
Noise in images
filtering in spatial and frequency domain

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering

Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

http://cmp.felk.cvut.cz/~svoboda

2/48
Noise in images

� deterioration of analog signal

� CCD/CMOS chips are not perfect

� typically, the smaller active surface, the more noise

http://cmp.felk.cvut.cz

2/48
Noise in images

� deterioration of analog signal

� CCD/CMOS chips are not perfect

� typically, the smaller active surface, the more noise

How to suppress noise?

� digital only, ie. no A/D and D/A conversion. → ok

� larger chips → expensive, expensive lenses

� cooled cameras (astronomy) → slow, expensive

� (local) image preprocessing

http://cmp.felk.cvut.cz

3/48
Example scene

image sequence

http://cmp.felk.cvut.cz
file:///home.zam/svoboda/Vyuka/ImageProcessing/MyFigs/Noise/noise_in_camera.avi

4/48
Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

http://cmp.felk.cvut.cz

4/48
Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

Properties of the average value sN = 1
N

∑N
1 xi

http://cmp.felk.cvut.cz

4/48
Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

Properties of the average value sN = 1
N

∑N
1 xi

� Expectation: E{sN} = 1
N

∑N
1 E{xi} = µ

http://cmp.felk.cvut.cz

4/48
Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

Properties of the average value sN = 1
N

∑N
1 xi

� Expectation: E{sN} = 1
N

∑N
1 E{xi} = µ

� Variance: We know that var{xi/N} = var{xi}/N2, thus

var{sN} =
var{x1}

N2
+

var{x2}
N2

+ . . . +
var{xN}

N2
=

σ2

N
.

which means that standard deviation of sN decreases as 1√
N

.

http://cmp.felk.cvut.cz

5/48
Example

a noisy image average from ≈ 60 observations.

http://cmp.felk.cvut.cz

6/48
Example — equalized

a noisy image average from ≈ 60 observations.

http://cmp.felk.cvut.cz

7/48
Standard deviations in pixels

for images:

Standard deviation in red channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Standard deviation in red channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
1

1.5

2

2.5

3

3.5

4

4.5

without compression lossy compressed (jpg)

Lossy compression is generally not a good choice for machine vision!

http://cmp.felk.cvut.cz

8/48
Problem: noise suppression from just one image

� redundancy in images

� neighbouring pixels have mostly the same or similar value

� correction of the pixel value based on an analysis of its neighbourhood

� leads to image blurring

http://cmp.felk.cvut.cz

8/48
Problem: noise suppression from just one image

� redundancy in images

� neighbouring pixels have mostly the same or similar value

� correction of the pixel value based on an analysis of its neighbourhood

� leads to image blurring

spatial filtering

http://cmp.felk.cvut.cz

9/48
Spatial filtering — informally

Idea: Output is a function of a pixel value and those of its neighbours.

Example for 8−connected region.

g(x, y) = Op

 f(x− 1, y − 1) f(x, y − 1) f(x + 1, y − 1)
f(x− 1, y) f(x, y) f(x + 1, y)
f(x− 1, y + 1) f(x, y + 1) f(x + 1, y + 1)


Possible operations: sum, average, weighted sum, min, max, median . . .

http://cmp.felk.cvut.cz

10/48
Spatial filtering by masks

� Very common neighbour operation is per-element multiplication with a

set of weights and sum together.

� Set of weights is often called mask or kernel.

Local neighbourhood mask

f(x-1,y-1) f(x,y-1) f(x+1,y-1)

f(x-1,y) f(x,y) f(x+1,y)

f(x-1,y+1) f(x,y+1) f(x+1,y+1)

w(-1,-1) w(0,-1) w(+1,-1)

w(-1,0) w(0,0) w(+1,0)

w(-1,+1) w(0,+1) w(+1,+1)

g(x, y) =
1∑

k=−1

1∑
l=−1

w(k, l)f(x + k, y + l)

http://cmp.felk.cvut.cz

11/48
2D convolution

� Spatial filtering is often referred to as convolution.

� We say, we convolve the image by a kernel or mask.

� Though, it is not the same. Convolution uses a flipped kernel.

Local neighbourhood mask

f(x-1,y-1) f(x,y-1) f(x+1,y-1)

f(x-1,y) f(x,y) f(x+1,y)

f(x-1,y+1) f(x,y+1) f(x+1,y+1)

w(+1,+1) w(0,+1) w(-1,+1)

w(+1,0) w(0,0) w(-1,0)

w(+1,-1) w(0,-1) w(-1,-1)

g(x, y) =
1∑

k=−1

1∑
l=−1

w(k, l)f(x− k, y − l)

http://cmp.felk.cvut.cz

12/48
2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

http://cmp.felk.cvut.cz

12/48
2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

� 2D convolution describes well the formation of images.

http://cmp.felk.cvut.cz

12/48
2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

� 2D convolution describes well the formation of images.

