
Noise in images
filtering in spatial and frequency domain
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Noise in images

� deterioration of analog signal

� CCD/CMOS chips are not perfect

� typically, the smaller active surface, the more noise
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Noise in images

� deterioration of analog signal

� CCD/CMOS chips are not perfect

� typically, the smaller active surface, the more noise

How to suppress noise?

� digital only, ie. no A/D and D/A conversion. → ok

� larger chips → expensive, expensive lenses

� cooled cameras (astronomy) → slow, expensive

� (local) image preprocessing
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Example scene

image sequence

http://cmp.felk.cvut.cz
file:///home.zam/svoboda/Vyuka/ImageProcessing/MyFigs/Noise/noise_in_camera.avi
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Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2
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Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

Properties of the average value sN = 1
N

∑N
1 xi

� Expectation: E{sN} = 1
N

∑N
1 E{xi} = µ
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4/48
Statistical point of view

Suppose we can acquire N images of the same scene. For each pixels we

obtain N results xi, i = 1 . . . N . Assume:

� observations independent

� each xi has E{xi} = µ and var{xi} = σ2

Properties of the average value sN = 1
N

∑N
1 xi

� Expectation: E{sN} = 1
N

∑N
1 E{xi} = µ

� Variance: We know that var{xi/N} = var{xi}/N2, thus

var{sN} =
var{x1}

N2
+

var{x2}
N2

+ . . . +
var{xN}

N2
=

σ2

N
.

which means that standard deviation of sN decreases as 1√
N

.
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Example

a noisy image average from ≈ 60 observations.
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6/48
Example — equalized

a noisy image average from ≈ 60 observations.
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Standard deviations in pixels

for images:

Standard deviation in red channel
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without compression lossy compressed (jpg)

Lossy compression is generally not a good choice for machine vision!
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Problem: noise suppression from just one image

� redundancy in images

� neighbouring pixels have mostly the same or similar value

� correction of the pixel value based on an analysis of its neighbourhood

� leads to image blurring
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Problem: noise suppression from just one image

� redundancy in images

� neighbouring pixels have mostly the same or similar value

� correction of the pixel value based on an analysis of its neighbourhood

� leads to image blurring

spatial filtering
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Spatial filtering — informally

Idea: Output is a function of a pixel value and those of its neighbours.

Example for 8−connected region.

g(x, y) = Op

 f(x− 1, y − 1) f(x, y − 1) f(x + 1, y − 1)
f(x− 1, y) f(x, y) f(x + 1, y)
f(x− 1, y + 1) f(x, y + 1) f(x + 1, y + 1)


Possible operations: sum, average, weighted sum, min, max, median . . .

http://cmp.felk.cvut.cz
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Spatial filtering by masks

� Very common neighbour operation is per-element multiplication with a

set of weights and sum together.

� Set of weights is often called mask or kernel.

Local neighbourhood mask

f(x-1,y-1) f(x,y-1) f(x+1,y-1)

f(x-1,y) f(x,y) f(x+1,y)

f(x-1,y+1) f(x,y+1) f(x+1,y+1)

w(-1,-1) w(0,-1) w(+1,-1)

w(-1,0) w(0,0) w(+1,0)

w(-1,+1) w(0,+1) w(+1,+1)

g(x, y) =
1∑

k=−1

1∑
l=−1

w(k, l)f(x + k, y + l)
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2D convolution

� Spatial filtering is often referred to as convolution.

� We say, we convolve the image by a kernel or mask.

� Though, it is not the same. Convolution uses a flipped kernel.

Local neighbourhood mask

f(x-1,y-1) f(x,y-1) f(x+1,y-1)

f(x-1,y) f(x,y) f(x+1,y)

f(x-1,y+1) f(x,y+1) f(x+1,y+1)

w(+1,+1) w(0,+1) w(-1,+1)

w(+1,0) w(0,0) w(-1,0)

w(+1,-1) w(0,-1) w(-1,-1)

g(x, y) =
1∑

k=−1

1∑
l=−1

w(k, l)f(x− k, y − l)

http://cmp.felk.cvut.cz
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2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.
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� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

� 2D convolution describes well the formation of images.

� Many image distortions made by imperfect acquisition may be modelled

by 2D convolution, too.
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12/48
2D Convolution — Why is it important?

� Input and output signals need not to be related through convolution,

but if they are (and only if) the system is linear and time invariant.

� 2D convolution describes well the formation of images.

� Many image distortions made by imperfect acquisition may be modelled

by 2D convolution, too.

� It is a powerful thinking tool.

http://cmp.felk.cvut.cz
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2D convolution — definition

Convolution integral

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x− k, y − l)h(k, l)dkdl
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13/48
2D convolution — definition

Convolution integral

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x− k, y − l)h(k, l)dkdl

Symbolic abbreviation

g(x, y) = f(x, y) ∗ h(x, y)
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Discrete 2D convolution

g(x, y) = f(x, y) ∗ h(x, y) =
∞∑

k=−∞

∞∑
l=−∞

f(x− k, y − l)h(k, l)

What with missing values f(x− k, y − l)?

