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Chapter 9

3D vision, geometry and radiometry

A number of image analysis techniques aiming at 2D images have been presented in earlier

chapters. What has been overlooked hitherto, though, is the observation that the best vision

system, our own, and so far unbeatable by machines, is geared to deal with the 3D world.

In this chapter about 3D vision we shall �ll the gap; we shall concentrate on intermediate-

level vision tasks in which 3D scene properties are inferred from 2D image representations.

Methods for extracting 3D information and interpreting 3D scenes will be presented.

There are several serious reasons why 3D vision using intensity images as input is regarded

as di�cult:

� The imaging system of a camera and the human eye performs perspective projection,

which leads to considerable loss of information. All points along a line pointing from

the optical center towards a scene point are projected to a single image point. We are

interested in the inverse task that aims to derive 3D co-ordinates from image measure-

ments { this task is underconstrained, and some additional information must be added

to solve it unambiguously.

� The relationship between image intensity and the 3D geometry of the corresponding

scene point is very complicated. The pixel intensity depends on surface reectivity

parameters, surface orientation, type and position of illuminants, and the position of

the viewer. Attempting to learn about 3D geometry { surface orientation and depth {

represents another ill-conditioned task.

� The mutual occlusion of objects in the scene, and even self-occlusion of one object,

further complicates the vision task.

� The presence of noise in images, and the high time complexity of many algorithms,

contributes further to the problem, although this is not speci�c to 3D vision.

The chapter is organized as follows: In Section 9.1, we shall consider various 3D vision

paradigms, and Marr's theory of 3D vision from the late seventies will be explained in more

detail, since even with its known limitations it is still the most generally accepted paradigm.

Section 9.2 explains the geometrical issues that constitute important mathematical machinery

needed to solve 3D vision tasks. We present here recent research material in a uniform fashion;

the geometry of one, two and three cameras and related applications are sketched. Section 9.3

440



9.1. 3D VISION TASKS 441

tackles the relation between the intensity of a pixel in a 2D image and the 3D shape of the

corresponding scene point.

9.1 3D vision tasks

The �eld of 3D vision is young and still developing, and no uni�ed theory is available; di�erent

research groups may have di�erent understandings of the task. Several 3D vision tasks and

related paradigms illustrate the variety of opinions:

� Marr [Marr 82] de�nes 3D vision as `From an image (or a series of images) of a scene,

derive an accurate three-dimensional geometric description of the scene and quantita-

tively determine the properties of the object in the scene'. Here, 3D vision is formulated

as a 3D object reconstruction task, i.e. description of the 3D shape in a co-ordinate sys-

tem independent of the viewer. One rigid object, whose separation from the background

is straightforward, is assumed, and the control of the process is strictly bottom-up from

an intensity image through intermediate representations. Treating 3D vision as scene

recovery seems reasonable. If vision cues give us a precise representation of a 3D scene

then almost all visual tasks may be carried out; the navigation of an autonomous vehi-

cle, parts inspection, or object recognition are examples. The recovery paradigm needs

to know the relation between an image and the corresponding 3D world, and thus image

formation needs to be described.

� Aloimonos and Shulman [Aloimonos and Shulman 89] see the central problem of com-

puter vision as: `. . . from one or the sequence of images of a moving or stationary object

or scene taken by a monocular or polynocular moving or stationary observer, to under-

stand the object or the scene and its three-dimensional properties'. In this de�nition, it

is the concept understand that makes this approach to vision di�erent. If little a priori

knowledge is available, as in human vision, then understanding is complicated. This

might be seen as one limiting case; the other extreme in the complexity spectrum is,

e.g. a simple object matching problem in which there are only several known possible

interpretations.

� Wechsler [Wechsler 90] stresses the control principle of the process: `The visual system

casts most visual tasks as minimization problems and solves them using distributed

computation and enforcing nonaccidental, natural constraints'. Computer vision is seen

as a parallel distributed representation, plus parallel distributed processing, plus active

perception. The understanding is carried in the `perception { control { action' cycle.

� Aloimonos [Aloimonos 93] asks what principles might enable us to; (i) understand vision

of living organisms, (ii) equip machines with visual capabilities. There are several types

of related questions:

{ Empirical questions (what is?) determine how existing visual systems are designed.

{ Normative questions (what should be?) deal with classes of animals or robots that

would be desirable.

{ Theoretical questions (what could be?) are interested in mechanisms that could

exist in intelligent visual systems.
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System theory [Klir 91] provides a general framework that allows us to treat understanding

of complex phenomena using the machinery of mathematics. The inherent complexity of the

vision task is solved here by distinguishing the object (or system or phenomenon) from the

background, where `objects' mean anything of interest to solve the task at hand. The objects

and their properties need to be characterized, and a formal mathematical model is typically

used for this abstraction. The model is speci�ed by a relatively small number of parameters,

which are typically estimated from the (image) data.

This methodology allows us to describe the same object using qualitatively di�erent mod-

els (e.g. algebraic or di�erential equations) when varying resolution is used during observa-

tion. Studying changes of models with respect to several resolutions may give deeper insight

into the problem.

An attempt to create a computer based vision system comprises three intertwined prob-

lems:

1. Feature observability in images: We need to determine whether task-relevant informa-

tion will be present in the primary image data.

2. Representation: This problem is related to the choice of model for the observed world,

at various levels of interpretation complexity.

3. Interpretation: This problem tackles the semantics of the data. In other words, how

are data mapped to the (real) world. The task is to make certain information explicit

from a mathematical model storing it in an implicit form.

Two main approaches to arti�cial vision, according to the ow of information and the amount

of a priori knowledge, are typically considered (see Chapter 8):

1. Reconstruction, bottom-up: The aim is to reconstruct the 3D shape of the object from

an image or set of images, which might be either intensity or range images. One extreme

is given by Marr's theory [Marr 82], which is strictly bottom-up with very little a priori

knowledge about the objects needed. Some, more practical, approaches aim to create

a 3D model from real objects using range images [Flynn and Jain 91, Flynn and Jain

92, Soucy and Laurendeau 92, Bowyer 92].

2. Recognition, top-down, model-based vision: The a priori knowledge about the objects

is expressed by means of the models of the objects, where 3D models are of particular

interest [Brooks et al. 79, Goad 86, Besl and Jain 85, Farshid and Aggarwal 93].

Recognition based on CAD models is of practical importance [Newman et al. 93].

Additional constraints embedded in the model make under-determined vision tasks

possible in many cases.

Some authors propose object recognition systems in which 3D models are avoided. The

priming-based (geons) approach is based on the idea that 3D shapes can be inferred directly

from 2D drawings [Biederman 87] { the qualitative features are called geons. This mimics the

human recognition process in which constituents of a single object (geons) and their spatial

arrangement are pointers to a human memory.

The alignment of 2D views is another option { lines or points in 2D views can be used

for aligning di�erent 2D views. The correspondence of points, lines or other features must be
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made �rst. A linear combination of views has been used [Ullman and Basri 91] for recognition,

and various issues related to image based scene representations in which a collection of images

with established correspondences is stored instead of a 3D model is considered in [Beymer

and Poggio 96]. How this approach can be used for displaying a 3D scene from any viewpoint

is considered in [Werner et al. 95, Hlav�a�c et al. 96].

9.1.1 Marr's theory

Marr was a pioneer in the study of computer vision whose inuence has been, and continues

to be, considerable despite his early death. Critical of earlier work that, while successful in

limited domains or image classes, was either empirical or unduly restrictive of the images

with which it could deal, Marr proposed a more abstract and theoretical approach that

permitted work to be put into a larger context. Restricting himself to the 3D interpretation

of single, static scenes, Marr proposed that a computer vision system was just an example

of an information processing device, and that any such device could be understood at three

levels:

1. Computational theory: The theory describes what the device is supposed to do; what

information it provides from other information provided as input. It should also describe

the logic of the strategy that performs this task.

2. Representation and algorithm: These address precisely how the computation may be

carried out; in particular, information representations and algorithms to manipulate

them.

3. Implementation: The physical realization of the algorithm; speci�cally, programs and

hardware.

It is stressed that it is important to be clear about which level is being addressed in attempting

to solve or understand a particular problem. Marr illustrates this by noting that the e�ect

of an after-image (induced by staring at a light bulb) is a physical e�ect, while the mental

confusion provoked by the well known Necker cube illusion (see Figure 9.1) would appear to

be at a di�erent theoretical level entirely.

Figure 9.1: The Necker cube, and two possible interpretations.

The point is then made that the lynch-pin of success is addressing the theory rather

than algorithms or implementation { any number of edge detectors may be developed, each

one speci�c to particular problems, but we would be no nearer any general understanding

of how edge detection should or might be achieved. Marr remarks that the complexity of

the vision task dictates a sequence of steps re�ning descriptions of the geometry of visible

surfaces. Having derived some such description, it is then necessary to remove the dependence

on the vantage point and to transform the description into an object centered one. The
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requirement, then, is to move from pixels to surface delineation, then to surface characteristic

description (orientation), then to a full 3D description. These transformations are e�ected

by moving from the 2D image to a primal sketch then to a 2.5D sketch, and thence to

a full 3D representation.

The primal sketch

The primal sketch aims to capture, in as general a way as possible, the signi�cant intensity

changes in an image. Hitherto, such changes have been referred to as `edges', but Marr

makes the observation that this word implies a physical meaning that cannot at this stage

be inferred. The �rst stage is to locate these changes at a range of scales (see Section 4.3.4)

{ informally, a range of blurring �lters are passed across the image, after which second-order

zero crossings (see Section 4.3.2) are located for each scale of blur [Marr and Hildreth 80].

The blurring recommended is a standard Gaussian �lter (see equation (4.51)), while the zero

crossings are located with a Laplacian operator (see equation (4.38)). The various blurring

�lters have the e�ect of isolating features of particular scales; then zero crossing evidence in

the same locality at many scales provides strong evidence of a genuine physical feature in the

scene.

To complete the primal sketch, these zero crossings are grouped, according to their lo-

cation and orientations, to provide information about tokens in the image (edges, bars and

blobs) that may help provide later information about (3D) orientation of scene surfaces. The

grouping phase, paying attention to the evidence from various scales, extracts tokens that

are likely to represent surfaces in the real world.

It is of interest to note that there is strong evidence for the existence of the various

components used to build the primal sketch in the human visual system { we too engage

in detection of features at various scales, the location of sharp intensity changes and their

subsequent grouping into tokens.

The 2.5D sketch

The 2.5D sketch reconstructs the relative distances from the viewer of surfaces detected in the

scene, and may be called a depth map. Observe that the output of this phase uses as input

features detected in the preceding one, but that in itself it does not give us a 3D reconstruction.

In this sense it is midway between 2D and 3D representations, and in particular, nothing can

be said about the `other side' of any objects in view. Instead, it may be the derivation of

a surface normal associated with each likely surface detected in the primal sketch, and there

may be an implicit improvement in the quality of this information.

There are various routes to the 2.5D sketch, but their common thread is the continuation

of the bottom-up approach in that they do not exploit any knowledge about scene contents,

but rather employ additional clues such as knowledge about the nature of lighting or motion

e�ects, and are thus generally applicable and not domain-speci�c. The main approaches are

known as `Shape from X' techniques, and are described in Section 10.1. At the conclusion

of this phase, the representation is still in viewer-centered co-ordinates.
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The 3D representation

At this stage the Marr paradigm overlaps with top-down, model-based approaches. It is

required to take the evidence derived so far and identify objects within it. This can only

be achieved with some knowledge about what `objects' are, and, consequently, some means

of describing them. The important point is that this is a transition to an object centered

co-ordinate system, allowing object descriptions to be viewer independent.

This is the most di�cult phase and successful implementation is remote, especially com-

pared to the success seen with the derivation of the primal and 2.5D sketches { specifying

what is required, however, has been very successful in guiding computer vision research since

the paradigm was formulated. Unlike earlier stages, there is little physiological guidance that

can be used to design algorithms since this level of human vision is not well understood.

Marr observes that the target co-ordinate system(s) should be modular in the sense that each

`object' should be treated di�erently, rather than employing one global co-ordinate system

(usually viewer centered). This prevents having to consider the orientation of model compo-

nents with respect to the whole. It is further observed that a set of volumetric primitives is

likely to be of value in representing models (in contrast to surface-based descriptions). Rep-

resentations based on an object's `natural' axes, derived from symmetries, or the orientation

of stick features, are likely to be of greater use.

The Marr paradigm advocates a set of relatively independent modules; the low-level

modules aim to recover a meaningful description of the input intensity image, the middle-

level modules use di�erent cues such as intensity changes, contours, texture, motion to recover

shape or location in space. It was shown later [Bertero et al. 88, Aloimonos and Rosenfeld 94]

that most low-level and middle-level tasks are ill-posed, with no unique solution; one popular

way developed in the eighties to make the task well-posed is regularization [Tichonov and

Arsenin 77, Poggio et al. 85]. A constraint requiring continuity and smoothness of the solution

is often added.

9.1.2 Other vision paradigms: Active and purposive vision

When consistent geometric information has to be explicitly modeled (as for manipulation

of the object), an object-centered co-ordinate system seems to be appropriate. It is not

certain that Marr's attempt to create object-centered co-ordinates is con�rmed in biological

vision; for example, Koenderink shows that the global human visual space is viewer-centered

and non-Euclidean [Koenderink 90]. For small objects, the existence of an object-centered

reference frame has not been con�rmed in psychological studies.

There are currently two schools trying to explain the vision mechanism:

� The �rst and older one tries to use explicit metric information in the early stages of

the visual task (lines, curvatures, normals, etc.). Geometry is typically extracted in

a bottom-up fashion without any information about the purpose of this representation.

The output is a geometric model.

� The second and younger school does not extract metric (geometric) information from

visual data until needed for a speci�c task. Data are collected in a systematic way to

ensure all the object's features are present in the data, but may remain uninterpreted
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until a speci�c task is involved. A database or collection of intrinsic images (or views)

is the model.

Many traditional computer vision systems and theories capture data with cameras with �xed

characteristics. The same holds for traditional theories, e.g. Marr's observer is static. Some

researchers advocate active perception [Bajcsy 88, Landy et al. 96] and purposive vi-

sion [Aloimonos 93]: In an active vision system, the characteristics of the data acquisition are

dynamically controlled by the scene interpretation { many visual tasks tend to be simpler if

the observer is active and controls its visual sensors. Controlled eye (or camera) movement

is an example, where if there are not enough data to interpret the scene the camera can look

at it from another viewpoint. In other words, active vision is intelligent data acquisition

controlled by the measured, partially interpreted scene parameters and their errors from the

scene. Active vision is an area of much current research.

The active approach can make most ill-posed vision tasks tractable. To provide an

overview, we summarize in tabular form [Aloimonos and Rosenfeld 94] how an active ob-

server can change ill-posed tasks to well-posed { see Table 9.1.

Task Passive observer Active observer

Shape from shading Ill-posed. Regularization
helps but a unique solution
is not guaranteed due to
non-linearities.

Well-posed. Stable. Unique
solution. Linear equations.

Shape from contour Ill-posed. Regularization
solution not formulated yet.
Solution exists only for very
special cases.

Well-posed. Unique solution
for monocular or binocular
observer.

Shape from texture Ill-posed. Assumptions
about texture needed.

Well-posed without
assumptions.

Structure from motion Well-posed but unstable. Well-posed and stable.
Quadratic constraints.
simple solution.

Table 9.1: Active vision makes vision tasks well-posed.

It has been generally accepted in the vision community that accurate shape recovery

from intensity images is di�cult. The Marr paradigm is a nice theoretic framework, but

unfortunately does not lead to successful vision applications performing, e.g. recognition and

navigation tasks.

