simpson 90] P K Simpson. Arti�cial Neural Systems: Foundations, Paradigms, Applications, and

Implementations. Pergamon Press, New York, 1990.

[Simpson 92] P K Simpson. Fuzzy min-max neural networks { Part 1: Classi�cation. IEEE Trans.

on Fuzzy Systems, 3(2):129{139, 1992.

[Sklansky 81] J Sklansky. Pattern Classi�ers and Trainable Machines. Springer Verlag, New York,
1981.

[Sonka 86] M Sonka. A new texture recognition method. Computers and Arti�cial Intelligence,
5(4):357{364, 1986.

[Tan et al. 92] H K Tan, S B Gelfand, and E J Delp. A cost minimization approach to edge detection
using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(1), 1992.

[Tucker 95] A Tucker. Applied Combinatorics. Wiley, New York, 3rd edition, 1995.

[Udupa and Samarasekera 96] J K Udupa and S Samarasekera. Fuzzy connectedness and object def-
inition: Theory, algorithms, and applications in image segmentation. Graphical Models and

Image Processing, 58:246{261, 1996.

7.10. REFERENCES 361

[Ullmann 76] J R Ullmann. An algorithm for subgraph isomorphism. Journal of the Association for

Computing Machinery, 23(1):31{42, 1976.

[van Laarhoven 88] P J M van Laarhoven. Theoretical and Computational Aspects of Simulated An-

nealing. Centrum voor Wiskunde en Informatik, Amsterdam, 1988.

[van Laarhoven and Aarts 87] P J M van Laarhoven and E H L Aarts. Simulated Annealing: Theory

and Applications. Dordrecht and Kluwer Academic Publishers, Norwell, Ma, 1987.

[Wasserman 89] P DWasserman. Neural Computing { Theory and Practice. Van Nostrand Rheinhold,
New York, 1989.

[Wechsler 90] H Wechsler. Computational Vision. Academic Press, London { San Diego, 1990.

[Winston 75] P H Winston, editor. The Psychology of Computer Vision. McGraw Hill, New York,
1975.

[Winston 84] P H Winston. Arti�cial Intelligence. Addison-Wesley, Reading, Ma, 2nd edition, 1984.

[Yang et al. 89] B Yang, W E Snyder, and G L Bilbro. Matching oversegmented 3D images to models
using association graphs. Image and Vision Computing, 7(2):135{143, 1989.

[Young and Calvert 74] T Y Young and T W Calvert. Classi�cation, Estimation, and Pattern Recog-

nition. American Elsevier, New York-London-Amsterdam, 1974.

[Zadeh 65] L A Zadeh. Fuzzy sets. Information and Control, 8:338{353, 1965.

[Zadeh and Kacprzyk 92] L A Zadeh and J Kacprzyk, editors. Fuzzy Logic for the Management of

Uncertainty. Wiley, New York, 1992.

[Zdrahal 81] Z Zdrahal. A structural method of scene analysis. In Proceedings of IJCAI-81, pages
680{682, Vancouver, BC, Canada, 1981.

[Zhou 92] Y T Zhou. Arti�cial Neural Networks for Computer Vision. Springer Verlag, New York,
1992.

[Zimmermann 87] H J Zimmermann. Fuzzy sets, decision making and expert systems. Kluwer Aca-
demic Publishers, Boston, 1987.

[Zimmermann 91] H Zimmermann. Fuzzy Set Theory and Its Applications. Kluwer, Boston, MA,
1991.

[Zimmermann et al. 84] H J Zimmermann, L A Zadeh, and B R Gaines. Fuzzy Sets and Decision

Analysis. North Holland, Amsterdam-New York, 1984.