Zero-padding: add zeros where needed.

 1 1 1
1 1 1
1 2 1

 ∗

 0 0 1
0 1 0
1 0 0

 =

http://cmp.felk.cvut.cz
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Discrete 2D convolution

g(x, y) = f(x, y) ∗ h(x, y) =
∞∑

k=−∞

∞∑
l=−∞

f(x− k, y − l)h(k, l)

What with missing values f(x− k, y − l)?

Zero-padding: add zeros where needed.

 1 1 1
1 1 1
1 2 1

 ∗

 0 0 1
0 1 0
1 0 0

 =


0 0 1 1 1
0 1 2 2 1
1 2 3 3 1
1 2 3 1 0
1 2 1 0 0


The result is zero elsewhere. The concept is somehow contra-intuitive,

practice with a pencil and paper.

http://cmp.felk.cvut.cz
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Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :
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Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample
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Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample

� send each one individually through h to produce blurred points
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15/48
Thinking about convolution

g(x) = f(x) ∗ h(x) =
∑

k

f(k)h(x− k)

Blurring f :

� break the f into each discrete sample

� send each one individually through h to produce blurred points

� sum up the blurred points

http://cmp.felk.cvut.cz
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Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero
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Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x
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Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x

� point-wise multiply for each position k value f(x− k) and the shifted

flipped copy of h.
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16/48
Thinking about convolution II

g(x) = f(x) ∗ h(x) =
∑

k

f(x− k)h(k)

Mask filtering:

� flip the function h around zero

� shift to output position x

� point-wise multiply for each position k value f(x− k) and the shifted

flipped copy of h.

� sum for all k and write that value at position x

http://cmp.felk.cvut.cz
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Motion blur modelled by convolution

Camera moves along x axis during

acquisition.

g(x) =
∑

k

f(x− k)h(k)

� g(x) is the image we get

� f(x) say to be the (true) 2D

function

� g does not depend only on f(x)
but also on all k previous values

of f

� #k measures the amount of the

motion

� if the motion is steady then

h(k) = 1/(#k)

h is impulse response of the system (camera), image restoration

http://cmp.felk.cvut.cz
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Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?
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Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
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Causality!
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Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

Causality!

In g(x) =
∑

k f(x + k)h(k) we are asking for values of input function f that

are yet to come!
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Spatial filtering vs. convolution — Flipping kernel

Why not g(x) =
∑

k f(x + k)h(k) as in spatial filtering but

g(x) =
∑

k f(x− k)h(−k)?

Causality!

In g(x) =
∑

k f(x + k)h(k) we are asking for values of input function f that

are yet to come!

Solution: h(−k)

http://cmp.felk.cvut.cz


19/48
Convolution theorem

The Fourier transform of a convolution is the product of the Fourier

transforms.

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)
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19/48
Convolution theorem

The Fourier transform of a convolution is the product of the Fourier

transforms.

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)

The Fourier transform of a product is the convolution of the Fourier

transforms.

F{f(x, y)h(x, y)} = F (u, v) ∗H(u, v)

http://cmp.felk.cvut.cz
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Convolution theorem — proof

F{f(x, y) ∗ h(x, y)} = F (u, v)H(u, v)

F (u) = 1
M

∑M−1
x=0 f(x) exp (−i2πux/M) and g(x) =

∑M−1
k=0 f(k)h(x− k)

F{g(x)} = . . .

� 1
M

∑M−1
x=0

∑M−1
k=0 f(k)h(x− k)e(−i2πux/M)

� introduce new (dummy) variable w = x− k

� 1
M

∑M−1
k=0 f(k)

∑(M−1)−k
w=−k h(w)e(−i2πu(w+k)/M)

� remember that all functions g, h, f are assumed to be periodic with

period M

� 1
M

∑M−1
k=0 f(k)e(−i2πuk/M)

∑M−1
w=0 h(w)e(−i2πuw/M)

� which is indeed F (u)H(u)

http://cmp.felk.cvut.cz


21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.
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Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

� Image restoration, sometimes called deconvolution

� Speed of computation. Convolution has O(M2), Fast Fourier

Transform (FFT) has O(M log2 M)
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21/48
Convolution theorem — what is it good for?

� Direct relationship between filtering in spatial and frequency domain.

See few slides later.

� Image restoration, sometimes called deconvolution

� Speed of computation. Convolution has O(M2), Fast Fourier

Transform (FFT) has O(M log2 M)

Enough theory for now. Go for examples . . .

http://cmp.felk.cvut.cz
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Spatial filtering

What is it good for?

� smoothing

� sharpening

� noise removal

� edge detection

� pattern matching

� ...

http://cmp.felk.cvut.cz


23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise
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Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

� Any kernel with all positive weights causes smoothing or blurring

� They are called low-pass filters
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23/48
Smoothing

Output value is computed as an average of the input value and its

neighbourhood.