There is no established theory that provides a mathematical (computational) model ex-

plaining the `understanding' aspects of human vision; a recent account of the topic is [Ullman

96]. Two recent developments towards new vision theory are:

� Qualitative vision, which looks for a qualitative description of objects or scenes [Aloi-

monos 94]. The motivation is not to represent geometry that is not needed for qual-

itative (non-geometric) tasks or decisions. Further, qualitative information is more

invariant to various unwanted transformations (e.g. slightly di�ering viewpoints) or
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noise than quantitative ones. Qualitativeness (or invariance) enables interpretation of

observed events at several levels of complexity. Note that the human eye does not give

extremely precise measurements either; a vision algorithm should look for qualities in

images, e.g. convex and concave surface patches in range data [Besl and Jain 88].

� The purposive vision paradigm, which may help to come up with simpler solutions [Aloi-

monos 92]. The key question is to identify the goal of the task, the motivation being

to ease the task by making explicit just that piece of information that is needed. Col-

lision avoidance for autonomous vehicle navigation is an example where precise shape

description is not needed. The approach may be heterogeneous and a qualitative answer

may be su�cient in some cases. The paradigm does not yet have a solid theoretical

basis, but the study of biological vision is a rich source of inspiration. This shift of

research attention resulted in many successful vision applications where no precise ge-

ometric description is necessary. Examples are collision avoidance, autonomous vehicle

navigation, object tracking, etc. [Howarth 94, Buxton and Howarth 95, Fernyhough 97].

There are other vision tasks that need complete geometric 3D models, for example, to create

a 3D CAD model from a real object, say a clay model created by a human designer. Other

applications are in virtual reality systems where interaction among real and virtual objects

is needed. Some object recognition tasks use full 3D models as well.

9.2 Geometry for 3D vision

9.2.1 Basics of projective geometry

The basic sensor that provides computer vision with information about the surrounding 3D

world is a television camera. Here, stressing the geometric aspect, we will explain how to use

2D image information for automated measurement of the 3D world, where measurements of

3D co-ordinates of points or distances from 2D images are of importance. We require to study

perspective projection (called also central projection), which describes image formation

by a pinhole camera or a thin lens. Parallel lines in the world do not remain parallel in a

perspective image { consider, for example, a view along a railway or into a long corridor.

Figure 9.2 illustrates this, where also some commonly used terms are introduced.

We begin with a concise introduction to basic notation and the de�nitions of projective

space [Semple and Kneebone 63, Faugeras 93, Mohr 93]. Consider (n+ 1) dimensional space

without its origin Rn+1 � f(0; : : : ; 0)g, and de�ne an equivalence relation

[x1; : : : ; xn+1]
T � [x01; : : : ; x

0

n+1]
T i�

9� 6= 0 : [x1; : : : ; xn+1]
T = � [x01; : : : ; x

0

n+1]
T (9.1)

The projective space Pn is the quotient space of this equivalence relation. Points in the

projective space are expressed in homogeneous (also projective) co-ordinates, which we will

denote in bold with a tilde, e.g. ~x. Such points are often shown with the number one in the

rightmost position, e.g. [x01; : : : ; x
0

n; 1]
T . This point is equivalent to any point that di�ers only

by nonzero scaling.
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Figure 9.2: Perspective projection of parallel lines.

We are more accustomed to n-dimensional Euclidean space Rn. The one-to-one mapping

from the Rn into Pn is given by

[x1; : : : ; xn]
T ! [x1; : : : ; xn; 1]

T (9.2)

Only the points [x1; : : : ; xn; 0]
T do not have an Euclidean counterpart. It is easy to demon-

strate that they represent points at in�nity in a particular direction. Consider [x1; : : : ; xn; 0]
T

as a limiting case of [x1; : : : ; xn; �]
T that is projectively equivalent to [x1=�; : : : ; xn=�; 1]

T ,

and assume that �! 0. This corresponds to a point in Rn going to in�nity in the direction

of the radius vector [x1=�; : : :; xn=�] 2 R
n.

A colineation, or projective transformation, is any mapping Pn ! Pn that is de�ned

by a regular (n + 1) � (n+ 1) matrix A, ~y = A ~x. Note that the matrix A is de�ned up to

a scale factor. Co-lineations map hyperplanes to hyperplanes; a special case is the mapping

of lines to lines that is often used in computer vision.

9.2.2 The single perspective camera

Consider the case of one camera with a thin lens. This pinhole model is the simplest approxi-

mation that is suitable for many computer vision applications. The pinhole camera performs

perspective projection. The geometry of the device is depicted in Figure 9.3; the plane on

the bottom is an image plane � to which the real world projects, and the vertical dotted

line is the optical axis. The lens is positioned perpendicularly to the optical axis at the

focal point C (also called the optical center). The focal length f (sometimes called the

principal axis distance [Mohr 93]) is a parameter of the lens.

The projection is performed by an optical ray (also a light beam) reected from a scene

point X (top left in Figure 9.3) or originated from a light source. The optical ray passes

through the optical center C and hits the image plane at the point U.

For further explanation, we need to de�ne four co-ordinate systems:

1. The world Euclidean co-ordinate system (subscript w) has origin at the point Ow. Points

X, U are expressed in the world co-ordinate system.
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Figure 9.3: The geometry of a linear perspective camera.

2. The camera Euclidean co-ordinate system (subscript c) has the focal point C � Oc as

its origin. The co-ordinate axis Zc is aligned with the optical axis and points away from

the image plane.

There is a unique relation between world and camera co-ordinate systems. We can align

the world to camera co-ordinates by performing a Euclidean transformation consisting

of a translation t and a rotation R.

3. The image Euclidean co-ordinate system (subscript i) has axes aligned with the camera

co-ordinate system, with Xi, Yi lying in the image plane.

4. The image a�ne co-ordinate system (subscript a) has co-ordinate axes u, v, w, and

origin Oi coincident with the origin of the image Euclidean co-ordinate system. The

axes w, v are aligned with the axes Zi, Yi, but the axis umay have a di�erent orientation

to the axis Xi.

The reason for introducing these co-ordinates is the fact that in general pixels need not

be perpendicular, and axes can be scaled di�erently. The a�ne co-ordinate system is

induced by the arrangement of the retina.

A camera performs a linear transformation from the 3D projective space P3 to the 2D pro-

jective space P2.

A scene point X is expressed in the world Euclidean co-ordinate system as a 3 � 1 vector.

To express the same point in the camera Euclidean co-ordinate system, i.e. Xc, we have to
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translate it by subtracting vector t and rotate it as speci�ed by the matrix R.

Xc =

2
64 xc
yc
zc

3
75 = R (Xw � t) (9.3)

The point Xc is projected to the image plane � as point Uc. The x and y co-ordinates of

f

f

X

-    x

Z

z

x

z

c

c

c
c

c

c

Figure 9.4: Calculation of the co-ordinates of the projected point.

the projected point can be derived from the similar triangles illustrated in Figure 9.4

Uc =
h

�fxc
zc

; �fyc
zc

; �f
iT

(9.4)

It remains to derive where the projected point Uc is positioned in the image a�ne co-

ordinate system, i.e. to determine the co-ordinates which the real camera actually delivers.

The image a�ne co-ordinate system, with origin at the top left corner of the image,

represents a shear and rescaling (often called the aspect ratio) of the image Euclidean co-

ordinate system. The principal pointU0 { sometimes called the center of the image in camera

calibration procedures { is the intersection of the optical axis with the image plane �. The

principal point U0 is expressed in the image a�ne co-ordinate system as U0a = [u0; v0; 0]
T .

The projected point can be represented in the 2D image plane � in homogeneous co-

ordinates as ~u = [U; V;W ]T , and its 2D Euclidean counterpart is u = [u; v]T = [ U
W
; V
W
]T .

Homogeneous co-ordinates allow us to express the a�ne transformation as a multiplication

by a single 3 � 3 matrix where unknowns a, b, c describe the shear together with scaling

along co-ordinate axes, and u0 and v0 give the a�ne co-ordinates of the principal point in

the image.

~u =

2
64 U

V

W

3
75 =

2
64 a b �u0

0 c �v0
0 0 1

3
75
2
664

�fxc
zc

�fyc
zc

1

3
775 =

2
64 �fa �fb �u0

0 �fc �v0
0 0 1

3
75
2
64

xc
zc
yc
zc

1

3
75 (9.5)



9.2. GEOMETRY FOR 3D VISION 451

We aim to collect all constants in this matrix, sometimes called the camera calibration

matrix K. Since homogeneous co-ordinates are in use, the equation can be multiplied by

any nonzero constant; thus we multiply by zc to remove it, and can rewrite

zc ~u = zc

2
64 �fa �fb �u0

0 �fc �v0
0 0 1

3
75
2
64

xc
zc
yc
zc

1

3
75 =

2
64 �fa �fb �u0

0 �fc �v0
0 0 1

3
75
2
64 xc
yc
zc

3
75 =

=

2
64 �fa �fb �u0

0 �fc �v0
0 0 1

3
75 R (Xw � t) = KR (Xw � t) (9.6)

The extrinsic parameters of the camera depend on the orientation of the camera Euclidean

co-ordinates with respect to the world Euclidean co-ordinate system (see Figure 9.3). This

relation is given in equation (9.6) by matrices R and t. The rotation matrix R expresses

three elementary rotations of the co-ordinate axes { rotations along the axes x, y, and z

are termed pan, tilt, and roll, respectively. The translation vector t gives three elements

of the translation of the origin of the world co-ordinate system with respect to the camera

co-ordinate system. Thus there are six extrinsic camera parameters; three rotations and three

translations.

The camera calibration matrix K is upper triangular as can be seen from equation (9.6).

The coe�cients of this matrix are called intrinsic parameters of the camera, and describe

the speci�c camera independent on its position and orientation in space. If the intrinsic pa-

rameters are known, a metric measurement can be performed from images. Assume momen-

tarily the simple case in which the world co-ordinates coincide with the camera co-ordinates,

meaning that Xw = Xc. Then equation (9.6) simpli�es to

zc ~u = zc

2
64 U
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W

3
75 =

2
64 �fa �fb �u0

0 �fc �v0
0 0 1

3
75
2
64 xc
yc
zc

3
75 (9.7)

We can write two separate equations for u and v

u = U
W

= � fa xc
zc

� fb yc
zc
� u0 = �u

xc
zc

+ �shear
yc
zc

� u0
v = U

W
= � fc yc

zc
� v0 = �v

yc
zc

� v0 :
(9.8)

where we make the substitutions �u = �fa, �shear = �fb, and �v = �fc. Thus we have

�ve intrinsic parameters, all given in pixels. The formulae also give the interpretation of

the intrinsic parameters: �u represents scaling in the u axis, measuring f in pixels along

the u axis, and �v similarly speci�es f in pixels along the v-axis. �shear measures in pixels

the degree of slant of the co-ordinate axes in the camera image plane, giving in the v-axis

direction how far the focal length f coincident with u-axis is slanted from the Yi-axis.

This completes the description of the extrinsic and intrinsic camera parameters, and we

can return to the general case given by the equation (9.6). If we express the scene point in

homogeneous co-ordinates ~Xw = [Xw; 1]
T we can write the perspective projection using a

single 3 � 4 matrix. The leftmost 3 � 3 submatrix describes a rotation and the rightmost
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column a translation The delimiter j denotes that the matrix is composed of two submatrices.

~u =

2
64 U

V

W

3
75 = [KR j �K R t]

"
Xw

1

#
=M

"
Xw

1

#
=M ~Xw (9.9)

where ~X is the 3D scene point in homogeneous co-ordinates. The matrix M is called the

projective matrix (or camera matrix). It can be seen that the camera performs a lin-

ear projective transformation from the 3D projective space P3 to the 2D projective plane

P2; notice that the introduction of projective space and homogeneous co-ordinates made the

expressions simpler. Instead of the nonlinear equation (9.4), we obtained the linear equa-

tion (9.9).

The 3� 3 submatrix of the projective matrix M consisting of the three leftmost columns

is regular, i.e. its determinant is non-zero. The scene point ~Xw is expressed up to scale in

homogeneous co-ordinates and thus all �M are equivalent for � 6= 0.

Sometimes the simplest form of the projection matrix M is used.

M =

2
64 1 0 0 0

0 1 0 0

0 0 1 0

3
75 (9.10)

This special matrix corresponds to the normalized camera co-ordinate system [Faugeras 93],

in which the speci�c parameters of the camera can be ignored. This is useful when the

properties of stereo and motion are to be explained in a simple way and independently of the

speci�c camera.

9.2.3 An overview of single camera calibration

The calibration of one camera is a procedure that allows us to set numeric values in the

camera calibration matrix K (equation (9.6)) or the projective matrix M (equation (9.9)).

The �rst case is applicable when we want the intrinsic camera parameters only. If the camera

is calibrated, and a point in the image is known, the corresponding line (ray) in camera-

centered space is uniquely determined. The second case covers both intrinsic and extrinsic

parameters.

We �rst consider basic approaches to the calibration of a single camera to give an overview

of the state of the art of this developing branch of computer vision. Then we will consider

some basic techniques in more detail. There are two main cases:

1. Known scene: Here, a set of n non-degenerate (not co-planar) points lies in the 3D

world, and the corresponding 2D image points are known (see Figure 9.51). Each

correspondence between a 3D scene and 2D image point provides one equation

�j ~uj =M

"
Xj

1

#
(9.11)

1Here and in some further �gures the image plane is positioned in front of the focal point { this di�ers from

earlier �gures where the image plane was behind the focal point. Such a presentation makes �gures easier to
comprehend and should not cause any confusion.
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X
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C

Figure 9.5: Camera calibration from a known scene. A minimum of six corresponding pairs

of scene points Xj and image points uj are needed to calibrate the camera.

21

X

tK R, K

Figure 9.6: Camera calibration from an unknown scene. At least two views are needed. It is

assumed that the intrinsic parameters of the camera do not change, so K1 = K2.

The solution [Faugeras 93] solves an over-determined system of linear equations. The

main disadvantage is that the scene must be known, for which special calibration objects

are often used.

2. Unknown scene: If the scene is `unknown', more views are needed to calibrate the cam-

era (see Figure 9.6). The intrinsic camera parameters will not change for di�erent views,

and the correspondence between image points in di�erent views must be established.

There are two cases:

(a) Known camera motion: Three cases can be distinguished according to the known

motion constraint:

i. Both rotation and translation: This general case of arbitrary known motion

from one view to another has been solved [Horaud et al. 95].

ii. Pure rotation: If camera motion is restricted to pure rotation, the solution is

given by [Hartley 94].

iii. Pure translation: The linear solution (pure translation) is due to [Pajdla and

Hlav�a�c 95].

(b) Unknown camera motion: This is the most general case when there is no a priori

knowledge about motion, sometimes called camera self-calibration. At least three
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views are needed and the solution is nonlinear [Maybank and Faugeras 92]. Cali-

bration from an unknown scene is still considered numerically hard, and will not

be considered here (although see, for example, [Butter�eld 97] for a consideration

of this problem).

9.2.4 Calibration of one camera from a known scene

Considering the case of camera calibration from a known scene in more detail, note this is typ-

ically a two stage process. Firstly, the projection matrixM is estimated from the co-ordinates

of points with known scene positions. Secondly, the extrinsic and intrinsic parameters are

estimated from M . The second step is not always needed { the case of stereo vision is an

example.

To obtain M , observe that each known scene point X = [x; y; z]T and its corresponding

2D image point [u; v]T give one equation (9.11) { we seek the numerical values mij in the

3� 4 projection matrix M . Expanding from Equation (9.11),

2
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2
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3
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2
64 m11x + m12y + m13z + m14

m21x + m22y + m23z + m24

m31x + m32y + m33z + m34

3
75 (9.13)

u(m31x+m32y +m33z +m34) = m11x+m12y +m13z +m14

v(m31x+m32y +m33z +m34) = m21x+m22y +m23z +m24 (9.14)

Thus we obtain two linear equations, each in 12 unknowns m11; : : : ; m34, for each known

corresponding scene and image point. If n such points are available, we can write the equations

9.14 as a 2n� 12 matrix,

2
64
x y z 1 0 0 0 0 �ux �uy �uz �u

0 0 0 0 x y z 1 �vx �vy �vz �v
...

