Noise in images filtering in spatial and frequency domain

Tomáš Svoboda

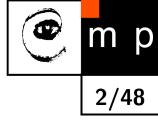
Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

Noise in images

- deterioration of analog signal
- CCD/CMOS chips are not perfect
- typically, the smaller active surface, the more noise



Noise in images

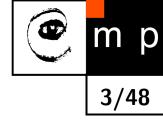
2/48

- deterioration of analog signal
- CCD/CMOS chips are not perfect
- typically, the smaller active surface, the more noise

How to suppress noise?

- digital only, ie. no A/D and D/A conversion. \rightarrow OK
- larger chips \rightarrow EXPENSIVE, EXPENSIVE LENSES
- cooled cameras (astronomy) \rightarrow SLOW, EXPENSIVE
- (local) image preprocessing

Example scene



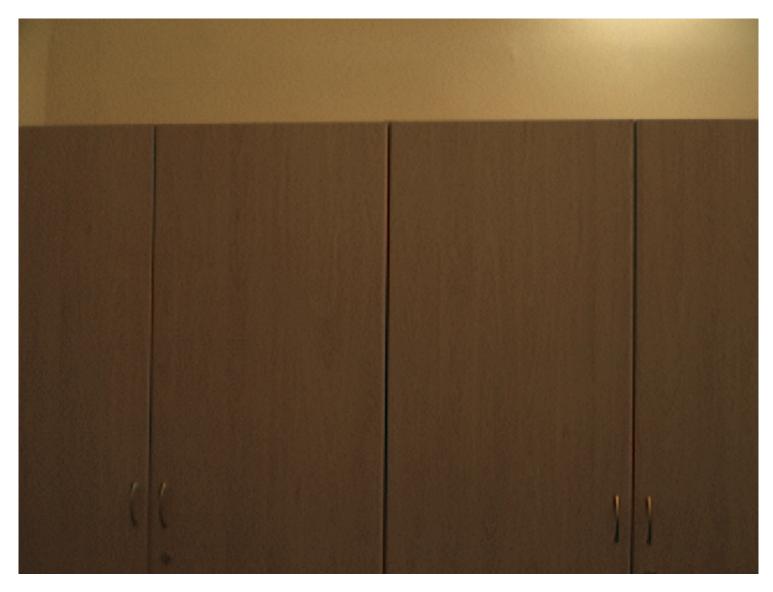


image sequence

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\operatorname{var}\{x_i\} = \sigma^2$

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\operatorname{var}\{x_i\} = \sigma^2$

Properties of the average value $s_N = \frac{1}{N} \sum_{i=1}^{N} x_i$

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\operatorname{var}\{x_i\} = \sigma^2$

Properties of the average value $s_N = \frac{1}{N} \sum_{i=1}^{N} x_i$

• Expectation:
$$\mathsf{E}\{s_N\} = \frac{1}{N} \sum_{i=1}^{N} \mathsf{E}\{x_i\} = \mu$$

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\operatorname{var}\{x_i\} = \sigma^2$

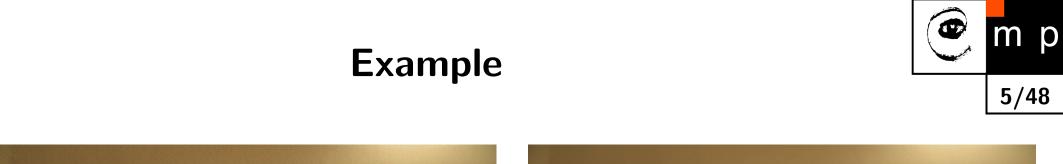
Properties of the average value $s_N = \frac{1}{N} \sum_{i=1}^{N} x_i$

• Expectation: $\mathsf{E}\{s_N\} = \frac{1}{N} \sum_{i=1}^{N} \mathsf{E}\{x_i\} = \mu$

• Variance: We know that $var\{x_i/N\} = var\{x_i\}/N^2$, thus

$$\operatorname{var}\{s_N\} = \frac{\operatorname{var}\{x_1\}}{N^2} + \frac{\operatorname{var}\{x_2\}}{N^2} + \dots + \frac{\operatorname{var}\{x_N\}}{N^2} = \frac{\sigma^2}{N}$$

which means that standard deviation of s_N decreases as $\frac{1}{\sqrt{N}}$.



a noisy image

average from \approx 60 observations.

Example — equalized



a noisy image

average from \approx 60 observations.

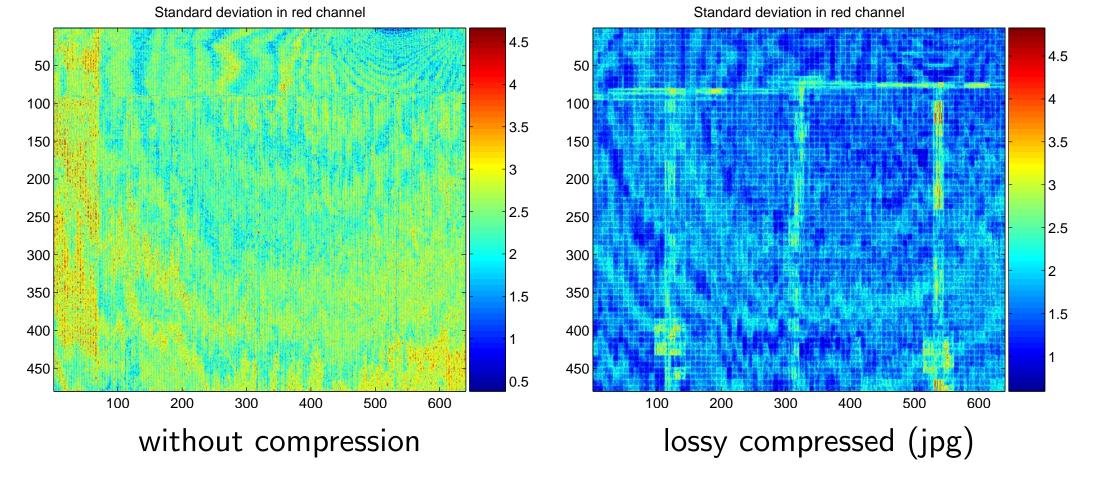
C

m p

6/48

Standard deviations in pixels

for images:



Lossy compression is generally not a good choice for machine vision!