� Many image distortions made by imperfect acquisition may be modelled

by 2D convolution, too.

http://cmp.felk.cvut.cz

12/48
2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

� 2D convolution describes well the formation of images.

� Many image distortions made by imperfect acquisition may be modelled

by 2D convolution, too.

� It is a powerful thinking tool.

http://cmp.felk.cvut.cz

13/48
2D convolution — definition

Convolution integral

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x− k, y − l)h(k, l)dkdl

http://cmp.felk.cvut.cz

13/48
2D convolution — definition

Convolution integral

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x− k, y − l)h(k, l)dkdl

Symbolic abbreviation

g(x, y) = f(x, y) ∗ h(x, y)

http://cmp.felk.cvut.cz

14/48
Discrete 2D convolution

g(x, y) = f(x, y) ∗ h(x, y) =
∞∑

k=−∞

∞∑
l=−∞

f(x− k, y − l)h(k, l)

What with missing values f(x− k, y − l)?

Zero-padding: add zeros where needed.

 1 1 1
1 1 1
1 2 1

 ∗

 0 0 1
0 1 0
1 0 0

 =

http://cmp.felk.cvut.cz

14/48
Discrete 2D convolution

g(x, y) = f(x, y) ∗ h(x, y) =
∞∑

k=−∞

∞∑
l=−∞

f(x− k, y − l)h(k, l)

What with missing values f(x− k, y − l)?

Zero-padding: add zeros where needed.

 1 1 1
1 1 1
1 2 1

 ∗

 0 0 1
0 1 0
1 0 0

 =


0 0 1 1 1
0 1 2 2 1
1 2 3 3 1
1 2 3 1 0
1 2 1 0 0


The result is zero elsewhere. The concept is somehow contra-intuitive,

practice with a pencil and paper.

http://cmp.felk.cvut.cz

15/48
Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

http://cmp.felk.cvut.cz

15/48
Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample

http://cmp.felk.cvut.cz

15/48
Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample

� send each one individually through h to produce blurred points

http://cmp.felk.cvut.cz

15/48
Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample

� send each one individually through h to produce blurred points

� sum up the blurred points

http://cmp.felk.cvut.cz

16/48
Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

http://cmp.felk.cvut.cz

16/48
Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x

http://cmp.felk.cvut.cz

16/48
Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x

� point-wise multiply for each position k value f(x− k) and the shifted

flipped copy of h.

http://cmp.felk.cvut.cz

16/48
Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x

� point-wise multiply for each position k value f(x− k) and the shifted

flipped copy of h.

� sum for all k and write that value at position x

http://cmp.felk.cvut.cz

17/48
Motion blur modelled by convolution

Camera moves along x axis during

acquisition.

g(x) =
∑

k

f(x− k)h(k)

� g(x) is the image we get

� f(x) say to be the (true) 2D

function

� g does not depend only on f(x)
but also on all k previous values

of f

� #k measures the amount of the

motion

� if the motion is steady then

h(k) = 1/(#k)

h is impulse response of the system (camera), image restoration

http://cmp.felk.cvut.cz

18/48
Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

http://cmp.felk.cvut.cz

18/48
Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

Causality!

http://cmp.felk.cvut.cz

18/48
Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

Causality!

In g(x) =
∑

k f(x + k)h(k) we are asking for values of input function f that

are yet to come!

http://cmp.felk.cvut.cz

18/48
Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

Causality!

In g(x) =
∑

k f(x + k)h(k) we are asking for values of input function f that

are yet to come!

Solution: h(−k)

http://cmp.felk.cvut.cz

19/48
Convolution theorem

The Fourier transform of a convolution is the product of the Fourier

transforms.

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)

http://cmp.felk.cvut.cz

19/48
Convolution theorem

The Fourier transform of a convolution is the product of the Fourier

transforms.

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)

The Fourier transform of a product is the convolution of the Fourier

transforms.

F{f(x, y)h(x, y)} = F (u, v) ∗H(u, v)

http://cmp.felk.cvut.cz

20/48
Convolution theorem — proof

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)

F (u) = 1
M

∑M−1
x=0 f(x) exp (−i2πux/M) and g(x) =

∑M−1
k=0 f(k)h(x− k)

F{g(x)} = . . .