� Advantage: less noise

� Disadvantage: blurring

� Any kernel with all positive weights causes smoothing or blurring

� They are called low-pass filters

Averaging:

g(x, y) =
∑

k

∑
l w(k, l)f(x + k, y + l)∑

k

∑
l w(k, l)

http://cmp.felk.cvut.cz
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Smoothing kernels

Can be of any size, any shape

h =
1
9

 1 1 1
1 1 1
1 1 1

 , h =
1
16

 1 2 1
2 4 2
1 2 1

 ,

h =
1
25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

http://cmp.felk.cvut.cz
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Averaging ones(n × n) — increasing mask size

image 1024×768 7× 7 11× 11

15× 15 29× 29 43× 43

http://cmp.felk.cvut.cz
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Frequency analysis of the spatial convolution —
Simple averaging

Original image 21× 21 const. mask filtered image
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Frequency analysis of the spatial convolution —
Gaussian smoothing

Original image 21× 21 Gauss. mask filtered image
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Simple averaging vs. Gaussian smoothing

simple averaging Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some

high frequencies!

http://cmp.felk.cvut.cz
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Frequency analysis of the spatial convolution —
Simple averaging

Original image 21× 21 const. mask filtered image
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Frequency analysis of the spatial convolution —
Gaussian smoothing

Original image 21× 21 Gauss. mask filtered image
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Simple averaging vs. Gaussian smoothing

simple averaging Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some

high frequencies!

http://cmp.felk.cvut.cz
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Non-linear smoothing

Goal: reduce blurring of image edges during smoothing
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Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the

values have minimal variance.
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Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the

values have minimal variance.

Robust statistics: something better than the mean.

http://cmp.felk.cvut.cz
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Rotation mask

Rotation mask 3× 3 seeks a homogeneous part at 5× 5 neighbourhood.

Together 9 positions, 1 in the middle + 8 on the image

1 2 7 8.  .  .

The mask with the lowest variance is selected as the proper neighbourhood.

http://cmp.felk.cvut.cz
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Nonlinear smoothing — Robust statistics

Order-statistic filters
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� median
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• A method of edge-preserving smoothing.

• Particularly useful for removing salt-and-pepper, or impulse noise.
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Nonlinear smoothing — Robust statistics

Order-statistic filters

� median

• Sort values and select the middle one.

• A method of edge-preserving smoothing.

• Particularly useful for removing salt-and-pepper, or impulse noise.

� trimmed mean

• Throw away outliers and average the rest.

• More robust to a non-Gaussian noise than a standard averaging.

http://cmp.felk.cvut.cz
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Median filtering

100 98 102

99 105 101

95 100 255
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Mean = 117.2
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Median filtering

100 98 102

99 105 101

95 100 255

Mean = 117.2

median: 95 98 99 100 100 101 102 105 255

Very robust, up to 50% of values may be outliers.

http://cmp.felk.cvut.cz
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Nonlinear smoothing examples

noisy image averaging 3× 3 averaging 7× 7

noisy image median 3× 3 median 7× 7

The median filtering damage corners and thin edges.

http://cmp.felk.cvut.cz
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Filtering in frequency domain
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1. F (u, v) = F{f(x, y)}
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multiplication.
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Filtering in frequency domain

1. F (u, v) = F{f(x, y)}

2. G(u, v) = H(u, v). ∗ F (u, v), where .∗ means “per element”

multiplication.

3. g(x, y) = F−1{G(u, v)}

Do not forget: We display ln ‖F (u, v)‖. The filter must be applied to the

F (u, v).

http://cmp.felk.cvut.cz
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Lowpass filtering — Buttherworth filter I

Shifted abs(FFT) of the original image
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Lowpass filtering — Buttherworth filter II

Shifted abs(FFT) of the filtered image
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Buttherworth lowpass filter FFT of the filtered image

H(u, v) = 1
1+(D(u,v)/D0)

2/n, where D(u, v) =
√

u2 + v2

http://cmp.felk.cvut.cz
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Lowpass filtering — Buttherworth filter III

Original image Filtered image

http://cmp.felk.cvut.cz
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More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.
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More advanced filtering — Homomorphic filtering

Idea: simultaneously normalize the brightness across an image and increase

contrast.

Image is a product of illumination and reflectance components:

f(x, y) = i(x, y)r(x, y)

Illumination i — slow spatial variations (low frequency)

Reflectance r — fast varitations (dissimilar objects)

Use logarithm to separate the components and filter the logarithms!
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Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)
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Homomorphic filtering — cont.

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y)

Fourier pair

Z(u, v) = I(u, v) + R(u, v)

Filtering

S(u, v) = H(u, v)Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v)

back to space s(x, y) = F−1{S(u, v)} and back from ln

g(x, y) = exp (s(x, y))

So, we can suppress variations in illumination and enhance reflectance

component.
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Homomorphic filtering — filters

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
homomorphic filter
Standard high−pass filter

Remember: The filter is applied to Z(u, v). Not to F (u, v)!
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Homomorphic filtering — results

Original image.
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44/48
Homomorphic filtering — results

Original image. Filtered image.
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Where are the frequencies in image?
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Both image low-pass filtered
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‖IMorig − IMlp‖

abs(IM−IM
LP

)
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Make one focused image
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Shifted abs(FFT) of the original image
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Shifted abs(FFT) of the filtered image
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