Problem: noise suppression from just one image

- redundancy in images
- neighbouring pixels have mostly the same or similar value
- correction of the pixel value based on an analysis of its neighbourhood
- leads to image blurring

Problem: noise suppression from just one image

- redundancy in images
- neighbouring pixels have mostly the same or similar value
- correction of the pixel value based on an analysis of its neighbourhood
- leads to image blurring
- spatial filtering

Spatial filtering — informally

Idea: Output is a function of a pixel value and those of its neighbours. Example for 8-connected region.

$$g(x,y) = \operatorname{Op} \begin{bmatrix} f(x-1,y-1) & f(x,y-1) & f(x+1,y-1) \\ f(x-1,y) & f(x,y) & f(x+1,y) \\ f(x-1,y+1) & f(x,y+1) & f(x+1,y+1) \end{bmatrix}$$

Possible operations: sum, average, weighted sum, min, max, median . . .

Spatial filtering by masks

- Very common neighbour operation is per-element multiplication with a set of weights and sum together.
- Set of weights is often called mask or kernel.

Local neighbourhood

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

w(-1,-1)	w(0,-1)	w(+1,-1)
w(-1,0)	w(0,0)	w(+1,0)
w(-1,+1)	w(0,+1)	w(+1,+1)

mask

$$g(x,y) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k,l) f(x+k,y+l)$$

2D convolution

- Spatial filtering is often referred to as convolution.
- We say, we convolve the image by a kernel or mask.
- Though, it is not the same. Convolution uses a flipped kernel.

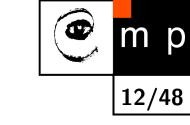
Local neighbourhood

mask

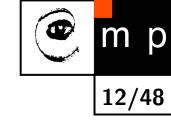
f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)	w(+1,+1)	w(0,+1)	w(-1,+1)
f(x-1,y)	f(x,y)	f(x+1,y)	w(+1,0)	w(0,0)	w(-1,0)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)	w(+1,-1)	w(0,-1)	w(-1,-1)

$$g(x,y) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k,l) f(x-k,y-l)$$





 Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.



- Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.
- 2D convolution describes well the formation of images.

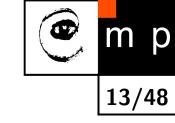
- Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.
- 2D convolution describes well the formation of images.
- Many image distortions made by imperfect acquisition may be modelled by 2D convolution, too.

- Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.
- 2D convolution describes well the formation of images.
- Many image distortions made by imperfect acquisition may be modelled by 2D convolution, too.
- It is a powerful thinking tool.

2D convolution — definition

Convolution integral

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-k,y-l)h(k,l)dkdl$$



2D convolution — definition

Convolution integral

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-k,y-l)h(k,l)dkdl$$

Symbolic abbreviation

$$g(x,y) = f(x,y) \ast h(x,y)$$

Discrete 2D convolution

$$g(x,y) = f(x,y) * h(x,y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(x-k,y-l)h(k,l)$$

What with missing values f(x - k, y - l)?

Zero-padding: add zeros where needed.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} =$$

Discrete 2D convolution

$$g(x,y) = f(x,y) * h(x,y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(x-k,y-l)h(k,l)$$

What with missing values f(x - k, y - l)?

Zero-padding: add zeros where needed.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 1 & 2 & 3 & 3 & 1 \\ 1 & 2 & 3 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 \end{bmatrix}$$

The result is zero elsewhere. The concept is somehow contra-intuitive, practice with a pencil and paper.

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring *f*:

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring *f*:

 \bullet break the f into each discrete sample

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x-k)$$

Blurring *f*:

- \bullet break the f into each discrete sample
- \bullet send each one individually through h to produce blurred points



$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x-k)$$

Blurring f:

- \bullet break the f into each discrete sample
- \bullet send each one individually through h to produce blurred points
- sum up the blurred points



$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

• flip the function h around zero



$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

- flip the function h around zero
- shift to output position x

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

- flip the function h around zero
- shift to output position x
- point-wise multiply for each position k value f(x k) and the shifted flipped copy of h.

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

- flip the function h around zero
- shift to output position x
- point-wise multiply for each position k value f(x k) and the shifted flipped copy of h.
- sum for all k and write that value at position x

Motion blur modelled by convolution

Camera moves along x axis during acquisition.

$$g(x) = \sum_{k} f(x - k)h(k)$$

- \blacklozenge g(x) is the image we get
- f(x) say to be the (true) 2D function
- g does not depend only on f(x)but also on all k previous values of f
- #k measures the amount of the motion
- if the motion is steady then h(k) = 1/(#k)

h is impulse response of the system (camera), image restoration



Spatial filtering vs. convolution — Flipping kernel

Why not $g(x) = \sum_k f(x+k)h(k)$ as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Spatial filtering vs. convolution — Flipping kernel

Why not $g(x) = \sum_k f(x+k)h(k)$ as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

Spatial filtering vs. convolution — Flipping kernel

Why not $g(x) = \sum_k f(x+k)h(k)$ as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

In $g(x) = \sum_k f(x+k)h(k)$ we are asking for values of input function f that are yet to come!

Spatial filtering vs. convolution — Flipping kernel

Why not $g(x) = \sum_k f(x+k)h(k)$ as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

In $g(x) = \sum_k f(x+k)h(k)$ we are asking for values of input function f that are yet to come!

Solution: h(-k)

Convolution theorem

The Fourier transform of a convolution is the product of the Fourier transforms.

 $\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$

Convolution theorem

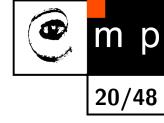
The Fourier transform of a convolution is the product of the Fourier transforms.

$$\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$$

The Fourier transform of a product is the convolution of the Fourier transforms.

$$\mathcal{F}\{f(x,y)h(x,y)\} = F(u,v) * H(u,v)$$

Convolution theorem — proof



$$\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$$

 $F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp(-i2\pi u x/M) \text{ and } g(x) = \sum_{k=0}^{M-1} f(k)h(x-k)$ $\mathcal{F}\{g(x)\} = \dots$

•
$$\frac{1}{M} \sum_{x=0}^{M-1} \sum_{k=0}^{M-1} f(k) h(x-k) e^{(-i2\pi u x/M)}$$

• introduce new (dummy) variable w = x - k

•
$$\frac{1}{M} \sum_{k=0}^{M-1} f(k) \sum_{w=-k}^{(M-1)-k} h(w) e^{(-i2\pi u(w+k)/M)}$$

 \blacklozenge remember that all functions g,h,f are assumed to be periodic with period M

•
$$\frac{1}{M} \sum_{k=0}^{M-1} f(k) e^{(-i2\pi u k/M)} \sum_{w=0}^{M-1} h(w) e^{(-i2\pi u w/M)}$$

• which is indeed F(u)H(u)

Direct relationship between filtering in spatial and frequency domain.
 See few slides later.

- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution

- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution
- Speed of computation. Convolution has $\mathcal{O}(M^2)$, Fast Fourier Transform (FFT) has $\mathcal{O}(M \log_2 M)$

- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution
- Speed of computation. Convolution has $\mathcal{O}(M^2)$, Fast Fourier Transform (FFT) has $\mathcal{O}(M \log_2 M)$

Enough theory for now. Go for examples . . .

Spatial filtering

What is it good for?

- smoothing
- sharpening
- 🔶 noise removal
- edge detection
- pattern matching

Output value is computed as an average of the input value and its neighbourhood.

Advantage: less noise

Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring

Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring

Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring
- They are called low-pass filters

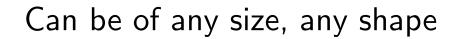
Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring
- They are called low-pass filters

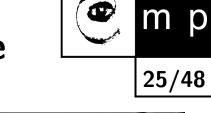
Averaging:

$$g(x,y) = \frac{\sum_k \sum_l w(k,l) f(x+k,y+l)}{\sum_k \sum_l w(k,l)}$$

Smoothing kernels



Averaging ones($n \times n$) — increasing mask size



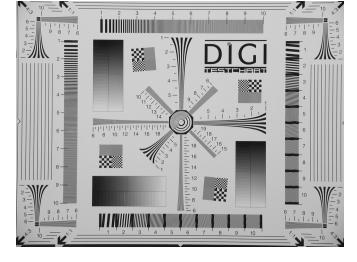
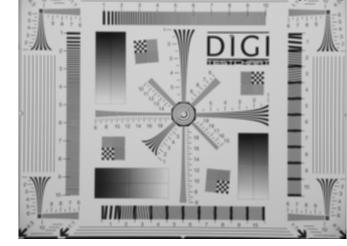
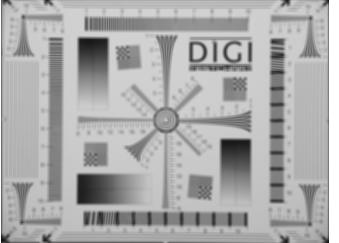