� 1
M

∑M−1
x=0

∑M−1
k=0 f(k)h(x− k)e(−i2πux/M)

� introduce new (dummy) variable w = x− k

� 1
M

∑M−1
k=0 f(k)

∑(M−1)−k
w=−k h(w)e(−i2πu(w+k)/M)

� remember that all functions g, h, f are assumed to be periodic with

period M

� 1
M

∑M−1
k=0 f(k)e(−i2πuk/M)

∑M−1
w=0 h(w)e(−i2πuw/M)

� which is indeed F (u)H(u)

http://cmp.felk.cvut.cz

21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

http://cmp.felk.cvut.cz

21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

� Image restoration, sometimes called deconvolution

http://cmp.felk.cvut.cz

21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

� Image restoration, sometimes called deconvolution

� Speed of computation. Convolution has O(M2), Fast Fourier

Transform (FFT) has O(M log2 M)

http://cmp.felk.cvut.cz

21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

� Image restoration, sometimes called deconvolution

� Speed of computation. Convolution has O(M2), Fast Fourier

Transform (FFT) has O(M log2 M)

Enough theory for now. Go for examples . . .

http://cmp.felk.cvut.cz

22/48
Spatial filtering

What is it good for?

� smoothing

� sharpening

� noise removal

� edge detection

� pattern matching

� ...

http://cmp.felk.cvut.cz

23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

http://cmp.felk.cvut.cz

23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

http://cmp.felk.cvut.cz

23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

� Any kernel with all positive weights causes smoothing or blurring

http://cmp.felk.cvut.cz

23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

� Any kernel with all positive weights causes smoothing or blurring

� They are called low-pass filters

http://cmp.felk.cvut.cz

23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

� Any kernel with all positive weights causes smoothing or blurring

� They are called low-pass filters

Averaging:

g(x, y) =
∑

k

∑
l w(k, l)f(x + k, y + l)∑

k

∑
l w(k, l)

http://cmp.felk.cvut.cz

24/48
Smoothing kernels

Can be of any size, any shape

h =
1
9

 1 1 1
1 1 1
1 1 1

 , h =
1
16

 1 2 1
2 4 2
1 2 1

 ,

h =
1
25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

http://cmp.felk.cvut.cz

25/48
Averaging ones(n × n) — increasing mask size

image 1024×768 7× 7 11× 11

15× 15 29× 29 43× 43

http://cmp.felk.cvut.cz

26/48

Frequency analysis of the spatial convolution —
Simple averaging

Original image 21× 21 const. mask filtered image

50 100 150 200 250

50

100

150

200

250 −4

−2

0

2

4

6

8

10

50 100 150 200 250

50

100

150

200

250 −14

−12

−10

−8

−6

−4

−2

0

50 100 150 200 250

50

100

150

200

250 −2

0

2

4

6

8

10

http://cmp.felk.cvut.cz

27/48

Frequency analysis of the spatial convolution —
Gaussian smoothing

Original image 21× 21 Gauss. mask filtered image

50 100 150 200 250

50

100

150

200

250 −4

−2

0

2

4

6

8

10

50 100 150 200 250

50

100

150

200

250

−20

−15

−10

−5

0

50 100 150 200 250

50

100

150

200

250 −2

0

2

4

6

8

10

http://cmp.felk.cvut.cz

28/48
Simple averaging vs. Gaussian smoothing

simple averaging Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some

high frequencies!

http://cmp.felk.cvut.cz

29/48

Frequency analysis of the spatial convolution —
Simple averaging

Original image 21× 21 const. mask filtered image

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−4

−2

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−10

−5

0

5

10

http://cmp.felk.cvut.cz

30/48

Frequency analysis of the spatial convolution —
Gaussian smoothing

Original image 21× 21 Gauss. mask filtered image

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−4

−2

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−30

−25

−20

−15

−10

−5

0

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−8

−6

−4

−2

0

2

4

6

8

10

12

http://cmp.felk.cvut.cz

31/48
Simple averaging vs. Gaussian smoothing

simple averaging Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some

high frequencies!

http://cmp.felk.cvut.cz

32/48
Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

http://cmp.felk.cvut.cz

32/48
Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the

values have minimal variance.

http://cmp.felk.cvut.cz

32/48
Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the

values have minimal variance.

Robust statistics: something better than the mean.

http://cmp.felk.cvut.cz

33/48
Rotation mask

Rotation mask 3× 3 seeks a homogeneous part at 5× 5 neighbourhood.

Together 9 positions, 1 in the middle + 8 on the image

1 2 7 8. . .