3
75
2
66664
m11

m12
...

m34

3
77775 = 0 (9.15)

The matrix M actually has only 11 unknown parameters due to the unknown scaling factor,

since homogeneous co-ordinates were used [Faugeras 93]. To generate a solution, at least six

known corresponding scene and image points are required. Typically, more points are used

and the over-determined equation (9.15) is solved using a robust least squares method to

correct for noise in measurements. The result of the calculation is the projective matrix M .

To separate the extrinsic parameters (the rotationR and translation t) from the estimated

projection matrix M , recall that the projection matrix can be written as;

M = [KR j �KR t] = [A jb] (9.16)
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The 3� 3 submatrix is denoted as A, and the rightmost column as b.

Determining the translation vector is easy; we substituted A = KR in equation (9.16),

and so can write t = �A�1b.

To determine R, note that the calibration matrix is upper triangular and the rotation

matrix is orthogonal. The matrix factorization method called QR decomposition [Press et

al. 92, Golub and Loan 89] will decompose A into a product of two such matrices, and hence

recover K and R.

Alternatively, we can use Singular Value Decomposition (SVD)2. SVD is a general

tool that we shall refer to again in the solution of geometrical problems associated with 3D

vision.

So far, we have assumed that the lens performs ideal central projection, as a pinhole

camera does, but this is not the case with real lenses. A typical lens performs distortion of

several pixels which a human observer does not notice looking at a general scene. However,

when an image is used for measurements, compensation for the distortion is necessary.

When calibrating a real camera, the more realistic model of the lens includes two distortion

components. First, radial distortion bends the ray more or less than in the ideal case, and

second decentering displaces the principal point from the optical axis.

Recall the �ve intrinsic camera parameters introduced in equation (9.8). Here, we shall

replace the focal length f of the lens by a parameter called the camera constant. Ideally,

this is equal to the focal length, but in reality this is true only when the lens is focused

at in�nity; otherwise, the camera constant is slightly less than the focal length. Similarly,

the co-ordinates of the principal point can change slightly from the ideal intersection of the

optical axis with the image plane.

The idea behind calibration of intrinsic parameters is to observe a known calibration image

with some regular pattern, for example blobs or lines covering the whole image. Distortions

observed in the pattern allow estimation of the parameters.

Both radial distortion and decentering can in most cases be treated as rotationally

symmetric; they are often modeled as polynomials. Let u, v denote the correct image co-

ordinates, and ~u, ~v denote the measured uncorrected image co-ordinates that come from the

actual pixel co-ordinates x, y and the estimate of the position of the principal point û0, v̂0.

~u = x� û0

2SVD is a powerful linear algebra technique for solving linear equations in the least square sense, and works

even for singular matrices or matrices numerically close to singular. The basic information needed to use SVD
can be found in [Press et al. 92], and a rigorous mathematical treatment is given in [Golub and Loan 89].

Most software packages for numerical calculations such as MATLAB (trade mark of MathWorks Inc.) contain

SVD.

SVD proceeds by noting that any m � n matrix A, m � n can be decomposed into a product of three

matrices

A = UDV
T (9.17)

in which U has orthonormal columns, D is non-negative diagonal, and V T has orthonormal rows. SVD can

be used to �nd a solution of a set of linear equations corresponding to a singular matrix that has no exact

solution { it locates the closest possible solution in a least square sense.
Sometimes it is required to �nd the `closest' singular matrix to the original matrix A { this decreases the

rank from n to n�1. This is done by replacing the smallest diagonal element of D by zero { this new matrix is

closest to the old one with respect to the Frobenius norm (which is calculated as a sum of the squared values
of all matrix elements).
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~v = y � v̂0 (9.18)

The correct image co-ordinates u, v are obtained if compensations for errors �u, �v are added

to the measured uncorrected image co-ordinates ~u, ~v.

u = ~u+ �u

v = ~v + �v (9.19)

Compensations for errors are often modeled as even power polynomials to secure rotational

BARRELPINCUSHION

Figure 9.7: Radial distortion of an o�-the-shelf lens.

symmetry. Typically, polynomial degrees up to six are considered;

�u = (~u� up)(�1r
2 + �2r

4 + �3r
6)

�v = (~v � vp)(�1r
2 + �2r

4 + �3r
6) (9.20)

where up, vp is the correction to the position of the principal point. r2 is the square of the

radial distance from the center of the image.

r2 = (~u� up)
2 + (~u� up)

2 (9.21)

Recall that û0, v̂0 were used in equation (9.18). up, vp are corrections to û0, v̂0 that can be

applied after calibration to get the proper position of the principal point;

u0 = û0 + up

v0 = v̂0 + vp (9.22)

We can visualize typical lens radial distortion for the simple second order model as a special

case of equation (9.20), i.e. no decentering is assumed and a second order approximation is

considered

u = ~u(1� �1(~u
2 + ~v2))

v = ~v(1� �1(~u
2 + ~v2)) (9.23)

The original image was a square pattern, and the distorted images are shown in Figure 9.7.

On the left is pincushion like distortion (a minus sign in equation (9.23)), and the the right

part depicts barrel like distortion corresponding to a plus sign.

There are more complicated lens models that cover tangential distortions that model such

e�ects as lens decentering [Jain et al. 95] which we shall not describe in detail here. The

reader can consult the original paper [Tsai 87] or the treatment in [Jain et al. 95]. An

alternative procedure was proposed in [Prescott and McLean 97].
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9.2.5 Two cameras, stereopsis

To the uneducated observer, the most obvious di�erence between the human visual system

and most of the material presented thus far in this book is that we have two eyes and therefore

(a priori, at any rate) twice as much input as a single image. From Victorian times, the use

of two slightly di�erent views to provide an illusion of 3D has been common, culminating

in the `3D movies' of the 1950's. Conversely, we might hope that a 3D scene, if presenting

two di�erent views to two eyes, might permit the recapture of depth information when the

information therein is combined with some knowledge of the sensor geometry (eye locations).

Stereo vision has enormous importance to us { humans. It has provoked a great deal of

research into vision systems with two inputs that exploit the knowledge of their own relative

geometry to derive depth information from the two views they receive.

X

e e’
C

C’

l’

u’

l
u

left image right image

Figure 9.8: Epipolar geometry in stereopsis.

Calibration of one camera and knowledge of the co-ordinates of one image point allows

us to determine a ray in space uniquely. If two calibrated cameras observe the same scene

point X, its 3D co-ordinates can be computed as the intersection of two such rays. This is

the basic principle of stereo vision that typically consists of three steps:

� Camera calibration;

� Establishing point correspondences between pairs of points from the left and the right

images;

� Reconstruction of 3D co-ordinates of the points in the scene.

The geometry of the system with two cameras is given in Figure 9.8. The line connecting

optical centers C and C0 is called the baseline. Any scene point X observed by the two

cameras and the two corresponding rays from optical centers C, C0 de�ne an epipolar

plane. This plane intersects the image planes in the epipolar lines l, l0. When the scene

point X moves in space, all epipolar lines pass through epipoles e, e0 { the epipoles are the

intersections of the baseline with the respective image planes.



458 CHAPTER 9. 3D VISION, GEOMETRY AND RADIOMETRY

Let u, u0 be projections of the scene point X in the left and right images respectively.

The ray CX represents all possible positions of the point X for the left image, and is also

projected into the epipolar line l0 in the right image. The point u0 in the right image that

corresponds to the projected point u in the left image must thus lie on the epipolar line l0

in the right image. This geometry provides a strong epipolar constraint that reduces the

dimensionality of the search space for a correspondence between u and u0 in the right image

from 2D to 1D.

e

e’

C

C’

Figure 9.9: The canonical stereo con�guration where the epipolar lines are parallel in the

image, and epipoles move to in�nity.

A special arrangement of the stereo camera rig, called the canonical con�guration is

often used. The baseline is aligned to the horizontal co-ordinate axis, the optical axes of the

cameras are parallel, the epipoles move to in�nity, and the epipolar lines in the image planes

are parallel (see Figure 9.9). For this con�guration, the computation is slightly simpler; it

is often used when stereo correspondence is to be determined by a human operator who

will �nd matching points linewise to be easier (this non-automatic approach is still used in

photogrammetry and remote sensing). A similar conclusion holds for computer programs too;

it is easier to move along horizontal lines (rasters) than along general lines. The geometric

transformation that changes a general camera con�guration with nonparallel epipolar lines

to the canonical one is called image recti�cation. Formulae for image recti�cation will be

given in Section 9.2.9.

On the other hand, some authors [Mohr 93] report practical problems with the canonical

stereo con�guration, which adds unnecessary technical constraints to the vision hardware. If

high precision of reconstruction is an issue, it is better to use general stereo geometry since

recti�cation induces resampling that causes loss of resolution.

Considering �rstly an easy canonical con�guration, we shall see how to recover depth. The

optical axes are parallel, which leads to the notion of disparity that is often used in stereo

literature. A simple diagram demonstrates how we proceed. In Figure 9.10, which is purely

schematic, we have a bird's eye view of two cameras with parallel optical axes separated by

a distance 2h. The images they provide, together with one point P with co-ordinates (x; y; z)

in the scene, showing this point's projection onto left (Pl) and right (Pr) images. The co-

ordinates in Figure 9.10 have the z axis representing distance from the cameras (at which

z = 0) and the x axis representing `horizontal' distance (the y co-ordinate, into the page, does

not therefore appear). x = 0 will be the position midway between the cameras; each image

will have a local co-ordinate system (xl on the left, xr on the right) which for the sake of

convenience we measure from the center of the respective images; that is, a simple translation

from the global x co-ordinate. Without fear of confusion Pl will be used simultaneously to
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Figure 9.10: Elementary stereo geometry in canonical con�guration.

represent the position of the projection of P onto the left image, and its xl co-ordinate { its

distance from the center of the left image (and similarly for Pr).

It is clear that there is a disparity between xl and xr as a result of the di�erent camera

positions (that is, jPl�Pr j > 0); we can use elementary geometry to deduce the z co-ordinate

of P .

Note that Pl, Cl and Cl, P are the hypotenuses of similar right-angled triangles. Noting

further that h and f are (positive) numbers, z is a positive co-ordinate and x, Pl, Pr are

co-ordinates that may be positive or negative, we can then write:

Pl

f
= �

h+ x

z
(9.24)

and similarly from the right hand side of Figure 9.10

Pr

f
=
h� x

z
(9.25)

Eliminating x from these equations gives

z (Pr � Pl) = 2hf (9.26)

and hence

z =
2hf

Pr � Pl
(9.27)

Notice in this equation that Pr � Pl is the detected disparity in the observations of P . If

Pr � Pl = 0 then z = 1. Zero disparity indicates the point is (e�ectively) at an in�nite

distance from the viewer.
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9.2.6 The geometry of two cameras; the fundamental matrix

e e’ C’

l’

u’

l
u

X
X’

C

K K’

t

Rleft image right image

Figure 9.11: Stereo with nonparallel axes.

We proceed to derive a mathematical description for the general stereo rig with nonparallel

optical axes, see Figure 9.11; the symbol ' will be used to denote projection up to unknown

scale. The co-ordinate system of the left view can be transformed to the right view by

a translation t from the left camera center C to the right camera center C0, and the co-

ordinate systems can then be transformed by the rotation R. We shall use a co-ordinate

system with the origin in the left camera center C. If K, K0 are the calibration matrices of

the left and right cameras, we can apply equation (9.9) to get the left projection u and the

right projection u0 of the scene point X

u ' [Kj0]

"
X

1

#
= K X;

u0 '
�
K0R j �K0R t

� " X

1

#
= K0(RX�R t) = K0X0 (9.28)

We know that vectors X, X0 and t are coplanar. Distinguish co-ordinates of the left and

right cameras by the subscript L, R, respectively { the co-ordinate vector X0 is expressed

with respect to the right camera co-ordinate system and therefore it is denoted X0

R. We shall

express the epipolar constraint using the vector product �, and will do this by expressing the

free vector X0

R with respect to the left camera. The co-ordinate rotation can be written as

X0

R = RX0

L, and hence X0

L = R�1X0

R. The equation expressing coplanarity can be written

as

XT
L(t�X0

L) = 0 (9.29)

Substituting from equations XL = K�1u, X0

R = (K0)�1u0, and X0

L = R�1(K0)�1u0 we get

(K�1u)T (t �R�1 (K0)�1u0) = 0 (9.30)

This equation (9.30) is homogeneous with respect to t, so the scale is not determined. Abso-

lute scale cannot be recovered if a `yardstick', i.e. the distance between two points known in

advance, is not seen in the scene.
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It is helpful to replace the vector product by matrix multiplication. The translation vector

is t = [tx; ty; tz]
T , and a skew symmetric3 matrix S(t) can be created from it if t 6= 0.

S(t) =

2
64 0 �tz ty

tz 0 �tx
�ty tx 0

3
75 (9.31)

Recall that rank(S) is a number of the linearly independent lines in matrix S. Note that

rank(S) = 2 if and only if t 6= 0; the vector product can be replaced by the multiplication of

two matrices; for any regular matrix A, we have

t� A = S(t)A (9.32)

Thus we can rewrite equation (9.30) as

(K�1u)T (S(t)R�1 (K0)�1u0) = 0

which may be re-arranged to

uT (K�1)TS(t)R�1(K0)�1u0 = 0 (9.33)

The middle part of this equation can be concentrated into a single matrix F called the

fundamental matrix of two views.

F = (K�1)TS(t)R�1(K0)�1 (9.34)

With the substitution for F in equation (9.33) we �nally get the bilinear relation (sometimes

called Longuet-Higgins equation after the inventor [Longuet-Higgins 81] of a similar idea)

between any two views

uT F u0 = 0 (9.35)

It can be seen that the fundamental matrix F captures all information that can be recovered

from a pair of images if the correspondence problem is solved. We shall consider the properties

of the fundamental matrix further in due course.

9.2.7 Relative motion of the camera; the essential matrix

A case of practical interest is a single camera moving in space, or two cameras with known

calibration { this is known as relative motion of the camera. Knowledge of the camera

calibration matrices K, K0 allows us to normalize measurement in left and right images;

we denote the normalized measurements �u, �u0. The camera calibration matrices give the

relations

�u = K�1u; �u0 = (K0)�1u0 (9.36)

If these relations are used in equation (9.33), we get a simpli�ed version

�uT S(t)R�1 �u0 = 0 (9.37)

3S is skew symmetric if ST = �S.
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Substituting E = S(t)R�1, where E is called the essential matrix, we get

�uT E �u0 = 0 (9.38)

Again, a bilinear relation between two views in correspondence has been obtained. The

essential matrix E captures all the information about the relative motion from the �rst to

the second position of the calibrated camera. E can be estimated from image measurements.

We summarize important properties of the essential matrix.

� The essential matrix E has rank 2.

� Let t be the translational vector, and t0 = R t. Then E t0 = 0 and tTE = 0.

� SVD decomposes E as E = UDV T for a diagonal D; then

D =

2
64 k 0 0

0 k 0

0 0 0

3
75 (9.39)

Assuming that the essential matrix E has already been estimated, we might be interested

in the rotation R and translation t between these two views. We present without proof

a procedure to accomplish this [Hartley 92]. Equation (9.37) shows that the essential matrix

is a product of the matrices S(t) and R�1. As

�uT S(t)R�1 �u0 = 0 ; �u
0T RS(t) �u = 0 (9.40)

we can see also that E = RS(t). Recall that SVD provides a similar factorization of a matrix,

E = UDV T . The matrix D = diag[k; k; 0] (where diag[x; y; : : :] describes a diagonal matrix,

with diagonal x; y; : : :). Let

G =

2
64 0 1 0

�1 0 0

0 0 1

3
75 ; Z =

2
64 0 �1 0

1 0 0

0 0 0

3
75 (9.41)

The rotation matrix R can be calculated as

R = UGV T or R = UGT V T (9.42)

and the components of the translation vector can be derived from the matrix S(t), remem-

bering equation (9.31). S(t) itself can be estimated as

S(t) = V Z V T (9.43)

We consider now the properties of the fundamental matrix.