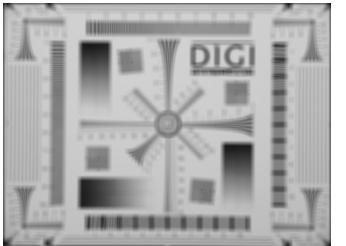
image 1024×768

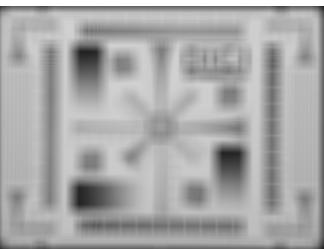


 7×7



 11×11



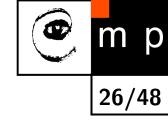


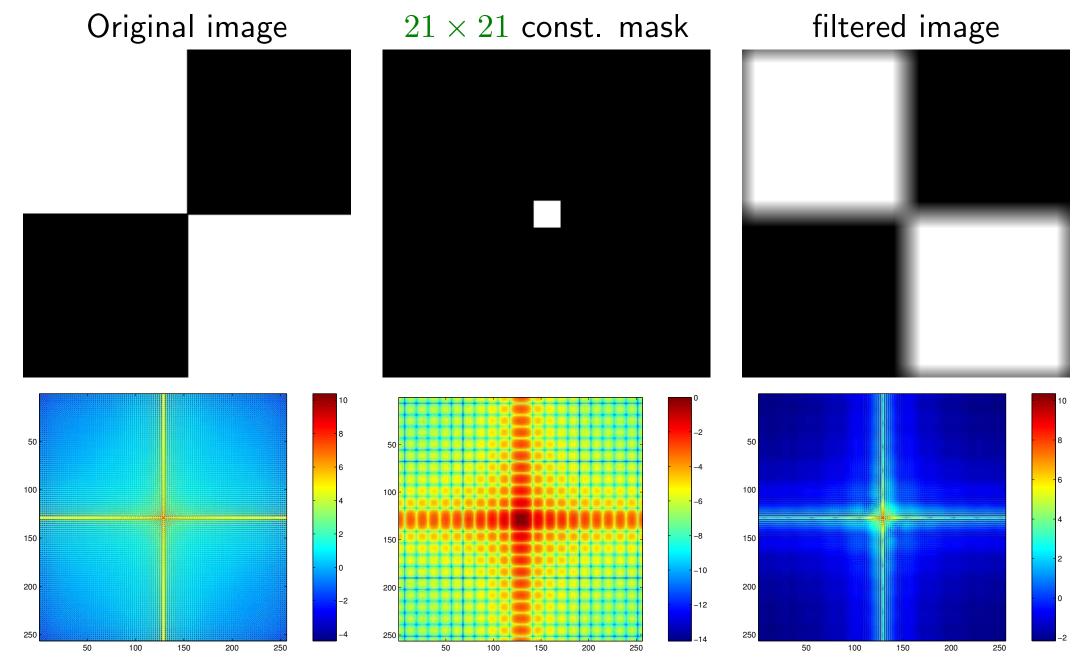
 15×15

 29×29

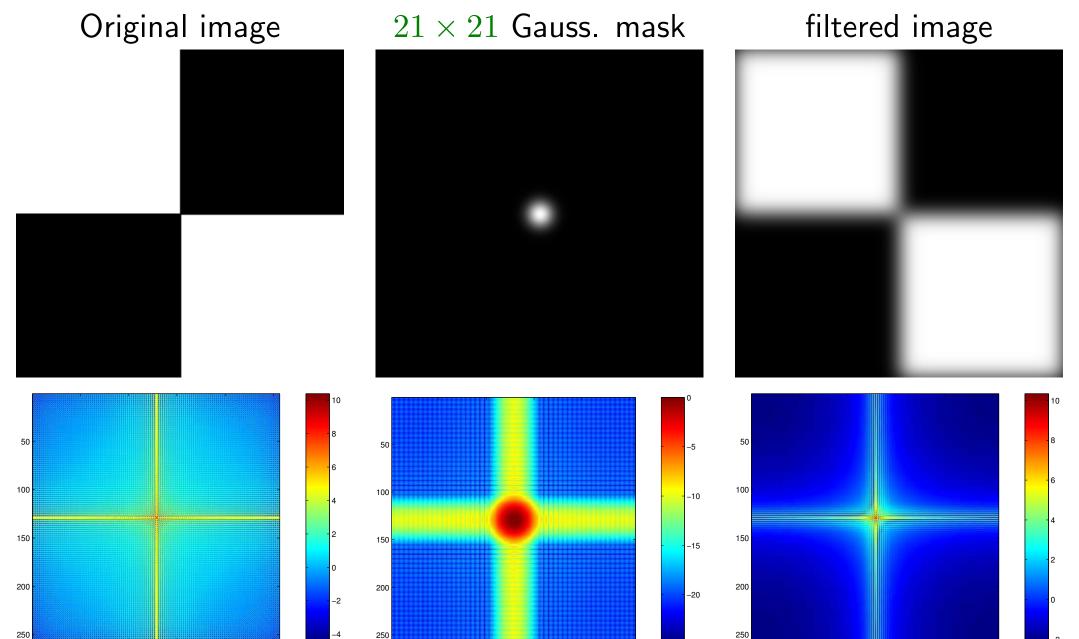
 43×43

Frequency analysis of the spatial convolution – Simple averaging



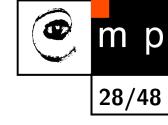


Frequency analysis of the spatial convolution – Gaussian smoothing



250 250 50

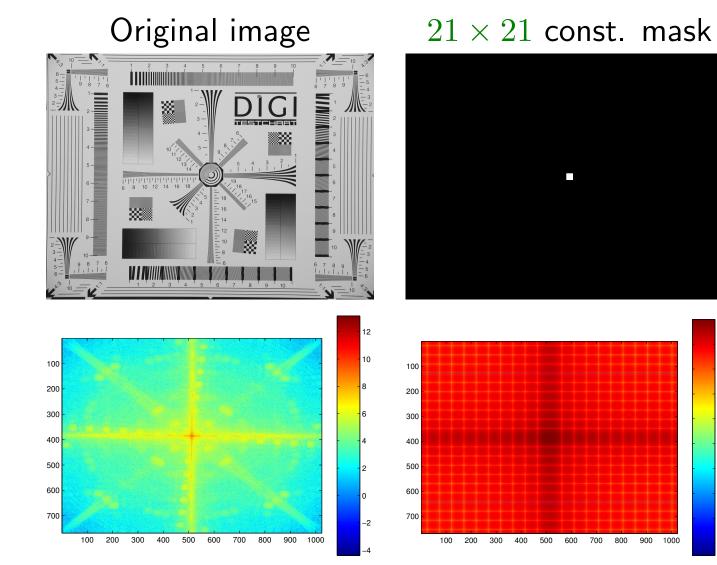
Simple averaging vs. Gaussian smoothing



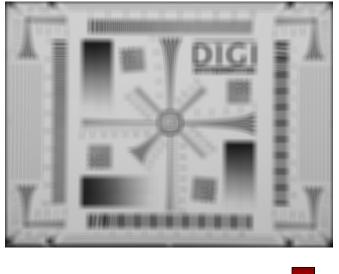
Gaussian smoothing simple averaging

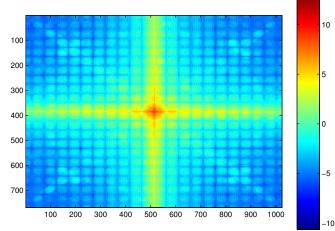
Both images blurred but filtering by a constant mask still shows up some high frequencies!

Frequency analysis of the spatial convolution -Simple averaging



filtered image





-10

-15

-20

-25

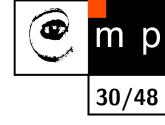
-30

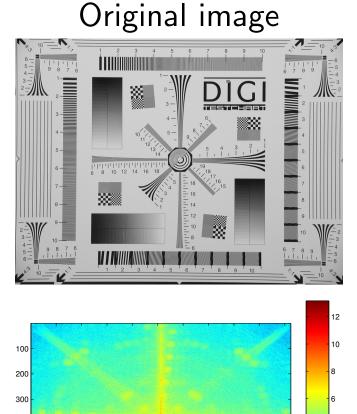
-35

-40

-45

Frequency analysis of the spatial convolution -Gaussian smoothing





400

500 600

700

800 900 1000

400

500

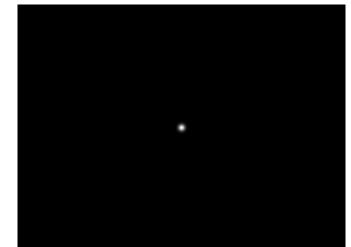
600

700

100

200 300

 21×21 Gauss. mask



100 200 300 400 500 600 700 100 200 300 400 500 600 700 800 900 1000

-2

-5

-10

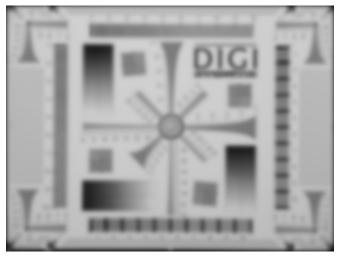
-15

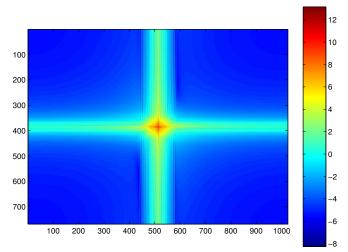
-20

-25

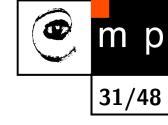
-30

filtered image

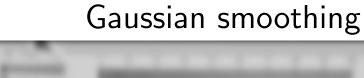


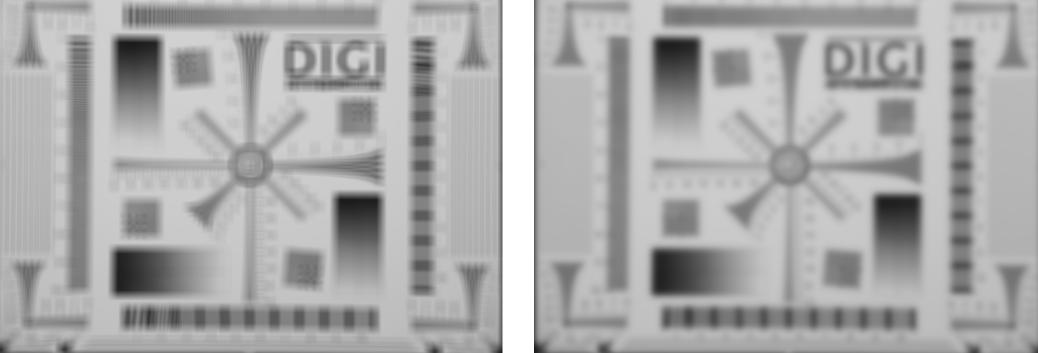


Simple averaging vs. Gaussian smoothing



simple averaging





Both images blurred but filtering by a constant mask still shows up some high frequencies!