The mask with the lowest variance is selected as the proper neighbourhood.

http://cmp.felk.cvut.cz

34/48
Nonlinear smoothing — Robust statistics

Order-statistic filters

http://cmp.felk.cvut.cz

34/48
Nonlinear smoothing — Robust statistics

Order-statistic filters

� median

http://cmp.felk.cvut.cz

34/48
Nonlinear smoothing — Robust statistics

Order-statistic filters

� median

• Sort values and select the middle one.

http://cmp.felk.cvut.cz

34/48
Nonlinear smoothing — Robust statistics

Order-statistic filters

� median

• Sort values and select the middle one.

• A method of edge-preserving smoothing.

• Particularly useful for removing salt-and-pepper, or impulse noise.

http://cmp.felk.cvut.cz

34/48
Nonlinear smoothing — Robust statistics

Order-statistic filters

� median

• Sort values and select the middle one.

• A method of edge-preserving smoothing.

• Particularly useful for removing salt-and-pepper, or impulse noise.

� trimmed mean

• Throw away outliers and average the rest.

• More robust to a non-Gaussian noise than a standard averaging.

http://cmp.felk.cvut.cz

35/48
Median filtering

100 98 102

99 105 101

95 100 255

http://cmp.felk.cvut.cz

35/48
Median filtering

100 98 102

99 105 101

95 100 255

Mean = 117.2

http://cmp.felk.cvut.cz

35/48
Median filtering

100 98 102

99 105 101

95 100 255

Mean = 117.2

median: 95 98 99 100 100 101 102 105 255

Very robust, up to 50% of values may be outliers.

http://cmp.felk.cvut.cz

36/48
Nonlinear smoothing examples

noisy image averaging 3× 3 averaging 7× 7

noisy image median 3× 3 median 7× 7

The median filtering damage corners and thin edges.

http://cmp.felk.cvut.cz

37/48
Filtering in frequency domain

http://cmp.felk.cvut.cz

37/48
Filtering in frequency domain

1. F (u, v) = F{f(x, y)}

http://cmp.felk.cvut.cz

37/48
Filtering in frequency domain

1. F (u, v) = F{f(x, y)}

2. G(u, v) = H(u, v). ∗ F (u, v), where .∗ means “per element”

multiplication.

http://cmp.felk.cvut.cz

37/48
Filtering in frequency domain

1. F (u, v) = F{f(x, y)}

2. G(u, v) = H(u, v). ∗ F (u, v), where .∗ means “per element”

multiplication.

3. g(x, y) = F−1{G(u, v)}

http://cmp.felk.cvut.cz

37/48
Filtering in frequency domain

1. F (u, v) = F{f(x, y)}

2. G(u, v) = H(u, v). ∗ F (u, v), where .∗ means “per element”

multiplication.

3. g(x, y) = F−1{G(u, v)}

Do not forget: We display ln ‖F (u, v)‖. The filter must be applied to the

F (u, v).

http://cmp.felk.cvut.cz

38/48
Lowpass filtering — Buttherworth filter I

Shifted abs(FFT) of the original image

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200
4

6

8

10

12

14

16

18

http://cmp.felk.cvut.cz

39/48
Lowpass filtering — Buttherworth filter II

Shifted abs(FFT) of the filtered image

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200 −6

−4

−2

0

2

4

6

8

10

12

Buttherworth lowpass filter FFT of the filtered image

H(u, v) = 1
1+(D(u,v)/D0)

2/n, where D(u, v) =
√

u2 + v2

http://cmp.felk.cvut.cz

40/48
Lowpass filtering — Buttherworth filter III

Original image Filtered image

http://cmp.felk.cvut.cz

41/48
More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

http://cmp.felk.cvut.cz

41/48
More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

Image is a product of illumination and reflectance components:

f(x, y) = i(x, y)r(x, y)

http://cmp.felk.cvut.cz

41/48
More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

Image is a product of illumination and reflectance components:

f(x, y) = i(x, y)r(x, y)

Illumination i — slow spatial variations (low frequency)

http://cmp.felk.cvut.cz

41/48
More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

Image is a product of illumination and reflectance components:

f(x, y) = i(x, y)r(x, y)

Illumination i — slow spatial variations (low frequency)

Reflectance r — fast varitations (dissimilar objects)

http://cmp.felk.cvut.cz

41/48
More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

Image is a product of illumination and reflectance components:

f(x, y) = i(x, y)r(x, y)

Illumination i — slow spatial variations (low frequency)

Reflectance r — fast varitations (dissimilar objects)

Use logarithm to separate the components and filter the logarithms!

http://cmp.felk.cvut.cz

42/48
Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)

http://cmp.felk.cvut.cz

42/48
Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)