� We have seen that the rank of the essential matrix E is two. As F = (K�1)TEK0
�1

and the calibration matrices are regular, we see that the fundamental matrix F has

rank two as well.
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Figure 9.12: Epipoles e; e0 and the fundamental matrix F .

� Consider two epipoles e; e0, depicted in Figure 9.12. Then

eTF = 0 and F e0 = 0 (9.44)

� SVD of the fundamental matrix gives F = UDV T , where

D =

2
64 k1 0 0

0 k2 0

0 0 0

3
75 ; k1 6= k2 6= 0 (9.45)

9.2.8 Estimation of a fundamental matrix from image point correspon-

dences

Epipolar geometry has seven degrees of freedom [Mohr 93]: The epipoles e, e0 in the image

have two co-ordinates each (giving 4 dof), while another three come from the mapping of

any three epipolar lines in the �rst image to the second. Thus the correspondence of seven

points in left and right images enables the establishment of the fundamental matrix F using

a nonlinear algorithm [Faugeras et al. 92]. Unfortunately this computation is numerically

unstable.

If there are eight non-coplanar corresponding points available, a linear method called

the eight point algorithm can be used and if more points are at hand the estimation

might be robust to noise and mismatches. The method was originally proposed by Longuet-

Higgins [Longuet-Higgins 81] for essential matrix estimation.

The eight point algorithm was supposed to be numerically unstable, but this is not the

case if normalization (i.e. translation and scaling) of values is performed �rst [Hartley 95,

Butter�eld 97]. The algorithm is easy to implement and is fast; proper normalization is

needed in most 3D geometry algorithms to obtain numerical stability.

Recall the fundamental matrix F ,

ui
T F u0i = 0 (9.46)

An image vector in homogeneous co-ordinates can be written uT = [ui; vi; 1]. The 3 �

3 fundamental matrix F has only eight unknowns as it is only known up to scale; eight

correspondences will generate eight matrix equations;

[ui; vi; 1] F

2
64 u0i
v0i
1

3
75 = 0 (9.47)
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Rewriting the elements of the fundamental matrix as a column vector with nine elements fT

= [f11; f12; : : : ; f33], equation (9.47) can be rewritten as a system of linear equations

"
uiu

0

i uiv
0

i ui viu
0

i viv
0

i vi u0i v0i 1
...

#
2
66664
f11
f12
...

f33

3
77775 = 0 (9.48)

If the left-hand matrix in the equation (9.48) is denoted by A, we get

A f = 0 (9.49)

The matrix A has rank 8 in a perfect case without noise. With data from real image measure-

ments, an overdetermined system of linear equations is obtained, and a least-squares solution

to this set is sought. [Hartley 95]. The vector f is determined that minimizes the Frobe-

nius norm kA fk ful�lling the constraint jjf jj = 1. Principal component analysis gives the

solution, and f is the unit eigenvector of ATA corresponding to the smallest eigenvalue of A.

An appropriate algorithm for achieving this is SVD. Note that another numerically plausible

solution to the overdetermined systems of linear equations (9.49) is given in [Faugeras 93].

21 2 1

43 4 3!!

Figure 9.13: Problem with mismatches in stereo correspondence.

Estimation of the fundamental matrix can be corrupted by gross errors caused by mis-

matches in stereo correspondence, illustrated in Figure 9.13. The obvious solution to the

problem is to attempt to drop out erroneous matches. One approach uses the least median

of squares method for robust estimation instead of standard least squares;

min
f

(fT AT A f) �! min
f

(median(kA fk2)) : (9.50)

The eight point algorithm based on SVD presented above does a very similar job.

We have already seen that the fundamental matrix F should have rank 2, but a solution

of equation (9.49) will not in general give such a matrix. F should be replaced by the

matrix F̂ that minimizes the Frobenius norm of kF � F̂ k ful�lling the condition rank(A) = 2.

SVD decomposes as F=UDV T , D=diag[r; s; t], r � s � t, and the solution we seek is

F̂=U diag[r; s; 0]VT .

9.2.9 Applications of epipolar geometry in vision

Image recti�cation to ease the search for correspondences

We have seen that stereo geometry implies that corresponding points can be sought in 1D

space along epipolar lines. In general, epipolar lines in the left image are not parallel to epipo-



9.2. GEOMETRY FOR 3D VISION 465

lar lines in the right image (non-parallel optical axes). Parallel epipolar lines are preferred,

as they ease the search for correspondence, whether by computer or human eye. It is always

possible to apply image recti�cation to images captured by a stereo rig with non-parallel

optical axes; this results in a new set of images with parallel epipolar lines that are typically

horizontal.

Image recti�cation recalculates pixel co-ordinates using a linear transformation in projec-

tive space. This is illustrated in Figure 9.14, where C, C0 are optical centers. Image planes

with dashed borders show input before recti�cation, and image planes with solid borders

and parallel horizontal epipolar lines (dotted lines in recti�ed images) are the desired result.

Points in the left and right images are bilinearly related through the fundamental matrix F ,

C’

C

X

Figure 9.14: Image recti�cation to get parallel epipolar lines.

uT F u0 = 0. We seek the two 3 � 3 transformation matrices A, B that rectify co-ordinates

(denoted with � ) of points in left and right images respectively, �u = Au, �u0 = Bu0. The

fundamental matrix of the recti�ed images �F = (A�1)TFB�1 should correspond to epipoles

that moved along horizontal axes to �1 or 1 for the left and right images, respectively.

To complete this task we need to set values in the transformation matrices A and B { a

solution is given in [Ayache and Hansen 88] which we summarize here. Since the transfor-

mation is constrained the number of unknowns is reduced; image co-ordinate transformations

using matrices A, B should not change the position of optical centers, but should align two

distinct image planes into one common image plane that is parallel to the line joining C

and C0, and perpendicular to both newly recalculated optical axes. Moreover, it is desired

that the corresponding epipolar lines have the same vertical co-ordinate, as this simpli�es

calculations.

Image co-ordinates after recti�cation are

�u =

2
64 U

V

W

3
75 = A

2
64 u

v

1

3
75 ; �u0 =

2
64 U 0

V 0

W 0

3
75 = B

2
64 u0

v0

1

3
75 (9.51)

Recall the projection matrix from equation (9.12). We have two such matricesM ,M 0 for left

and right images before recti�cation. The 3� 3 submatrix on the left side of M is composed

of three rows (1� 3 vectors) that we denote as m1, m2, and m3, and similarly for the right

image, the matrix M 0 gives three vectors m0

1, m
0

2, and m
0

3. C and C0 are co-ordinates of the
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21

ui

u’i

K ? R, Kt

Figure 9.15: Ego-motion estimation.

optical centers. The transformation matrices that perform recti�cation are then;

A =

2
64 ((C � C0)� C)T

(C � C0)T

((C � C0)� (C � C0))T

3
75 [m2 �m3; m3 �m1; m1 �m2] (9.52)

B =

2
64 ((C � C0)� C0)T

(C � C0)T

((C � C0)� (C � C0))T

3
75 [m0

2 �m0

3; m
0

3 �m0

1; m
0

1 �m0

2] (9.53)

This procedure is computationally inexpensive. Only two 3� 3 transformation matrices need

be stored, and only 6 multiplications, 6 additions and 2 divisions are needed per recti�ed

pixel. Notice that the recti�cation is a linear transformation in projective space that preserves

straight lines. If an image consists of linear segments then it is su�cient to rectify end points

of these segments. The procedure can be easily generalized to three and more images [Ayache

and Hansen 88].

Ego-motion estimation from calibrated camera measurements

Camera ego-motion estimation of a calibrated camera considers the case of unknown move-

ment of the camera, where rotation R and translation t need to be learned from point

correspondences between two images.

Suppose a point ui from the �rst image corresponds to the point u0i. The following

algorithm [Hartley 92] allows the computation of an unknown rotation R and translation t

of the camera.

Algorithm 9.1: Ego-motion estimation

1. Find correspondences between points ui and u0i; these will be used to estimate a fun-

damental matrix.

2. The data should be normalized { this helps to minimize numerical errors.

�u = H1 u; �u0 = H2 u
0 (9.54)

H1 =

2
64 a1 0 c1
0 b1 d1
0 0 1

3
75 ; H2 =

2
64 a2 0 c2
0 b2 d2
0 0 1

3
75 (9.55)
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After normalization, the data should have similar order; i.e. mean(�u) = 0 and var(�u) =

[1; 1]T .

3. Compute an estimate of the fundamental matrix F̂ using the linear algorithm given in

Section 9.2.8. Numerical inaccuracies may cause the estimate not to have the property

that after SVD, D = diag(k; k; 0).

4. Compute the estimated essential matrix Ê. This is easy as calibration matrices K, K0

are known,

Ê = KT F̂ K0 (9.56)

5. Determine a rotation R and translation t from the estimated essential matrix Ê using

SVD. The translation t is given up to scale only.

Ê = UDV T ; D =

2
64 r 0 0

0 s 0

0 0 t

3
75 (9.57)

Notice that we expect three di�erent singular values due to numerical inaccuracies. We

know that the essential matrix E should have two equal singular values, and the third

must be zero. We can adjust singular values by zeroing t and averaging r and s

E = u

2
64

r+s
2 0 0

0 r+s
2 0

0 0 0

3
75V T (9.58)

This matrix E can be decomposed into rotation R and translation t in the same way

as was used in Section 9.2.7. Recall that matrices G and Z were de�ned by equa-

tions (9.41); then we can calculate

R = UGV T or UGTV T ; S(t) = V Z V T (9.59)

Notice that the translation t is obtained up to unknown scale only, which is to be expected.

As nothing was known in advance about the scene, the same images could be seen when

half-size objects are observed from half the distance.

3D similarity reconstruction from two cameras with known intrinsic calibration

3D similarity reconstruction aims to measure 3D co-ordinates of a scene point X from two

image measurements u and u0 (see Figure 9.16). We assume that the cameras are calibrated;

that is, their intrinsic calibration parameters are known and are available as calibration

matrices K and K0. The extrinsic parameters are unknown. This case di�ers from standard

stereo (full 3D Euclidean reconstruction) where the relative position of the cameras is known.

Common sense suggests that less will be measured in an unknown scene compared to the

standard stereo case; the reconstruction of the unknown scene is achieved up to a similarity.
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X

u

u’

K K’

Figure 9.16: 3D similarity reconstruction from two cameras.

The image measurements are

u ' [K j0]X ; u0 '
�
K0R j �K0Rt

�
X (9.60)

Algorithm 9.2: 3D similarity reconstruction from two cameras

1. Find correspondences between two images.

2. Compute the essential matrix E.

3. Obtain the rotation R and translation t from the essential matrix E.

4. Solve equations (9.60) to get X.

Notice that X is found up to scale only, meaning that we do not get a Euclidean reconstruc-

tion but a similarity reconstruction. A full Euclidean reconstruction (as in stereo vision) is

unavailable because the distance between the cameras is unknown in this case.

3D projective reconstruction from two uncalibrated cameras

We now consider the most general 3D reconstruction case when the point correspondence

in two uncalibrated cameras can be established, meaning that both intrinsic and extrinsic

camera calibration parameters are unknown. We shall see that a 3D projective reconstruction

can be obtained, which is practically appealing as we can learn something about the geometry

of the scene even from a video sequence where nothing is known about the conditions under

which it was captured; the camera position is unknown, and a zoom lens may be used, and

we do not know the actual focal length.

The perspective projection performed by the �rst camera is expressed using the projective

matrix M (recall equation (9.9)), which is divided into the three row vectors mT
1 , m

T
2 , m

T
3 .

Similarly for the second camera where primed symbols are used:

1st image u =

2
64 U

V

W

3
75 'M X =

2
64 mT

1

mT
2

mT
3

3
75X (9.61)
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2nd image u0 =

2
64 u0

v0

w0

3
75 'M 0 X =

2
64
m0

T
1

m0
T
2

m0
T
3

3
75X (9.62)

To eliminate the unknown scale factor, consider the ratio between the three rows in the

projection matrix M [Faugeras and Mourrain 95].

u : v : w = mT
1X :mT

2X :mT
3X

u0 : v0 : w0 = m0
T
1X :m0

T
2X :m0

T
3X (9.63)

Thus three equations hold for both the �rst and the second camera;

umT
2X = vmT

1X u0m0
T
2X = v0m0

T
1X

umT
3X = wmT

1X u0m0
T
3X = w0m0

T
1X

vmT
3X = wmT

2X v0m0
T
3X = w0m0

T
2X (9.64)

Equations (9.64) can be written in a matrix form. We present this for the �rst camera only;

a similar expression holds for the second camera.2
64 umT

2 � vmT
1

umT
3 � wmT

1

vmT
3 � wmT

2

3
75X = 0 (9.65)

If the �rst row in the matrix is multiplied by w and second row by �v and added we get

(uwmT
2 � vwmT

1 � uvmT
3 + vwmT

1 )X = (uwmT
2 � uvmT

3 )X = 0 (9.66)

Extracting the equation corresponding to the third row of the matrix in equation (9.65) we

get

(�wmT
2 + vmT

3 )X = 0 (9.67)

We see that equations (9.66) and (9.67) are linearly dependent, and the same reasoning holds

for measurements from the second image. Since only two equations are linearly independent,

we use the second and the third equations.

(umT
3 � wmT

1 )X = 0 (u0m
0T
3 � w0m0

T
1 )X = 0 (9.68)

(vmT
3 � wmT

2 )X = 0 (v0m0
T
3 � w0m0

T
2 )X = 0

This can be rewritten in matrix form;2
6664

umT
3 � wmT

1

vmT
3 � wmT

2

u0m
0T
3 � w0m0

T
1

v0m0
T
3 � w0m0

T
2

3
7775X = A X = 0 (9.69)

The matrix A has dimension 4� 4 and X is a 4� 1 vector.

We are interested in a nontrivial solution of equation (9.69), and therefore consider the

case det(A) = 0. This implies that the matrix A should have rank 3 if u and u0 are really

corresponding points in the �rst and in the second image.

There are two important cases to consider in reconstructing a 3D point from two corre-

sponding 2D points in two images:
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1. Scene reconstruction with calibrated cameras.

This is a special case (called stereopsis, 3D Euclidean reconstruction) that has been

already considered in Section 9.2.5. The current formalism concentrates all knowns

into the matrix A; the projective matrices M , M 0 and image measurements u, u0 are

known. The equation (9.69) can easily be replaced by an inverse mapping.

2. Scene reconstruction with uncalibrated cameras.

If the calibration of a stereo rig is unknown it can be shown that the reconstructed

co-ordinates ~X di�er from the correct Euclidean reconstruction by some (unknown)

projective transformation H .
~X = HX (9.70)

H is a regular 4 � 4 matrix. The transformation H ranges from Euclidean through

a�ne to the general projective case according to how much calibration knowledge is at

hand. H is the same for all scene points for one position and calibration of the camera.

Of course, the same algorithm with a di�erent scene gives a di�erent H .

u =

2
64 u

v

w

3
75 'M X =M H�1H X = ~M ~X (9.71)

u0 =

2
64 u0

v0

w0

3
75 'M 0 X =M 0 H�1 H X = ~M 0 ~X (9.72)

Notice that M X and ~M ~X give the same measurement. The measurements ~X di�ers

from the correct Euclidean measurement X by a projective transformation H .

The projective transformation is determined by at least 5 corresponding points. The

projective matrix ~M should be created in such a way that it di�ers from the matrix M

only projectively. See [Faugeras 93, Faugeras and Mourrain 95] for more details.

9.2.10 Three and more cameras

In this section we will consider the case of three or more cameras observing the same scene,

assuming mutually corresponding points can be found in all views. We have already seen that

views of two cameras are described using a bilinear relation expressed by the fundamental

matrix, and it is natural to ask what more can be learned if three or more views are available.