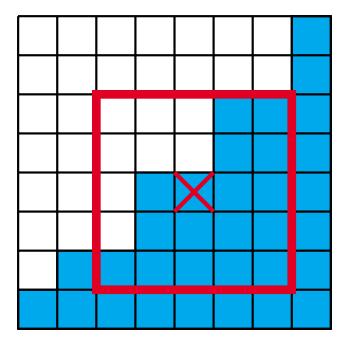
Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the values have minimal variance.



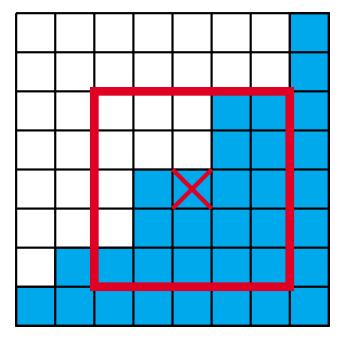


Non-linear smoothing

Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the values have minimal variance.

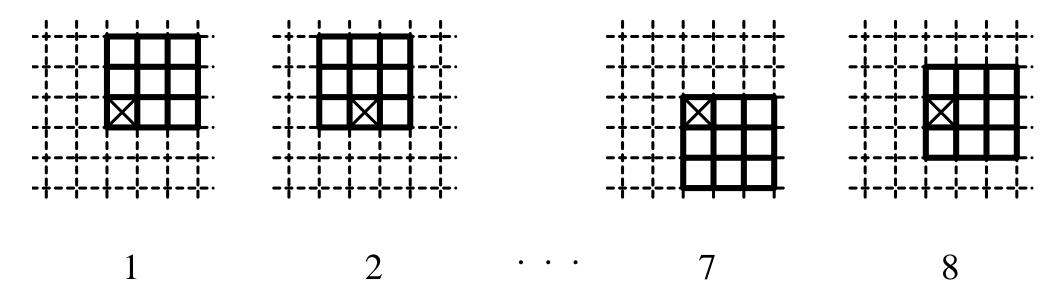
Robust statistics: something better than the mean.



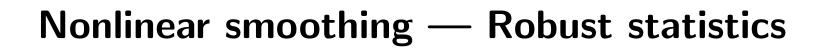
Rotation mask

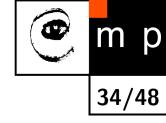
Rotation mask 3×3 seeks a homogeneous part at 5×5 neighbourhood.

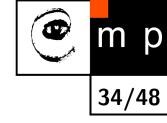
Together 9 positions, 1 in the middle + 8 on the image



The mask with the lowest variance is selected as the proper neighbourhood.



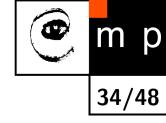




- median
 - Sort values and select the middle one.

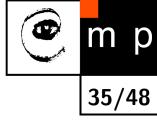


- 🔶 median
 - Sort values and select the middle one.
 - A method of edge-preserving smoothing.
 - Particularly useful for removing salt-and-pepper, or impulse noise.



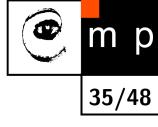
- 🔶 median
 - Sort values and select the middle one.
 - A method of edge-preserving smoothing.
 - Particularly useful for removing salt-and-pepper, or impulse noise.
 - trimmed mean
 - Throw away outliers and average the rest.
 - More robust to a non-Gaussian noise than a standard averaging.

Median filtering



100	98	102
99	105	101
95	100	255

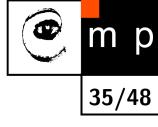
Median filtering



100	98	102
99	105	101
95	100	255

Mean = 117.2

Median filtering



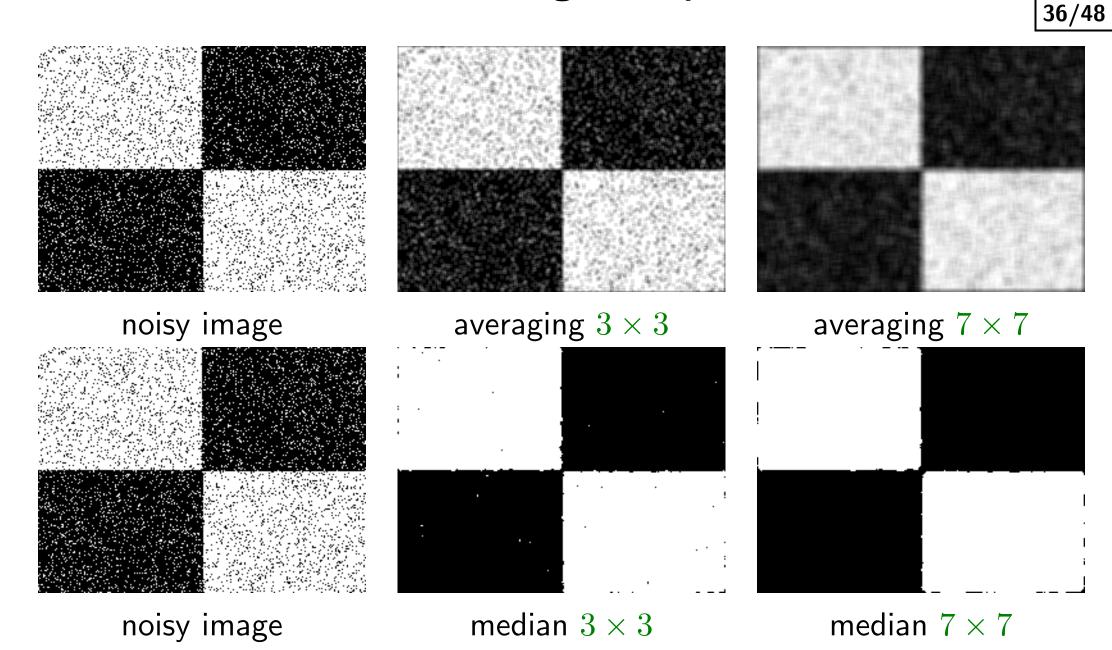
100	98	102
99	105	101
95	100	255

 $\mathsf{Mean} = 117.2$

median: 95 98 99 100 100 101 102 105 255

Very robust, up to 50% of values may be outliers.