Fourier pair

Z(u, v) = I(u, v) + R(u, v)

http://cmp.felk.cvut.cz

42/48
Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)

Fourier pair

Z(u, v) = I(u, v) + R(u, v)

Filtering

S(u, v) = H(u, v)Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v)

http://cmp.felk.cvut.cz

42/48
Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)

Fourier pair

Z(u, v) = I(u, v) + R(u, v)

Filtering

S(u, v) = H(u, v)Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v)

back to space s(x, y) = F−1{S(u, v)} and back from ln

g(x, y) = exp (s(x, y))

So, we can suppress variations in illumination and enhance reflectance

component.

http://cmp.felk.cvut.cz

43/48
Homomorphic filtering — filters

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
homomorphic filter
Standard high−pass filter

Remember: The filter is applied to Z(u, v). Not to F (u, v)!

http://cmp.felk.cvut.cz

44/48
Homomorphic filtering — results

Original image.

http://cmp.felk.cvut.cz

44/48
Homomorphic filtering — results

Original image. Filtered image.

http://cmp.felk.cvut.cz

45/48
Where are the frequencies in image?

http://cmp.felk.cvut.cz

46/48
Both image low-pass filtered

http://cmp.felk.cvut.cz

47/48
‖IMorig − IMlp‖

abs(IM−IM
LP

)

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

20

40

60

80

100

120

abs(IM−IM
LP

)

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

20

40

60

80

100

120

http://cmp.felk.cvut.cz

48/48
Make one focused image

http://cmp.felk.cvut.cz

48/48
Make one focused image

http://cmp.felk.cvut.cz

48/48
Make one focused image

http://cmp.felk.cvut.cz

Standard deviation in red channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Standard deviation in red channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250

50

100

150

200

250 −4

−2

0

2

4

6

8

10

50 100 150 200 250

50

100

150

200

250 −14

−12

−10

−8

−6

−4

−2

0

50 100 150 200 250

50

100

150

200

250 −2

0

2

4

6

8

10

50 100 150 200 250

50

100

150

200

250 −4

−2

0

2

4

6

8

10

50 100 150 200 250

50

100

150

200

250

−20

−15

−10

−5

0

50 100 150 200 250

50

100

150

200

250 −2

0

2

4

6

8

10

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−4

−2

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−10

−5

0

5

10

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−4

−2

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−30

−25

−20

−15

−10

−5

0

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

−8

−6

−4

−2

0

2

4

6

8

10

12

1 2 7 8. . .

Shifted abs(FFT) of the original image

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200
4

6

8

10

12

14

16

18

Shifted abs(FFT) of the filtered image

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200 −6

−4

−2

0

2

4

6

8

10

12

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
homomorphic filter
Standard high−pass filter

abs(IM−IM
LP

)

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

20

40

60

80

100

120

abs(IM−IM
LP

)

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

20

40

60

80

100

120

	First page
	Noise in images
	Example scene
	Statistical point of view
	Example
	Example --- equalized
	Standard deviations in pixels
	Problem: noise suppression from just one image
	Spatial filtering --- informally
	Spatial filtering by masks
	2D convolution
	2D Convolution --- Why is it important?
	2D convolution --- definition
	Discrete 2D convolution
	Thinking about convolution
	Thinking about convolution II
	Motion blur modelled by convolution
	Spatial filtering vs. convolution --- Flipping kernel
	Convolution theorem
	Convolution theorem --- proof
	Convolution theorem --- what is it good for?
	Spatial filtering
	Smoothing
	Smoothing kernels
	Averaging ones($n	imes n$) --- increasing mask size
	Frequency analysis of the spatial convolution --- Simple averaging
	Frequency analysis of the spatial convolution --- Gaussian smoothing
	Simple averaging vs. Gaussian smoothing
	Frequency analysis of the spatial convolution --- Simple averaging
	Frequency analysis of the spatial convolution --- Gaussian smoothing
	Simple averaging vs. Gaussian smoothing
	Non-linear smoothing
	Rotation mask
	Nonlinear smoothing --- Robust statistics
	Median filtering
	Nonlinear smoothing examples
	Filtering in frequency domain
	Lowpass filtering --- Buttherworth filter I
	Lowpass filtering --- Buttherworth filter II
	Lowpass filtering --- Buttherworth filter III
	More advanced filtering --- Homomorphic filtering
	Homomorphic filtering --- cont.
	Homomorphic filtering --- filters
	Homomorphic filtering --- results
	Where are the frequencies in image?
	Both image low-pass filtered
	$|IM_{orig} - IM_{lp} |$
	Make one focused image
	Last page