Three cameras looking at the same point are sketched in Figure 9.17. The relations

between projected image points u, u0, u00 and their respective 3D counterpartsX, X0, X00 are

given by the projection matrices M , M 0, M 00. using a similar approach to that given when

computing 3D projective reconstruction from two uncalibrated cameras, we aim to obtain a

set of linear equations that relate image measurements to their 3D counterparts.

u =

2
64 U

V

W

3
75 'M X =

2
64 mT

1

mT
2

mT
3

3
75X ; u0 =

2
64 u0

v0

w0

3
75 'M 0 X =

2
64
m0

T
1

m0
T
2

m0
T
3

3
75X (9.73)
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u’’

u u’

X

Figure 9.17: Geometry of three cameras, u 'M x, u0 'M 0 x, u00 'M 00 x.

u00 =

2
64 u00

v00

w00

3
75 'M 00X =

2
64
m00

T
1

m00
T
2

m00
T
3

3
75X (9.74)

Using similar manipulations to equations (9.62) { (9.69) eliminates unknown scale factors and

provides the desired relation in matrix form. We will assign labels 1: to 6: in the following

for convenience of future reference;

1 :

2 :

3 :

4 :

5 :

6 :

2
666666664

umT
3 � wmT

1

vmT
3 � wmT

2

u0m
0T
3 � w0m0

T
1

v0m0
T
3 � w0m0

T
2

u00m00

0T
3 � w00m00

T
1

v00m00
T
3 � w00m00

T
2

3
777777775
X = A X = 0 (9.75)

We shall follow (but simplify) an explanation given in [Faugeras and Mourrain 95], and

shall use the reference numbers of equation (9.75). We are interested in the nontrivial solu-

tion to this equation, meaning that the matrix A should have rank 3. This means that the

determinant of all its 4 � 4 submatrices must be zero; there are C6
4 = 6!

4! 2! = 15 such sub-

matrices. Consider these 15 quadruples of equations and classify then according to whether

they involve two or three cameras.

Three sets of equations express a bilinear relation between two cameras that are given

by the fundamental matrix F as we already know. These are equations [1234], [1256] and

[3456]; notice that even squares of the same variable do not appear in these bilinear equations.

Consider now sets of equations that express a trilinear relation among images of the same

point as seen by three cameras. From the 12 trilinearities only four are linearly independent;

three possibilities for linearly independent quadruples of equations are the following { (notice

that there are always two rows of equation (9.75) corresponding to one camera, with one row
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X

C

u

Figure 9.18: Each of six rows de�nes a plane passing through the optical center C and the

point X.

for each of the remaining two cameras):

[1235] [1245] [1236] [1246]

[1345] [2345] [1346] [2346]

[1356] [1456] [2356] [2456]

(9.76)

A geometric interpretation of the rows of equation (9.75) assists understanding; each row

de�nes a plane passing through optical center C and the point X for which correspondence

in all three views was established, see Figure 9.18.

u’

u’’

u

RAY

X

B

A

C C’

C’’

Figure 9.19: Illustration that one trilinear relation does not assure that three measured points

are coincident as expected.

Notice that one trilinearity relation does not ensure that observed points u, u0, and u00

correspond to only one scene point X. Only one of the views plays a role of the ray; this

is illustrated in Figure 9.19. Two rows of equation (9.75) corresponded to the measurement

u taken by the �rst camera, and the corresponding ray points to X. The other two views

constrain the point position in the space to a plane only. One trilinearity relation ensures
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that the ray and two planes have a common point in the projective space P3. In other words,

X, A, and B are colinear but need not be coincident.

Consider now what happens if we had four cameras. In equation (9.75) we would have

two more equations. Now we can consider 4 � 4 subdeterminants which contain one row

arising from one camera. This is called a quadrilinear constraint which is a polynomial of

degree four in the co-ordinates of the pointsmi and linear in the co-ordinates of each of them.

Assuming that all the bilinear and trilinear constraints are satis�ed, it is possible to show that

the quadrilinear constraint can be obtained as a linear combination of bilinear and trilinear

constraints. This means that the fourth view does not contribute any additional information if

exact measurements in the image are assumed. To sum up, the relations among corresponding

projections of a single point in two, three and four images are completely understood under

orthographic, similarity, and perspective projection. There is no relation involving �ve and

more cameras that cannot be factored into relations of fewer cameras [Weinshall et al. 95].

2 cameras

3 cameras

4 cameras

Figure 9.20: Geometric interpretation of bilinear, trilinear, and quadrilinear constraint.

The case of two, three, and four cameras is illustrated in Figure 9.20. The upper row

shows the case of the bilinear constraint (given by the fundamental matrix F ) that relates

corresponding points in two images. The middle row illustrates the trilinearity constraint

where correspondence between one point and two lines is established. The bottom row shows

the quadrilinear constraint where correspondence of four lines is taken into account.

Given this intuitive geometric understanding of the trilinear relation among views, we shall

proceed to an algebraic derivation as well. Assume that the �rst camera is in a canonical

con�guration, i.e. its projective matrix is in the simplest form;

u ' M ~X =MH�1HX = [I j0]X

u0 ' M 0 ~X =M 0H�1HX = [aij ]X; i = 1 : : :3

u00 ' M 00 ~X =M 00H�1HX = [bij ]X; j = 1 : : :4 (9.77)

The scale in the image measurement is unknown, as u ' [I j0]X.

~X =

"
u

�

#
(9.78)

The scale factor � is to be determined. Project the scene point X into the second camera.

u0 ' [aij ] ~X =

"
u

�

#
(9.79)
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u0i ' aki uk + ai4� ; k = 1 : : :3 (9.80)

Here we have adopted Einstein's convention of omitting the summation symbol for compact-

ness of representation. Thus aki uk would originally be written as
Pk=3

k=1 aikuk.

The scale factor � need to be eliminated. We get three equations of which two are

independent;

u0i (a
k
j uk + aj4�) = u0j (a

k
i uk + ai4�) (9.81)

This yields three estimates of �

� =
uk(u

0

i a
k
j � u0j a

k
i )

u0j ai4 � u0i aj4
(9.82)

The scale factor � is substituted back to ~X

~X =

2
4 u

uk(u
0

i
ak
j
�u0

j
ak
i
)

u0

j
ai4�u

0

i
aj4

3
5 '

"
(u0j ai4 � u0i aj4)u

uk(u
0

i a
k
j � u0j a

k
i )

#
(9.83)

Now ~X is projected by the third camera;

u00 ' [blk]X = bkl xk (9.84)

Notice that

u00l ' bkl uk(u
0

jai4 � u0iaj4) + bl4uk(u
0

ia
k
j � u0ja

k
i ) '

' ukui(a
k
j bl4 � aj4b

k
l )� uku

0

j(a
k
i bl4 � ai4b

k
l ) '

' uk(u
0

iTkjl � u0jTkil) (9.85)

Tijk, i; j; k = 1; 2; 3 is an algebraic entity called a tensor that depends on three indices. This

can be imagined as a `three-dimensional matrix', i.e. a 3�3�3 cube consisting of 27 numbers.

The unknown scale can be eliminated if all three views are combined together

uk(u
0

iu
00

mTkjl � u0ju
00

mTkil) = uk(u
0

iu
00

l Tkjm � u0ju
00

l Tkim) (9.86)

This equation is symmetric with respect to i, j and l, m; thus i < j and l < m. There

are 9 equations but only four of them are linearly independent. Assume j = m = 3 and for

simplicity u3 = u03 = u003 = 1. After some manipulations we get the trilinear constraint

among three views.

uk(u
0

iu
00

l Tk33 � u00l Tki3 � u0iTk3l + Tkil) = 0 (9.87)

As indices i; l can have values 1 or 2 we have four linearly independent equations.

The tensor Tijk has 27 unknowns that can be estimated from at least 7 corresponding

points in three images.

The use of the trilinear constraint yields three practical advantages [Shashua and Werman

95].

1. The trilinear tensor can be recovered linearly from 7 corresponding points in three

views, while the fundamental matrix calculated from a pair of views needs at least 8

points for linear solution. Practically, an overdetermined system of equations is solved

using some robust estimation method.
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2. The tensor can be used instead of three fundamental matrices. This is possible even in

the case in which some of the fundamental matrices are singular.

3. The estimate of the constraint among three views should be numerically more stable

than the estimate through three fundamental matrices.

One of the important applications of the trilinear tensor is epipolar transfer. Assuming

that the trilinear tensor has been estimated, if two images are known any third image can be

computed using equation (9.87).

The other application of the trilinear tensor is in reconstruction and recognition. So far

we have studied how one point is seen in one, two, three or four images. The dual problem,

i.e. the geometry of N 3D points in one image, allows an approach to shape under perspective

projection with uncalibrated cameras [Weinshall et al. 95].

9.2.11 Stereo correspondence algorithms

We have seen in Section 9.2.6 that much can be learned about the geometry of a 3D scene if it

is known which point from one image corresponds to a point in a second image. The solution

of this correspondence problem is a key step in any photogrammetric, stereo vision or

motion analysis task. Here we describe how the same point can be found in two images if

the same scene is observed from two di�erent viewpoints. Of course, it is assumed that two

images overlap and thus the corresponding points are sought in this overlapping area.

In image analysis, some methods are based on the assumption that images constitute

a linear (vector) space (e.g. eigen-images or linear interpolation in images [Werner et al. 95,

Ullman and Basri 91]); this linearity assumption4 is not valid for images in the general [Beymer

and Poggio 96], but some authors have overlooked this fact. The structure of a vector space

assumes that the ith component of one vector must refer to the ith component of another;

this assumes that the correspondence problem has been solved.

Automatic solution of the correspondence problem is an evergreen computer vision topic,

and the pessimistic conclusion is that it is not soluble in the general case at all. The trouble

is that the correspondence problem is inherently ambiguous. Imagine an extreme case, e.g.

a scene containing a white nontextured at object; its image constitutes a large region with

uniform brightness. When corresponding points are sought in left and right images of the at

object there are not any features that could distinguish them. Another unavoidable di�culty

in searching for corresponding points is the self-occlusion problem which occurs in images

of nonconvex objects. Some points that are visible by the left camera are not visible by the

right camera and vice versa (see Figure 9.21).

Fortunately, uniform intensity and self-occlusion are rare, or at least uncommon, in scenes

of practical interest. Establishing correspondence between projections of the same point in

di�erent views is based on �nding image characteristics that are similar in both views, and

the local similarity is calculated.

The inherent ambiguity of the correspondence problem can in practical cases be reduced

using several constraints. Some of these follow from the geometry of the image capturing

4Informally, the sum of any two points from a linear space must belong to the linear space; similarly for
any point multiplied by any real number.
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Figure 9.21: Self-occlusion makes search for some corresponding points impossible.

process, some from photometric properties of a scene, and some from prevailing object prop-

erties in our natural world. There has been a vast number of di�erent stereo correspondence

algorithms proposed so far: We will give here only a concise taxonomy of approaches to

�nding correspondence { not all the constraints are used in all of them. There follows a list

of constraints commonly used [Klette et al. 96] to provide insight into the correspondence

problem.

The �rst group of constraints depends mainly on the geometry and the photometry of the

image capturing process. These are:

Epipolar constraint: This says that the corresponding point can only lie on the epipolar

line in the second image. This reduces the potential 2D search space into 1D. The

epipolar constraint was explained in detail in Section 9.2.5.

Uniqueness constraint: This states that, in most cases, a pixel from the �rst image can

correspond to only one pixel in the second image. The exception arises when two or

more points lie on one ray coming from the �rst camera and can be seen as separate

points from the second. This case, which arises in the same way as self-occlusion, is

illustrated in Figure 9.22.

Photometric compatibility constraint: This states that intensities of a point in the �rst

and the second image are likely to di�er only a little. They are unlikely to be exactly

the same due to the mutual angle between the light source, surface normal and the

viewer di�ering, but the di�erence will typically be small as the views will not di�er

much. Practically, this constraint is very natural to image capturing conditions. The

advantage is that intensities in the left image can be transformed into intensities in the

right image using very simple transformations.

Geometric similarity constraints: These build on the observation that geometric char-

acteristics of the features found in the �rst and second images do not di�er much (e.g.

length or orientation of the line segment, region or contour).

The second group of constraints exploits some common properties of objects in typical

scenes.
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Figure 9.22: Exception from the uniqueness constraint.

Disparity smoothness constraint: This claims that disparity changes slowly almost ev-

erywhere in the image. Assume two scene points p and q are close to each other, and

denote the projection of p into the left image as pL and into the right image as pR,

and q similarly. If we assume that the correspondence between pL and pR has been

established, then the quantity

j ( jpL � pRj � jqL � qRj ) j

(the absolute disparity di�erence) should be small.

Figural disparity constraint: This says that corresponding points should lie on an edge

element in both right and left images, as well as ful�lling the disparity smoothness

constraint.

point A

Figure 9.23: Self-occlusion due to abrupt surface discontinuity can be detected.

Feature compatibility constraint: This place a restriction on possible matches on the

physical origin of matched points. Points can match only if they have the same physical

origin { for example, object surface discontinuity, border of a shadow cast by some

objects, occluding boundary, specularity boundary, etc. Notice that edges in an image

caused by specularity or self-occlusion cannot be used to solve the correspondence prob-

lem as they move with changing viewpoint. On the other hand, self-occlusion caused

by abrupt discontinuity of the surface can be identi�ed { see Figure 9.23.
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Disparity limit constraint: This originates from psycho-physical experiments in which it

is demonstrated that the human vision system can only fuse stereo images if the dis-

parity is smaller than some limit. This constrains the lengths of the search in arti�cial

methods that seek correspondence.

Right imageLeft image Left image Right image

ABC

A B CCBA BAAB

Finger B

Finger A

Figure 9.24: (a) Corresponding points lie in the same order on epipolar lines; (b)This rule

does not hold if there is a big discontinuity in depths.

Ordering constraint: This says that for surfaces of similar depth, corresponding feature

points typically lie in the same order on the epipolar line (see Figure 9.24(a)). If

there is a narrow object much closer to the camera than its background, the order can

be changed (see Figure 9.24(b)). It is easy to demonstrate violation of this ordering

constraint; hold two fore�ngers vertically, almost aligned but at di�erent depth in front

of your eyes. Closing the left eye and then the right eyes interchanges the left/right

order of the �ngers.

Mutual correspondence constraint: This helps to rule out points that do not have a

corresponding counterpart due to occlusion, highlight or noise. Assume the search

started from the left image point pL and a corresponding pR was found. If the task is

reversed, and a search starting from the point pR fails to �nd the point pL, then the

match is not reliable and should be ruled out.

All these constraints have been of use in one or more existing stereo correspondence

algorithms. We present here a taxonomy of such algorithms; from the historical point of view,

correspondence algorithms for stereopsis were and still are driven by two main paradigms:

1. Low-level, correlation-based, bottom-up methods.

2. High-level, feature-based, top-down methods.

Initially, it was believed that higher-level features such as corners and straight line segments

should be automatically identi�ed, and then matched. This was a natural development from

photogrammetry that has been using feature points identi�ed by human operators since the

beginning of the 20th century.

Psychological experiments with random dot stereograms performed by Julesz [Julesz

90] generated a new view; these experiments show that humans do not need to create monoc-

ular features before binocular depth perception can take place. A random dot stereogram is
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created in the following way: A left image is entirely random, and the right image is created

from it in a consistent way such that some part of it is shifted according to disparity of the

desired stereo e�ect. The viewer must glare at the random dot stereogram from a given

distance of about 20 centimeters. Such `random dot stereograms' have been widely published

under the name `3D images' in many popular magazines.

Recent developments in this area use a combination of both low-level and the high-level

stereo correspondence methods [Tanaka and Kak 90].