Nonlinear smoothing examples

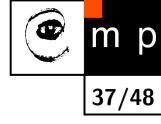


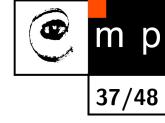
р

m

The median filtering damage corners and thin edges.

Filtering in frequency domain





1. $F(u, v) = \mathcal{F}\{f(x, y)\}$



- **1.** $F(u, v) = \mathcal{F}\{f(x, y)\}$
- 2. $G(u,v) = H(u,v) \cdot F(u,v)$, where $\cdot *$ means "per element" multiplication.

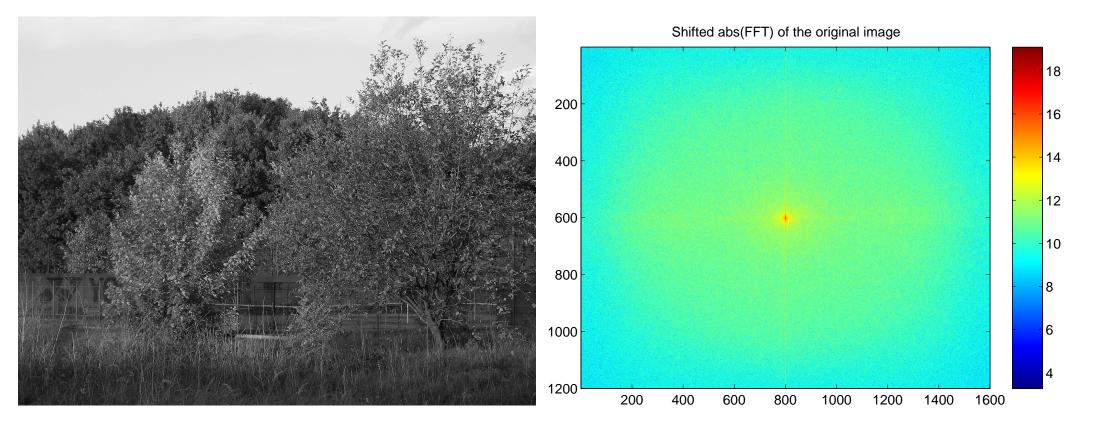
- **1.** $F(u, v) = \mathcal{F}\{f(x, y)\}$
- 2. $G(u,v) = H(u,v) \cdot F(u,v)$, where $\cdot *$ means "per element" multiplication.
- **3.** $g(x,y) = \mathcal{F}^{-1}\{G(u,v)\}$

- **1.** $F(u, v) = \mathcal{F}\{f(x, y)\}$
- 2. $G(u,v) = H(u,v) \cdot F(u,v)$, where $\cdot means$ "per element" multiplication.
- **3.** $g(x,y) = \mathcal{F}^{-1}\{G(u,v)\}$

Do not forget: We display $\ln ||F(u, v)||$. The filter must be applied to the F(u, v).

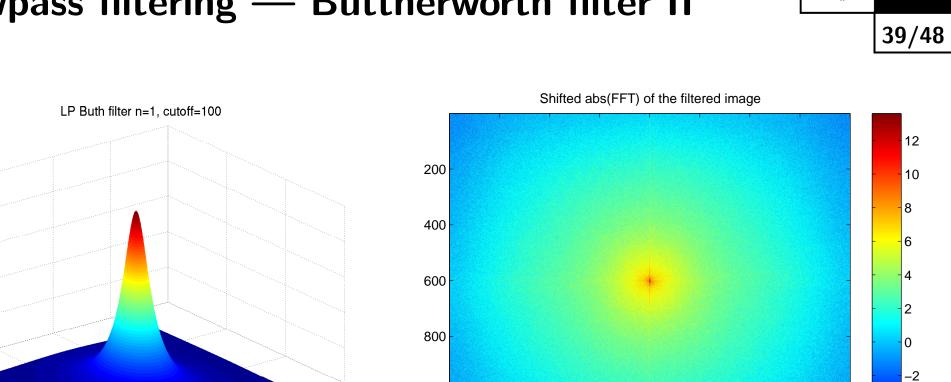
37/48

Lowpass filtering — Buttherworth filter I



(2) (m) (p) (3)

Lowpass filtering — Buttherworth filter II



Buttherworth lowpass filter

0.8

0.6

0.4

0.2

FFT of the filtered image

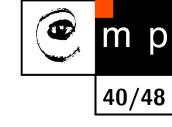
m p

-4

-6

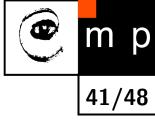
$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2/n}}$$
, where $D(u,v) = \sqrt{u^2 + v^2}$

Lowpass filtering — Buttherworth filter III



Original image

Filtered image



Idea: simultaneously normalize the brightness across an image and increase contrast.

Idea: simultaneously normalize the brightness across an image and increase contrast.

Image is a product of illumination and reflectance components: f(x,y) = i(x,y)r(x,y)

Idea: simultaneously normalize the brightness across an image and increase contrast.

Image is a product of illumination and reflectance components: f(x,y) = i(x,y)r(x,y)

Illumination i — slow spatial variations (low frequency)

Idea: simultaneously normalize the brightness across an image and increase contrast.

Image is a product of illumination and reflectance components: f(x,y) = i(x,y)r(x,y)

Illumination i — slow spatial variations (low frequency)

Reflectance r — fast varitations (dissimilar objects)

Imp
41/48

Idea: simultaneously normalize the brightness across an image and increase contrast.

Image is a product of illumination and reflectance components: f(x,y) = i(x,y)r(x,y)

Illumination i — slow spatial variations (low frequency)

Reflectance r — fast varitations (dissimilar objects)

Use logarithm to separate the components and filter the logarithms!

$$z(x,y) = \ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$

$$z(x,y) = \ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$

Fourier pair

$$Z(u, v) = I(u, v) + R(u, v)$$

$$z(x,y) = \ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$

Fourier pair

$$Z(u, v) = I(u, v) + R(u, v)$$

Filtering

S(u,v) = H(u,v)Z(u,v) = H(u,v)I(u,v) + H(u,v)R(u,v)

$$z(x,y) = \ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$

Fourier pair

$$Z(u, v) = I(u, v) + R(u, v)$$

Filtering

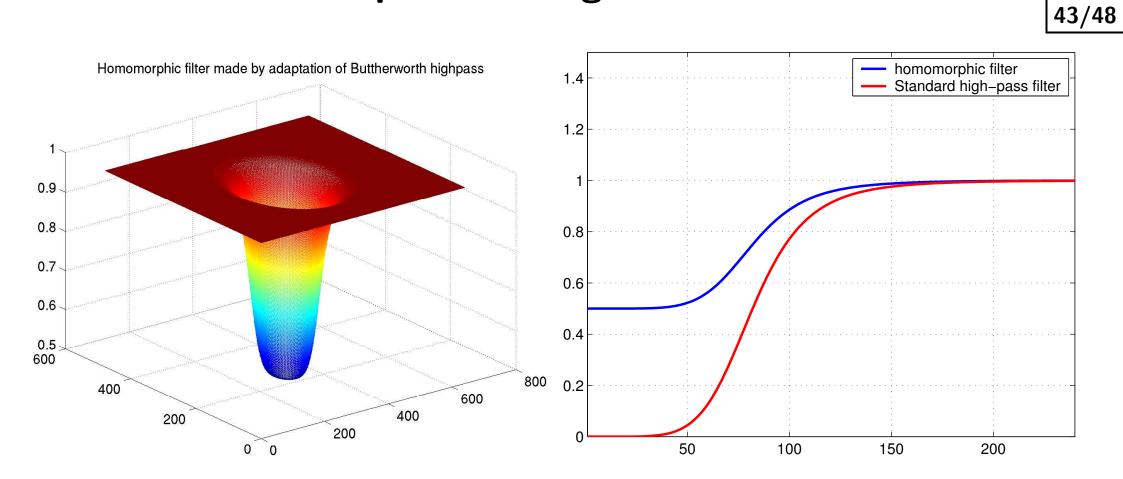
$$S(u,v) = H(u,v)Z(u,v) = H(u,v)I(u,v) + H(u,v)R(u,v)$$

back to space $s(x,y) = \mathcal{F}^{-1}\{S(u,v)\}$ and back from \ln

$$g(x, y) = \exp(s(x, y))$$

So, we can suppress variations in illumination and enhance reflectance component.

Homomorphic filtering — filters

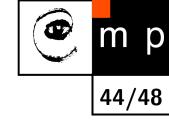


р

m

Remember: The filter is applied to Z(u, v). Not to F(u, v)!

Homomorphic filtering — results



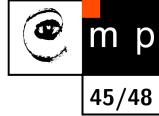
Original image.

Homomorphic filtering — results

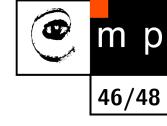
Original image.

Filtered image.

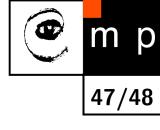
Where are the frequencies in image?