Correlation-based stereo correspondence

Correlation-based correspondence algorithms use the assumption that pixels in correspon-

dence have very similar intensities (recall the photometric compatibility constraint). The

intensity of an individual pixel does not give su�cient information as there are typically

many potential candidates with similar intensity, and thus intensities of several neighboring

pixels are considered. Typically, a 5�5 or 7�7 or 3�9 window may be used. These methods

are sometimes called area-based stereo.

We shall illustrate the approach with a simple algorithm called block-matching [Klette

et al. 96]. Assuming the canonical stereo setup with parallel optical axes of both cameras,

the basic idea of the algorithm is that all pixels in the window (called a block) have the same

disparity, meaning that one and only one disparity is computed for each block. One of the

images, say the left, is tiled into blocks, and a search for correspondence in the right image

is conducted for each of these blocks in the right image. The measure of similarity between

blocks can be, e.g. the mean square error of the intensity, and the disparity is accepted for

the position where the mean square error is minimal. Maximal change of position is limited

by the disparity limit constraint. The mean square error can have more than one minimum

and in this case an additional constraint is used to cope with ambiguity.

The result of the block matching algorithm is a sparse matrix of disparities, where disparity

is calculated only for a representative point of the block; various methods allow us to re�ne

the result to a dense disparity matrix. Block-matching algorithms are typically slow, and

regular pyramid implementations are often used to speed up the process.

Another relevant approach is that of Nishihara [Nishihara 84], who observes that an

algorithm attempting to correlate individual pixels (by, e.g. matching zero crossings [Marr

and Poggio 79]) is inclined toward poor performance when noise causes the detected location

of such features to be unreliable. A secondary observation is that such pointwise correlators

are very heavy on processing time in arriving at a correspondence. Nishihara notes that the

sign (and magnitude) of an edge detector response is likely to be a much more stable property

to match than the edge or feature locations, and devises an algorithm that simultaneously

exploits a scale-space matching attack.

The approach is to match large patches at a large scale, and then re�ne the quality of

the match by reducing the scale, using the coarser information to initialize the �ner grained

match. An edge response is generated at each pixel of both images at a large scale (see

Section 4.3.4), and then a large area of the left (represented by, say, its central pixel) is

correlated with a large area of the right. This can be done quickly and e�ciently by using the

fact that the correlation function peaks very sharply at the correct position of a match, and

so a small number of tests permits an ascent to a maximum of a correlation measure. This
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coarse area match may then be re�ned to any desired resolution in an iterative manner, using

the knowledge from the coarser scale as a clue to the correct disparity at a given position. At

any stage of the algorithm, therefore, the surfaces in view are modeled as square prisms of

varying height; the area of the squares may be reduced by performing the algorithm at a �ner

scale { for tasks such as obstacle avoidance it is possible that only coarse scale information

is necessary, and there will be a consequent gain in e�ciency.

This algorithm is enhanced by casting random dot light patterns on the scene to provide

patterns to match even in areas of the scene that are texturally uniform. The resulting system

has been demonstrated in use in robot guidance and bin-picking applications, and has been

implemented robustly in real time.

Feature-based stereo correspondence

Feature-based correspondence methods use points or set of points that are striking and easy

to �nd. Characteristically, these are pixels on edges, lines, corners, etc., and correspondence

is sought according to properties of such features as, e.g. orientation along edges, or lengths

of line segments. The advantages of feature-based methods over intensity-based correlation

are:

� Feature-based methods are less ambiguous since the number of potential candidates for

correspondence is smaller.

� The resulting correspondence is less dependent on photometric variations in images.

� Disparities can be computed with higher precision; features can be sought in the image

to subpixel precision.

We shall present one example of a feature-based correspondence method { the PMF algo-

rithm, named after its inventors [Pollard et al. 85]. It proceeds by assuming that a set of

feature points (for example, detected edges) has been extracted from each image by some

interest operator. The output is a correspondence between pairs of such points. In order to

do this, three constraints are applied: the epipolar constraint, the uniqueness constraint and

the disparity gradient limit constraint.

The �rst two constraints are not peculiar to this algorithm (for example, they are also

used by Marr [Marr and Poggio 79]) { the third, however, of stipulating a disparity gradient

limit, is its novelty. The disparity gradient measures the relative disparity of two pairs of

matching points. Suppose (Figure 9.25) that a point A (B) in 3D appears as Al = (axl; ay)

(Bl = (bxl; by)) in the left image and Ar = (axr; ay) (Br = (bxr; by)) in the right (the epipolar

constraint requires the y co-ordinates to be equal); the cyclopean image is de�ned as that

given by their average co-ordinates;

Ac =

�
axl + axr

2
; ay

�
(9.88)

Bc =

�
bxl + bxr

2
; by

�
(9.89)

and their cyclopean separation S is given by their distance apart in this image;

S(A;B) =

s��
axl + axr

2

�
�

�
bxl + bxr

2

��2

+ (ay � by)2
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Figure 9.25: De�nition of the disparity gradient.

=

r
1

4
((axl � bxl) + (axr � bxr))2 + (ay � by)2

=

r
1

4
(xl + xr)2 + (ay � by)2 (9.90)

The di�erence in disparity between the matches of A and B is

D(A;B) = (axl � axr)� (bxl � bxr)

= (axl � bxl)� (axr � bxr)

= xl � xr (9.91)

The disparity gradient of the pair of matches is then given by the ratio of the disparity

di�erence to the cyclopean separation;

�(A;B) =
D(A;B)

S(A;B)

=
xl � xrq

1
4(xl + xr)2 + (ay � by)2

(9.92)

Given these de�nitions, the constraint exploited is that, in practice, the disparity gradient

� can be expected to be limited; in fact, it is unlikely to exceed 1. This means that very small

di�erences in disparity are not acceptable if the corresponding points are extremely close to

each other in 3D { this seems an intuitively reasonable observation, and it is supported by

a good deal of physical evidence [Pollard et al. 85]. A solution to the correspondence problem

is then extracted by a relaxation process in which all possible matches are scored according

to whether they are supported by other (possible) matches that do not violate the stipulated

disparity gradient limit. High scoring matches are regarded as correct, permitting �rmer

evidence to be extracted about subsequent matches.

Algorithm 9.3: PMF stereo correspondence

1. Extract features to match in left and right images. These may be, for example, edge

pixels.
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2. For each feature in the left (say) image, consider its possible matches in the right; these

are de�ned by the appropriate epipolar line.

3. For each such match, increment its likelihood score according to the number of other

possible matches found that do not violate the chosen disparity gradient limit.

4. Any match which is highest scoring for both the pixels composing it is now regarded

as correct. Using the uniqueness constraint, these pixels are removed from all other

considerations.

5. Return to (2) and re-compute the scores taking account of the de�nite match derived.

6. Terminate when all possible matches have been extracted

Note here that the epipolar constraint is used at point (2) to limit to one dimension the

possible matches of a pixel, and the uniqueness constraint is used at (4) to ensure that

a particular pixel is never used more than once in the calculation of a gradient.

The scoring mechanism has to take account of the fact that the more remote two (possible)

matches are, the more likely they are to satisfy the disparity gradient limit. This is catered

for by:

� Considering only matches that are `close' to the one being scored. In practice it is

typically adequate to consider only those inside a circle of radius equal to seven pixels,

centered at the matching pixels (although this number depends on the precise geometry

and scene in hand).

� Weighting the score by the reciprocal of its distance from the match being scored. Thus

more remote pairs, which are more likely to satisfy the limit by chance, count for less.

The PMF algorithm has been demonstrated to work relatively successfully. It is attractive

also because it lends itself to parallel implementation and could be extremely fast on suitably

chosen hardware. It has a drawback (along with a number of similar algorithms) in that

horizontal line segments are hard to match; they often move across adjacent rasters and,

with parallel camera geometry, any point on one such line can match any point on the

corresponding line in the other image.

9.2.12 Active acquisition of range images

It is extremely di�cult to extract 3D shape information from intensity images of real scenes

directly. Another approach { `shape from shading' { will be explained in Section 9.3.

One way to circumvent these problems is to measure distances from the viewer to points

on surfaces in the 3D scene explicitly; such measurements are called geometric signals, i.e.

a collection of 3D points in a known co-ordinate system. If the surface relief is measured from

a single viewpoint it is called a range image or a depth map. Such explicit 3D information,

being closer to the geometric model that is sought, makes geometry recovery easier.5

5There are techniques that directly measure full 3D information, like mechanical co-ordinate measuring
machines (considered in Section 10) or computer tomography.
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Two steps are needed to obtain geometric information from a range image:

1. The range image must be captured; this procedure is discussed in this Section.

2. Geometric information must be extracted from the range image. Features are sought

and compared to a selected 3D model. The selection of features and geometric models

leads to one of the most fundamental problems in computer vision; how to represent

a solid shape [Koenderink 90].

The term active sensor refers to a sensor that uses and controls its own images { the term

`active' means that the sensor uses and controls electromagnetic energy, or more speci�cally

illumination, for measuring a distance between scene surfaces and the `observer'. An active

sensor should not be confused with the active perception strategy, where the sensing subject

plans how to look at objects from di�erent views.

RADAR (RAdio Detecting And Ranging) and LIDAR (LIght Detecting And Ranging)

in one measurement yield the distance between the sensor and a particular point in a measured

scene. The sensor is mounted on an assembly that allows movement around two angles,

azimuth � and tilt �, corresponding to spherical co-ordinates. The distance is proportional

to the time interval between the emission of energy and the echo reected from the measured

scene object. The elapsed time intervals are very short, so very high precision is required.

For this reason, the phase di�erence between emitted and received signals is often used.

RADAR emits electromagnetic waves in meter, centimeter or millimeter wavelength bands.

Aside from military use, it is frequently used for navigation of autonomous guided vehicles.

LIDAR often uses laser as a source of a focused light beam. The higher the power of

the laser, the stronger is the reected signal, and the more precise the measured range. If

LIDAR is required to work in an environment together with humans then the energy has an

upper limit, due to potential harm to the unprotected eye. Another factor that inuences

LIDAR safety is the diameter of the laser beam: If it is to be safe it should not be focused

too much. LIDARs have trouble when the object surface is almost tangential to the beam, as

very little energy reects back to the sensor in this case. Measurements of specular surfaces

are not very accurate as they scatter the reected light, while transparent objects (obviously)

cannot be measured with optical lasers. The advantage of LIDAR is a wide range of measured

distances, from a tenth of a millimeter to several kilometers; the accuracy of the measured

range is typically around one hundreds of a millimeter. LIDAR provides one range in an

instant. If the whole range image is to be captured, the measurement takes several tenths of

a seconds as the whole scene is scanned.

Another principle of active range imaging is structured light triangulation, where we

employ a geometric arrangement similar to that used for stereo vision, with optical axes. One

camera is replaced by an illuminant that yields a light plane perpendicular to the epipolars;

the image capturing camera is at a �xed distance from the illuminant. Since there is only one

signi�cantly bright point on each image line, the correspondence problem that makes passive

stereo so problematic is avoided, although there will still be problems with self-occlusion in

the scene. Distance from the observer can easily be calculated as in Figure 9.10. To capture a

whole range image, the rod with camera and illuminant should be made to move mechanically

relative to the scene, and the trace of the laser should gradually illuminate all points to be

measured. The conduct of the movement, together with the processing of several hundreds
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Figure 9.26: Laser plane range �nder. The camera is on the left side, the laser diode on the

bottom left. Courtesy T. Pajdla, Czech Technical University, Prague.

of images, (i.e. one image for each distinct position of the laser stripe) takes some time,

typically from a couple of seconds to about a minute. Faster laser stripe range �nders �nd

a bright point corresponding to the intersection of a current image line using special purpose

electronics.

We shall illustrate an example of such a scanner built in the Center for Machine Perception

of the Czech Technical University in Prague. Figure 9.26 shows a view of the scanner together

with a target object (a wooden toy - a rabbit). The image seen by the camera with the

distinct bright laser stripe is in Figure 9.27(a), and the resulting range image is shown in

Figure 9.27(b).

In some applications, a range image is required in an instant, typically meaning one TV

frame; this is especially useful for capturing range images of moving objects, e.g. moving

humans. One possibility is to illuminate the scene by several stripes at once and code them;

Figure 9.28(a) shows a human hand lit by a binary pattern that codes light stripes using a

cyclic code such that the local con�guration of squares in the image allows to us to decode

which stripe it is. In this case, the pattern with coded stripes is projected from a 36�24 mm

slide using a standard slide projector. The resulting range image does not provide as many

samples as in the case of a moving laser stripe, in our case only 64�80, see Figure 9.28(b).

It is possible to acquire a dense range sample as in the laser stripe case in one TV frame;

individual stripes can be encoded using spectral colors and the image captured by a color TV

camera [Smutn�y 93].

Two further measuring principles will conclude this discussion of active range sensors: One

is sonar, that uses ultrasonic waves as an energy source. Sonars are used in robot navigation

for close range measurements. Their disadvantage is that measurements are typically very

noisy. The second principle is Moir�e interferometry [Klette et al. 96], in which two periodic

patterns, typically stripes, are projected on the scene. Due to interference, the object is

covered by a system of closed, non-intersecting curves, each of which lies in a plane of constant



9.3. RADIOMETRY AND 3D VISION 485

(a) (b)

Figure 9.27: Measurement using a laser stripe range �nger: (a) The image seen by a camera

with a bright laser stripe, (b) reconstructed range image displayed as a point cloud. Courtesy

T. Pajdla, Czech Technical University, Prague.

distance from the viewer. Distance measurements obtained are only relative, and absolute

distances are unavailable. The properties of Moir�e curves are very similar to level curves on

maps.

9.3 Radiometry and 3D vision

9.3.1 Radiometric considerations in determining gray level

A TV camera and most other arti�cial vision sensors measure the amount of received light

energy in individual pixels as the result of interaction among various materials and light

source(s); the value measured is informally called gray level (or brightness). Radiometry

is a branch of physics that deals with the measurement of the ow and transfer of radiant

energy, and is the appropriate tool to consider the mechanism of image creation. The gray

level corresponding to a point on a 3D surface depends, informally speaking, on the shape of

the object, its reectance properties, the position of the viewer and properties and position of

the illuminants [Nicodemus et al. 77]. We will later use these concepts to consider derivation

of 3D shape from shading.

The radiometric approach to understanding gray levels is very often avoided in practical

applications because of its complexity and numerical instability. The gray level measured

typically does not provide a precise quantitative measurement (one reason is that CCD cam-

eras are much more precise geometrically than radiometrically; another more serious reason

is that the relation between gray level and shape is too complicated). One way to circum-

vent this is to use task speci�c illumination that allows the location objects of interest on

a qualitative level, and their separation from the background.

Photometry is a discipline closely related to radiometry that studies the sensation of
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Figure 9.28: Binary coded range �nder: (a) The captured image of a hand, (b) reconstructed

surface. Courtesy T. Pajdla, Czech Technical University, Prague.

radiant light energy in the human eye; both disciplines describe similar phenomena using

similar quantities. Herein, we shall describe physical units using square brackets; when there

is a danger of confusion we shall denote photometric quantities using the subscript ph, and

leave radiometric ones with no subscript.

The basic radiometric quantity is radiant ux � [W ], and its photometric counterpart

is luminous ux �ph [lm (=lumen)]. For light of wavelength � = 555 and daylight vision,

we can convert between these quantities with the relation 1 [W ] = 680 [lm]. Di�erent people

have di�erent abilities to perceive light, and photometric quantities depend on the spectral

characteristic of the radiation source and on the sensitivity of photoreceptive cells of a human

retina. For this reason, the international standardization body CIE de�ned a `standard

observer' corresponding to average abilities. Let K(�) be the luminous e�cacy [lmW�1],

S(�) [W ] the spectral power of the light source, and � [W ], the wavelength. Then luminous

ux �ph is proportional to the intensity of perception and is given by

�ph =

Z
�

K(�)S(�)d� (9.93)

Since photometric quantities are too observer dependent, we shall consider radiometric ones.

From a viewer's point of view, the surface of an object can reect energy into a half-sphere,

di�erently into di�erent directions. The spatial angle is given by the area on the surface

of the unit sphere that is bounded by a cone with an apex in the center of the sphere. The

whole half-sphere corresponds to the spatial angle 2� [sr (=steradians)]. A small area A at

distance R from the origin (i.e. R2 � A) and with angle � between the normal vector to

the area and radius vector between the origin and the area corresponds to the spatial angle


 [sr] (see Figure 9.29).


 =
A cos�

R2
(9.94)
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Figure 9.29: Spatial angle for an elementary surface area.

Irradiance E [W m�2] describes the power of the light energy that falls onto a unit area of

the object surface, E = ���A, where �A is an in�nitesimal element of the surface area; the

corresponding photometric quantity is illumination [lmm�2]. Radiance L [W m�2 sr�1]

is the power of light that is emitted from a unit surface area into some spatial angle, and the

corresponding photometric quantity is called brightness Lph [lmm�2 sr�1]. Brightness is

used informally in image analysis to describe the quantity that the camera measures.

Scene object
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-zf
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Θ
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Figure 9.30: The relation between irradiance E and radiance L.

Irradiance is given by the amount of energy that an image capturing device gets per unit

of an e�cient sensitive area of the camera [Horn 86] - then gray levels of image pixels are

quantized estimates of image irradiance. The e�cient area copes with foreshortening that

is caused by the mutual rotation between the elementary patch on the emitting surface and

the elementary surface patch of the sensor. We shall consider the relationship between the

irradiance E measured in the image and the radiance L produced by a small patch on the

object surface. Only part of this radiance is captured by the lens of the camera.

The geometry of the capturing setup is given in Figure 9.30 The optical axis is aligned

with the horizontal axis Z, and a lens with focal length f is placed at the co-ordinate origin

(the optical center). The elementary object surface patch �O is at distance z. We are

interested in how much light energy reaches an elementary patch of the sensor surface �I .

The o�-axis angle � spans between the axis Z and the line connecting �O with �I ; as we are

considering a perspective projection, this line must pass through the origin. The elementary
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object surface patch �O is tilted by the angle � measured between the object surface normal

n at the patch and a line between �O and �I .

Light rays passing through the lens origin are not refracted; thus the spatial angle attached

to the elementary surface patch in the scene is equal to the spatial angle corresponding

to the elementary patch in the image. The foreshortened elementary image patch as seen

from the optical center is �I cos�, and its distance from the optical center is f= cos�. The

corresponding spatial angle is
�I cos�

( f
cos�

)2

Analogously, the spatial angle corresponding to the elementary patch �O on the object surface

is
�O cosTheta

( z
cos�)

2

As the spatial angles are equal
�O

�I
=

cos�

cos�

z2

f2
(9.95)

Consider how much light energy passes through the lens if its aperture has diameter d; the

spatial angle 
L that sees the lens from the elementary patch on the object is


L =
�

4

d2 cos�

( z
cos�)

2
=
�

4

�
d

z

�2

cos3 � (9.96)

Let L be the radiance of the object surface patch that is oriented towards the lens. Then the

elementary contribution to the radiant ux � falling at the lens is

�� = L�O 
L cos� = �L�O

�
d

z

�2 cos3 � cos�
4

(9.97)

The lens concentrates the light energy into the image. If energy losses in the lens are ne-

glected and no other light falls on the image element we can express the irradiation E of the

elementary image patch as

E =
��

�I
= L

�O

�I

�

4

�
d

z

�2

cos3 � cos� (9.98)

If we substitute for �O
�I

from equation (9.95) we obtain an important equation that reveals

how scene radiance inuences irradiation in the image

E = L
�

4

�
d

f

�2

cos4 � (9.99)

The term cos4 � describes a systematic lens optical defect called vignetting6 that notes that

optical rays with larger span-o� angle � are attenuated more; this means that pixels closer

to image borders are darker. This e�ect is more severe with wide angle lenses than with tele-

lenses. Since vignetting is a systematic error it can be compensated for with a radiometrically

calibrated lens. The term d
f
is called the f -number of the lens and describes how much the

lens di�ers from a pinhole model.

6One of the meanings of vignette is a photograph or drawing with edges that are shaded o�.
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9.3.2 Surface reectance

In many applications, pixel gray level is constructed as an estimate of image irradiance as

a result of light reection from scene objects. Consequently, it is necessary to understand

di�erent mechanisms involved in reection. Here we give just a brief overview that later

permits us to explain the main ideas behind shape from shading. Consult [Ikeuchi 94, Foley

et al. 90, Klette et al. 96] for more detailed explanations.

The radiance of an opaque object that does not emit its own energy depends on irradiance

caused by other energy sources. The illumination that the viewer perceives depends on the

strength, position, orientation, type (point or di�use) of the light sources, and ability of the

object surface to reect energy and the local surface orientation (given by its normal vector).

An important concept now is gradient space which is a way of describing surface ori-

entations (and has also been used in the analysis of line labeling problems [Mackworth 73]).

Let z(x; y) be the surface height. We proceed by noting that at nearly every point a surface

has a unique normal n. The components of surface gradient

p =
@z

@x
and q =

@z

@y
(9.100)

can be used to specify the surface orientation. We shall express the unit surface normal using

surface gradient components; if we move a small distance @x in the x-direction, the change of

height is @z = p@x. Thus the vector [1; 0; p]T is the tangent to the surface, and analogously

[0; 1; q]T is also tangent to the surface. The surface normal is perpendicular to all its tangents,

and may be computed using the vector product as2
64 1

0

p

3
75�

2
64 0

1

q

3
75 =

2
64 �p

�q

1

3
75 (9.101)

The unit surface normal n can be written as

n =
1p

1 + p2 + q2

2
64 �p

�q

1

3
75 (9.102)

Here we suppose that the z-component of the surface normal is positive as only the surface

part oriented towards the viewer is visible.

The pair [p; q] is the two-dimensional gradient space representation of the surface orien-

tation. Gradient space has a number of attractive properties that allow elegant description

of the surface. Interpreting the image plane as z = 0, we see that the origin of gradient space

corresponds to the vector [p; q]=[0; 0], that is normal to the image plane. Thus [p; q]=[0; 0]

implies that the surface is parallel to the image plane. The more remote a vector is from the

origin of gradient space, the steeper its corresponding surface patch is inclined to the image

plane.

Consider now spherical co-ordinates used to express the geometry of an in�nitesimal

surface patch { see Figure 9.31. The polar angle (also called zenith angle) is � and the

azimuth is '. We shall attempt to describe the ability of di�erent materials to reect

light. The direction towards a point light source is denoted by subscript i (i.e. �i and 'i),
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Figure 9.31: Polar and spherical angles used to describe orientation of a surface patch.
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Figure 9.32: Directions towards the viewer and the light source.

while subscript v identi�es the direction toward the viewer (�v and 'v) { see Figure 9.32.

The irradiance of the elementary surface patch from the light source is �E(�i; 'i), and the

elementary contribution of the radiance in the direction towards the viewer is �L(�v; 'v). In

general, the ability of the body to reect light is described using a bidirectional reectance

distribution function fr [sr
�1], abbreviated BDRF [Nicodemus et al. 77];

fr(�i; 'i; �v; 'v) =
�L(�v; 'v)

�E(�i; 'i)
(9.103)

The BDRF fr describes the brightness of an elementary surface patch for a speci�c ma-

terial, light source, and viewer directions. Modeling of the BDRF is also important for

realistic rendering in computer graphics [Foley et al. 90]. The BDRF in its full complexity

(equation (9.103)) is used for modeling reection properties of materials with oriented mi-

crostructure (e.g. tiger's eye - a semiprecious golden-brown stone, peacock's feather, rough

cut of aluminum).

Fortunately, for most practically applicable surfaces, the BDRF remains constant if the

elementary surface patch rotates along the normal vector to the surface. In this case it is

simpli�ed and depends on 'i � 'v, i.e. fr(�i;�v; ('i � 'v)). This simpli�cation holds for

both ideal di�use (Lambertian) surfaces and for ideal mirrors.

Let Ei(�) denote the irradiance caused by the illumination of the surface element, and

Er(�) the energy ux per unit area scattered by the surface element back to the whole half-
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space. The ratio

�(�) =
Er(�)

Ei(�)
(9.104)

is called the reectance coe�cient or albedo. Albedo describes what proportion of inci-

dent energy is reected back to the half-space. For simplicity, assume that we may neglect

color properties of the surface, and suppose that albedo does not depend on the wavelength

�. This proportion is then an integral of the surface radiance L over the solid angle 


representing the half-space;

Er =

Z


Ld
 (9.105)

Now de�ne a reectance function R(
) that models the inuence of the local surface

geometry into the spatial spread of the reected energy. 
 is an in�nitesimal solid angle

around the viewing direction. Z


Rd
 = 1 (9.106)

In general, surface reectance properties depend on three angles between the direction to the

light source L, the direction towards the viewer V and local surface orientation given by the

surface normal n (recall Figure 9.32). The cosines of these angles can be expressed as scalar

(dot) products of vectors; thus the reectance function is a scalar function of the following

three dot products

R = R(nL;nV;VL) (9.107)

A Lambertian surface (also ideally opaque, with ideal di�usion) reects light energy in

all directions, and thus the radiance is constant in all all directions. The BDRF fLambert is

constant

fLambert(�i;�v; 'i � 'v) =
�(�)

�
(9.108)

If constant albedo �(�) is assumed then the Lambertian surface reectance can be expressed

as

R =
1

�
nL =

1

�
cos�i (9.109)

Because of its simplicity, the Lambertian reectance function has been widely accepted as

a reasonable reectance model for shape from shading. Notice that the reectance function

for the Lambertian surface is independent of the viewing direction V.

The dependence of the surface radiance on the local surface orientation can be expressed

in gradient space, and the reectance map R(p; q) is used for this purpose. The R(p; q)

can be visualized in gradient space as nested isocontours corresponding to the same observed

irradiance.

Values of the reectance map may be:

1. Measured experimentally on a device called a goniometer stage that is able to set angles

� and ' mechanically. A sample of the surface is attached to the goniometer and its

reectance measured for di�erent orientations of viewer and light sources.

2. Set experimentally if a calibration object is used. Typically a half-sphere is used for

this purpose.
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3. Derived from a mathematical phenomenonical model describing surface reecting prop-

erties

The best known surface reectance models are the Lambertian model for ideal opaque sur-

faces, the Phong model that models reection from dielectric materials, the Torrance-

Sparrow model which describes surfaces as a collection of planar mirror-like microfacets

with normally distributed normals, and the wave theory based Beckmann-Spizzichino

model. A survey of surface reection models from the point of view of computer vision, and

their recent modi�cations, can be found in [Ikeuchi 94].

The irradiance E(x; y) of an in�nitely small light sensor located at position x; y in the

image plane is equal to the surface radiance at a corresponding surface patch given by its

surface parameters u; v if the light is not attenuated in the optical medium between the

surface and the sensor. This important relation between surface orientation and perceived

image intensity is called the image irradiance equation;

E(x; y) = �(u; v)R(N(u; v)L;N(u; v)V;VL) (9.110)

In an attempt to reduce complexity, several simplifying assumptions [Horn 90] are usually

made to ease the shape from shading task. It is assumed that:

� The object has uniform reecting properties, i.e. �(u; v) is constant.

� The light sources are distant; then irradiation in di�erent places in the scene is approx-

imately the same and the incident direction towards the light sources is the same.

� The viewer is very distant. Then the radiance emitted by scene surfaces does not

depend on position but only on orientation. The perspective projection is simpli�ed to

an orthographic one.

We present the simpli�ed version of the image irradiance equation for the Lambertian surface,

constant albedo, single distant illuminant, distant viewer in the same direction as illuminant,

and the reectance function R expressed in gradient space (p; q);

E(x; y) = �R(p(x; y); q(x; y)) (9.111)

R(p; q) gives the radiance of the corresponding point in the scene; the proportionality constant

� comes from equation (9.99) and depends on the f -number of the lens. The vignetting

degradation of the lens is negligible as the viewer is aligned to the illuminant. The measured

irradiance E can be normalized and the factor � omitted; this permits us to write the image

irradiance equation in the simplest form as

E(x; y) = R(p(x; y); q(x; y)) = R(
@z

@x
;
@z

@y
) (9.112)

The image irradiance equation in its simplest form is a �rst-order di�erential equation. It

is typically nonlinear as the reectance function R in most cases depends nonlinearly on the

surface gradient. This is the basic equation that is used to recover surface orientation from

intensity images.
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9.3.3 Shape from shading

The human brain is able to make very good use of clues from shadows and shading in general.

Not only do detected shadows give a clear indication of where occluding edges are, and the

possible orientation of their neighboring surfaces, but general shading properties are of great

value in deducing depth. A �ne example of this is a photograph of a face; from a straight-on,

2D representation, our brains make good guesses about the probable lighting model, and then

deductions about the 3D nature of the face { for example, deep eye sockets and protuberant

noses or lips are often recognizable without di�culty.

Recall that the intensity of a particular pixel depends on the light source(s), surface

reectance properties, and local surface orientation expressed by a surface normal n. The

aim of shape from shading is to extract information about normals of surfaces in view solely

on the basis of an intensity image. If simplifying assumptions are made about illumination,

surface reectance properties, and surface smoothness the shape from shading task has proven

to be solvable. The �rst computer vision related formulation comes from Horn [Horn 70, Horn

75].

Techniques similar to shape from shading were earlier proposed independently in photo-

clinometry [Rindeisch 66] when astrogeologists wanted to measure steepness of slopes on

planets in the solar system from intensity images observed by terrestrial telescopes. There

are two signi�cant di�erences here from shape from shading:

� Surface normals are calculated by the integration along a space curve (called the pro�le;

it is a 1D entity if the curve is arclength parameterized). In shape from shading, the

integration is performed on the surface area, which is a 2D entity if the surface is

parametrized.

� Shape from shading is more concerned with ambiguity of solutions. The use of singular

points and occluding boundaries helps to combat this ambiguity. The surface normal

can be then uniquely computed.

We shall classify shape from shading methods into three categories, and proceed to de-

scribe them:

Incremental propagation from surface points of known height

The oldest, and easiest to explain, method develops a solution along a space curve. This is

also called the characteristic strip method.

We can begin to analyze the problem of global shape extraction from shading information

when the reectance function and the lighting model are both known perfectly [Horn 90].

Even given these constraints, it should be clear that the mapping `surface orientation to

brightness' is many-to-one, since there are many orientations that can produce the same

point intensity. Acknowledging this, a particular brightness can be produced by an in�nite

number of orientations that can be plotted as a (continuous) line in gradient space. An

example for the simple case of a light source directly adjacent to the viewer, incident on

a matte surface, is shown in Figure 9.33 { two points lying on the same curve (circles in this

case) indicate two di�erent orientations that will reect light of the same intensity, thereby

producing the same pixel gray level.
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p

q

Figure 9.33: Reectance map for a matte surface { the light source is adjacent to the viewer.

The original formulation [Horn 70] to the general shape from shading task assumes a Lam-

bertian surface, one distant point light source, a distant observer, and no interreections in

the scene. The proposed method is based on the notion of a characteristic strip: Suppose

that we already calculated co-ordinates of a surface point [x; y; z]T and we want to propagate

the solution along an in�nitesimal step on the surface, e.g. taking small steps �x and �y,

then calculating the change in height �z. This can be done if the components of the surface

gradient p, q are known. For compactness we use an index notation, and express p=�z=�x as

zx, and �
2x=�x2 as zxx. The in�nitesimal change of height is

�z = p �x+ q �y (9.113)

The surface is followed stepwise, with values of p, q being traced along with x, y, z. Changes

in p, q are calculated using second derivatives of height r=zxx, s=zxy=zyx, t=zyy

�p = r �x+ s �y and �q = s �x+ t �y (9.114)

Consider now the image irradiance equation E(x; y) = R(p; q) { equation (9.112) - and dif-

ferentiate with respect to x, y to obtain the brightness gradient

Ex = rRp + sRq and Ey = sRp + tRq (9.115)

The direction of the step �x, �y can be arbitrarily chosen;

�x = Rp� and �y = Rq� (9.116)

The parameter � changes along particular solution curves. Moreover, the orientation of the

surface along this curve is known; thus it is called a characteristic strip.

We can now express changes of gradient �p, �q as dependent on gradient image intensities,

which is the crucial `trick'. A set of ordinary di�erential equations can be generated by

considering equations (9.114) and (9.115); dot denotes di�erentiation with respect to �

_x = Rp ; _y = Rq ; _z = p Rp + q Rq ; _p = Ex ; _q = Ey (9.117)

There are points on the surface for which the surface orientation is known in advance and

these provide boundary conditions during normal vector calculations. These are
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� Points of a surface occluding boundary; an occluding boundary is a curve on the

surface due to the surface rolling away from the viewer, i.e. the set of points for which the

local tangent plane coincides with the direction towards the viewer. The surface normal

at such a boundary can be uniquely determined as it is parallel to the image plane and

perpendicular to the direction towards the viewer. This normal information can be

propagated into the recovered surface patch from the occluding boundary. Although

the occlusion boundary uniquely constrains surface orientation, it does not constrain

the solution su�ciently to recover depth uniquely [Oliensis 91].

� Singular points in the image; we have seen that at most surface points gradient is not

fully constrained by image intensities. Suppose that the reectance function R(p; q)

has a global maximum, so R(p; q) < R(p0; q0) for all [p; q] 6= p0; q0. This maximum

corresponds to singular points in the image;

E(x0; y0) = R(p0; q0) (9.118)

Here, the surface normal is parallel to the direction towards the light source. Singular

points are in general sources and sinks of characteristic stripes.

It is reported [Horn 90] that direct implementation of this characteristic strip method

does not yield particularly good results due to numerical instability.

Global optimization methods

These methods are formulated as a variational task in which the whole image plays a role

in the chosen functional. Results obtained are in general better than those generated by

incremental methods.

We already know that under the simplifying conditions for recovery of surface normals

from intensities (stated in Section 9.3.2) the image irradiance equation (9.112) relates image

irradiance E and surface reection R as

E(x; y) = R(p(x; y); q(x; y)) (9.119)

The task is to �nd the surface height z(x; y) given the image E(x; y) and reectance map

R(p; q).

Now presented with an intensity image, a locus of possible orientations for each pixel can

be located in gradient space, immediately reducing the number of possible interpretations of

the scene. Of course, at this stage, a pixel may be part of any surface lying on the gradient

space contour; to determine which, another constraint needs to be deployed. The key to

deciding which point on the contour is correct is to note that `almost everywhere' 3D surfaces

are smooth, in the sense that neighboring pixels are very likely to represent orientations whose

gradient space positions are also very close. This additional constraint allows a relaxation

process to determine a best �t (minimum-cost) solution to the problem. The details of the

procedure are very similar to those used to extract optical ow, and are discussed more fully

in Section 15.2.1, but may be summarized as:



496 CHAPTER 9. 3D VISION, GEOMETRY AND RADIOMETRY

Algorithm 9.4: Extracting shape from shading

1. For each pixel (x; y), select an initial guess to orientation p0(x; y), q0(x; y).

2. Apply two constraints:

(a) The observed intensity f(x; y) should be close to that predicted by the reectance

map R(p; q) derived from foreknowledge of the lighting and surface properties.

(b) p and q vary smoothly { therefore their Laplacians r2p and r2q should be small.

3. Apply the method of Lagrange multipliers to minimize the quantity

�(x;y)Energy(x; y) (9.120)

where

Energy(x; y) = (f(x; y)�R(p; q))2 + �((r2p)2 + (r2q)2) (9.121)

The �rst term of equation (9.121) is the intensity `knowledge', while the second, in which � is

a Lagrange multiplier, represents the smoothness constraint. Deriving a suitable solution to

this problem is a standard technique that iterates p and q until E falls below some reasonable

bound; a closely related problem is inspected in more detail in Section 15.2.1, and the method

of optimization using Lagrange multipliers is described in many books [Horn 86].

The signi�cant work in this area is due to Horn [Horn 75] and Ikeuchi [Ikeuchi and Horn

81] and predated the publication of Marr's theory, being complete in the form presented here

by 1980. Shape from shading, as implemented by machine vision systems, is often not as

reliable as other `Shape from' techniques since it is so easy to confuse with reections, or for

it to fail through poorly modeled reectance functions. This observation serves to reinforce

the point that the human recognition system is very powerful since in deploying elaborate

knowledge, it does not su�er these drawbacks. A review of signi�cant developments in the

area since may be found in [Horn and Brooks 89].

Local shading analysis

Local shading analysis methods use just a small neighborhood of the current point on the

surface, and seek a direct relation between the di�erential surface structure and the local

structure of the corresponding intensity image. The surface is considered as a set of small

neighborhoods, each de�ned in some local neighborhood of one of its points. Only an estimate

of local surface orientation is available, not information about the height of a particular surface

point.

The main advantage of local shading analysis is that it provides surface related informa-

tion to higher-level vision algorithms from a single monocular intensity image without any

need to reconstruct the surface in explicit depth form [�S�ara 95]. This is possible since the

intensity image is closely related to local surface orientation. The surface normal and the

shape operator (`curvature matrix') form a natural shape model that can be recovered from

an intensity image by local computations. This approach is, of course, much faster than the

solution propagation or global variational methods.
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The fundamental contribution to local shading analysis comes from Pentland [Pentland

84]; an overview can be found in [Pentland and Bichsel 94]. In addition, �S�ara [�S�ara 94]

demonstrates:

1. It was known that local surface orientation and Gaussian curvature sign can be deter-

mined uniquely at occlusion boundaries. Further orientation on a self-occluding bound-

ary can also be determined uniquely; self-occluding contours are thus a rich source of

unambiguous information about the surface.

2. The di�erential properties of isophotes (curves of constant image intensity) are closely

related to the properties of the underlying surface. Isophotes are projections of curves

of constant slant from the light direction if the surface reectance is space-invariant, or

the illuminant is located at the vantage point.

9.3.4 Photometric stereo

Woodham proposed photometric stereo as a method that recovers surface orientation

unambiguously, assuming a known reectance function [Woodham 80]. Consider a particular

Lambertian surface with varying albedo �. The key idea of photometric stereo is to look at the

surface from one �xed viewing direction while changing the direction of incident illumination.

Assume we have three or more such images of the Lambertian surface; then the surface

normals can be uniquely determined based on the shading variations in the observed images.

The lines of constant reectance on the surface correspond to lines of constant irradiation

E in the image (called also isophotes); these curves observed in images are second order

polynomials. The local surface orientation n = [p; q] is constrained along a second order

curve in the reectance map. For di�erent illumination directions, the surface reectance

remains the same on the surface but the observed reectance map R(p; q) changes. This

provides an additional constraint on possible surface orientation that is another second order

polynomial. Two views corresponding to two distinct illumination directions are not enough

to determine the surface orientation [p; q] uniquely, and a third view is needed to derive a

unique solution. If more than three distinct illuminations are at hand, an overdetermined set

of equations can be solved.

A practical setup for image capture consists of one camera and K point illumination

sources, K � 3, with known intensities and illumination directions L1; : : : ; LK . Only one

light source is active at any one time. The setup should be photometrically calibrated to take

into account light source intensities, particular camera gain, and o�set; such a calibration

is described in [Haralick and Shapiro 93]. After photometric calibration, the images give K

estimates of image irradiances Ei(x; y); i = 1; : : : ; K.

If not all light is reected from a surface then albedo �, 0 � � � 1, occurs in the image

irradiance (as shown in equation (9.110)). For a Lambertian surface the image irradiance

equation simpli�es to

E(x; y) = �R(p; q) (9.122)

Recall equation (9.109) (called the cosine law) showing that the reectance map of a Lam-

bertian surface is given by the dot product of the surface normal n and the direction of the

incident light Li If the surface reectance map is substituted into equation (9.122) we get K
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image irradiance equations

Ei(x; y) = �Lin ; i = 1; : : : ; K (9.123)

For each point x; y in the image we get a vector of image irradiances E = [E1; : : : ; EK]
T . The

light directions can be written in the form of a K � 3 matrix

L =

2
64

L1
...

LK

3
75 (9.124)

At each image point, the system of image irradiance equations can be written

E = �Ln (9.125)

The matrix L does not depend on the pixel position in the image, and we can thus derive

a vector representing simultaneously surface albedo and a local surface orientation.

If we have three light sources, K = 3, we can derive a solution by inverting the regular

matrix L

�n = L�1E (9.126)

The unit normal is then

n =
L�1E

kL�1Ek
(9.127)

For more than three light sources, the pseudo-inverse of a rectangular matrix is determined

to get a solution in the least square sense

n =
(LT L)�1 LT E

k(LT L)�1 LT Ek
(9.128)

Note that the pseudoinversion (or inversion in equation (9.127)) must be repeated for each

image pixel x; y to derive an estimate of the corresponding normal.

9.4 Summary

� 3D vision aims at inferring 3D information from 2D scenes, a task with embedded

geometric and radiometric di�culties. The geometric problem is that a single image

does not provide enough information about 3D structures, and the radiometric problem

is the complexity of the physical process of intensity image creation. This process is

complex, and typically not all input parameters are known precisely.

� 3D vision tasks

{ There are several approaches to 3D vision which may be categorized as bottom-up

(or reconstruction) or top-down (model-based vision).

{ Marr's theory, formulated in the late Seventies, is an example of the bottom-

up approach. The aim is to reconstruct qualitative and quantitative 3D geometric

descriptions from one or more intensity images under very weak assumptions about

objects in the scene.
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{ There are four representations ordered in bottom-up fashion: (1) input intensity

image(s); (2) primal sketch, representing in viewer-centered co-ordinates signi�cant

edges in the image; (3) 2.5D sketch, representing depth from the observer and local

orientation of the surface; and (4) 3D representation, representing object geometry

in co-ordinates related to the objects themselves.

{ The 2.5D sketch is derived from the primal sketch by a variety of techniques called

shape from X.

{ 3D representations are very hard to obtain; this step has not been solved in the

general case.

{ More recent perception paradigms such as active, purposive and qualitative vision

try to provide a computational model explaining the `understanding' aspects of

vision.

{ None have yet led to direct practical applications, but many partial techniques

(such as shape from X) are widely used in practice.

� Radiometry and 3D vision

{ 3D perspective geometry is the basic mathematical tool for 3D vision as it explains

a pinhole camera.

{ Lines parallel in the 3D world do not project as parallel lines in 2D image.

{ The case of the single perspective camera permits carefully study of calibration of

intrinsic and extrinsic camera parameters.

{ Two perspective cameras constitute stereopsis and allow depth measurements in

3D scenes.

{ Epipolar geometry teaches us that the search for corresponding points is inher-

ently one-dimensional. This can be expressed algebraically using the fundamental

matrix.

{ This tool has several applications such as image recti�cation, ego-motion estima-

tion from calibrated cameras measurements, 3D Euclidean reconstruction from two

fully calibrated cameras, 3D similarity reconstruction from two cameras with only

intrinsic calibration parameters known, and 3D projective reconstruction from two

uncalibrated cameras.

{ There a is trilinear relation among views of from three cameras that is algebraically

expressed using a trifocal tensor.

{ The application of the trilinear relation is in epipolar transfer; if two images are

known together with the trifocal tensor, the third perspective image can be com-

puted.

{ The correspondence problem is core to 3D vision; various passive and active tech-

niques to solve it exist.

� Radiometry and 3D vision

{ Radiometry informs us about the physics of image formation.
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{ If it is understood together with position of illuminants, type, surface reectance

and viewer position, something can be learned about depth and scene surface

orientation from one intensity image.

{ This task is called shape from shading.

{ The task is ambiguous and numerically unstable. Shape from shading can be

understood in the simple case of Lambertian surfaces.

{ There is a practical method that uses one camera and three known illuminants,

selective illumination provides three intensity images.

{ Photometric stereo allows measure of orientation of surfaces.

9.5 Exercises

Short-answer questions

1. Explain the di�erence between a bottom-up approach (object reconstruction) to 3D vision as
opposed to top-down (model-based).

2. Explain the basic idea of active vision, and give some examples of how this approach eases vision
tasks.

3. Give examples of perspective images from everyday life. Where do parallel lines in the world
not correspond to parallel ones in images?

4. What are the intrinsic and extrinsic calibration parameters of a single perspective camera? How
are they estimated from known scenes?

5. Do zoom lenses typically have worse geometric distortion compared to �xed focal length lenses?
Is the di�erence signi�cant?

6. What is the main contribution of epipolar geometry in stereopsis?

7. Where are epipoles in the case of two cameras with parallel optical axes (the canonical con�g-
uration for stereopsis)?

8. What is the di�erence between the fundamental and essential matrices in stereopsis?

9. How are mismatches in correspondences treated in stereopsis?

10. What are the applications of epipolar geometry in computer vision?

11. Explain the principle, advantages and applications of a trilinear relation among three cameras.
What is epipolar transfer?

12. Stereo correspondence algorithms are typically lost if the left and right images have large regions
of uniform brightness. How can depth acquisition still be made possible?

13. Active range �nders (e.g. with a laser plane) su�er from occlusions; some points are not visible
by the camera and some are not lit. What are the ways of dealing with this problem?

14. What is Moir�e interferometry? Does it give absolute depth?

15. Why is the relation between pixel intensity on one side and surface orientation, surface re-
ectance, illuminant types and position, and viewer position on the other side di�cult?

16. What is the vignetting error of a lens?

17. Under which circumstances can the surface orientation be derived from intensity changes in an
image?
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Problems

1. This problem relates to Marr's theory, in particular the representation scheme called primal
sketch (see Section 9.1.1).

Capture an intensity image (e.g. of an o�ce scene), and run an advanced edge detector (such
as Canny's or similar) on it. Threshold the magnitude of the image gradient.

Answer the following questions in an essay: Are the lines which you get the primal sketch?
Would it be possible to derive a 2.5D sketch directly from it? How? Discuss what more would
you need in the primal sketch. What about multiple scales?

2. Explain the notion of homogeneous co-ordinates. Is projective transformation linear if expressed
in homogeneous co-ordinates? Why are homogeneous co-ordinates often used in robotics to
express the kinematics of a manipulating arm? (Hint: express rotation and translation of an
object in 3D space using homogeneous co-ordinates)

3. Take a camera with an o�-the-shelf lens. Design and perform an experiment to �nd the intrinsic
calibration parameters of it. Design and use an appropriate calibration object (for example, a
grid like structure printed by laser printer on paper; you might capture it at di�erent heights
by placing it on a box of known height). Discuss the precision of your results. Is the pinhole
model of your camera appropriate? (Hint: look at distortions of a grid as in Figure 9.7).

4. Consider the case of two cameras (stereopsis) with baseline 2h. A scene point lies on the optical
axis at depth d from the baseline. Assume that the precision of pixel position measurement x
in the image plane is given by dispersion �

2. Derive a formula showing the dependence of the
precision of depth measurement against dispersion. (Hint: di�erentiate d according to x.)

5. Conduct an experiment with stereo correspondences. For simplicity, capture a pair of stereo
images using cameras in canonical con�guration (epipolar lines correspond to lines in images),
and cut corresponding lines from both images. Visualize the brightness pro�les in those lines
(for example, using MATLAB or another package). First, try to �nd correspondences in bright-
ness manually. Second, decide if correlation-based or feature-based stereo techniques are more
suitable for your case. Program it and test on your pro�les.

6. Conduct a laboratory experiment with photometric stereo. You will need one camera and three
light sources. Take some opaque object and measure its surface orientation using photometric
stereo (see Section 9.3.4).
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