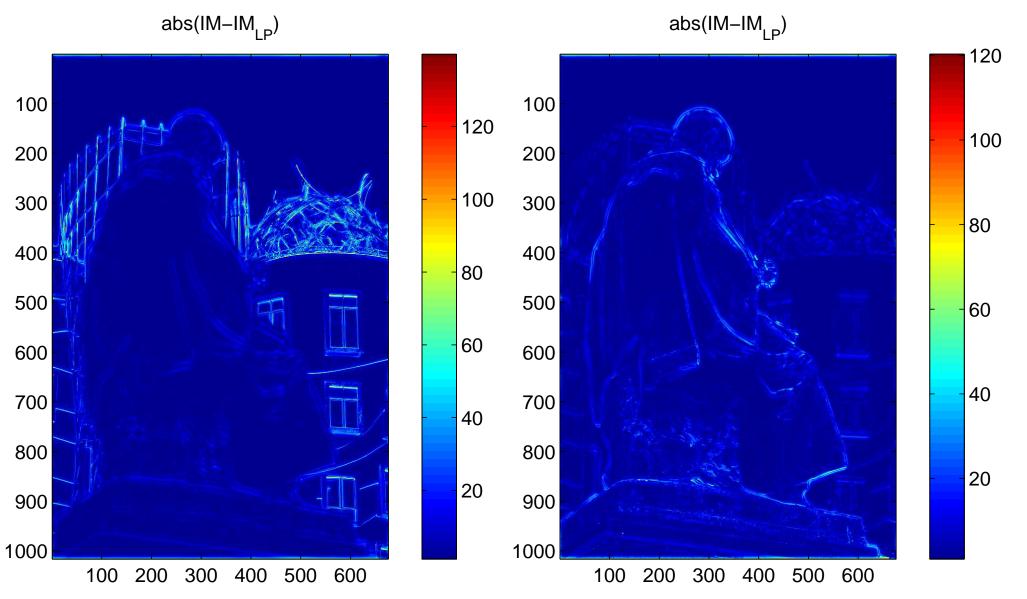


Both image low-pass filtered



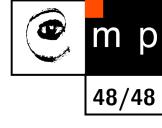
 $\left\|IM_{orig}-IM_{lp}
ight\|$





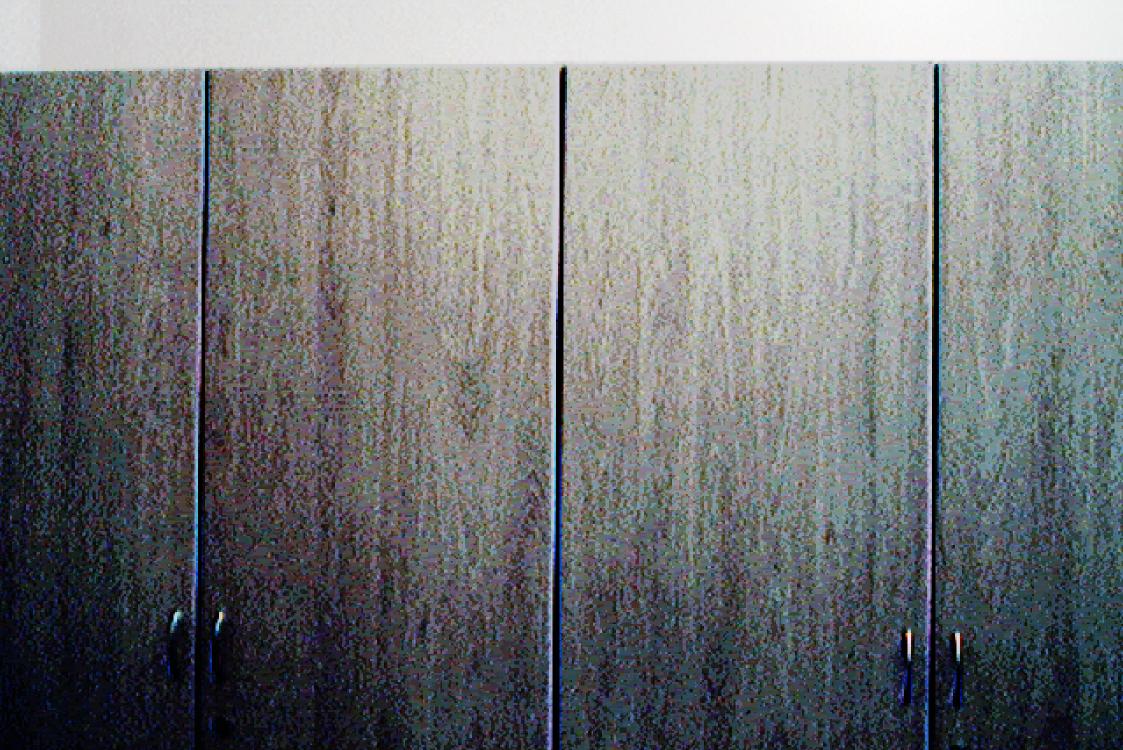
Make one focused image

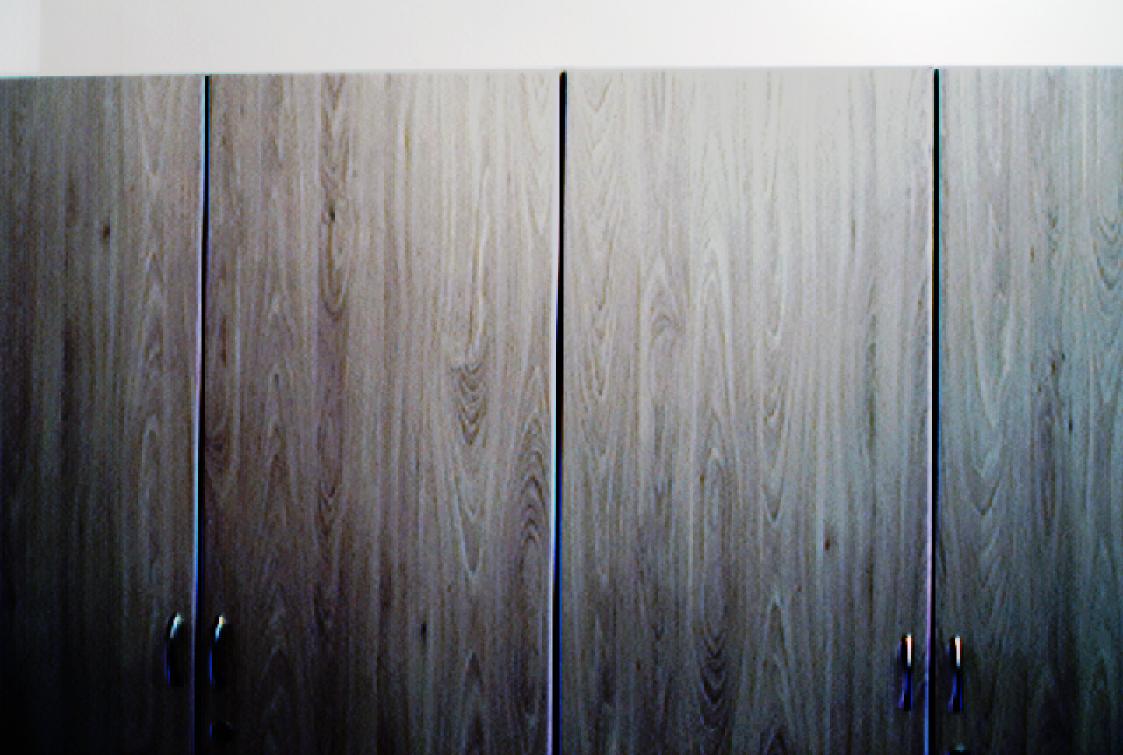
Make one focused image



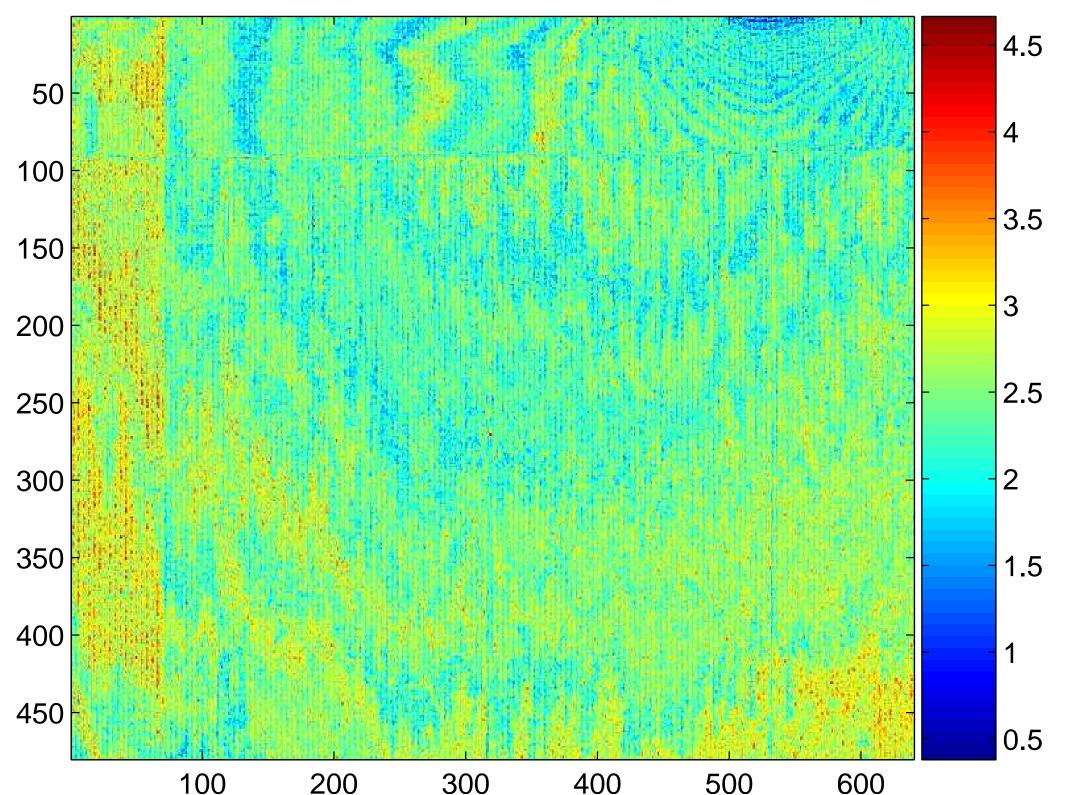
Make one focused image



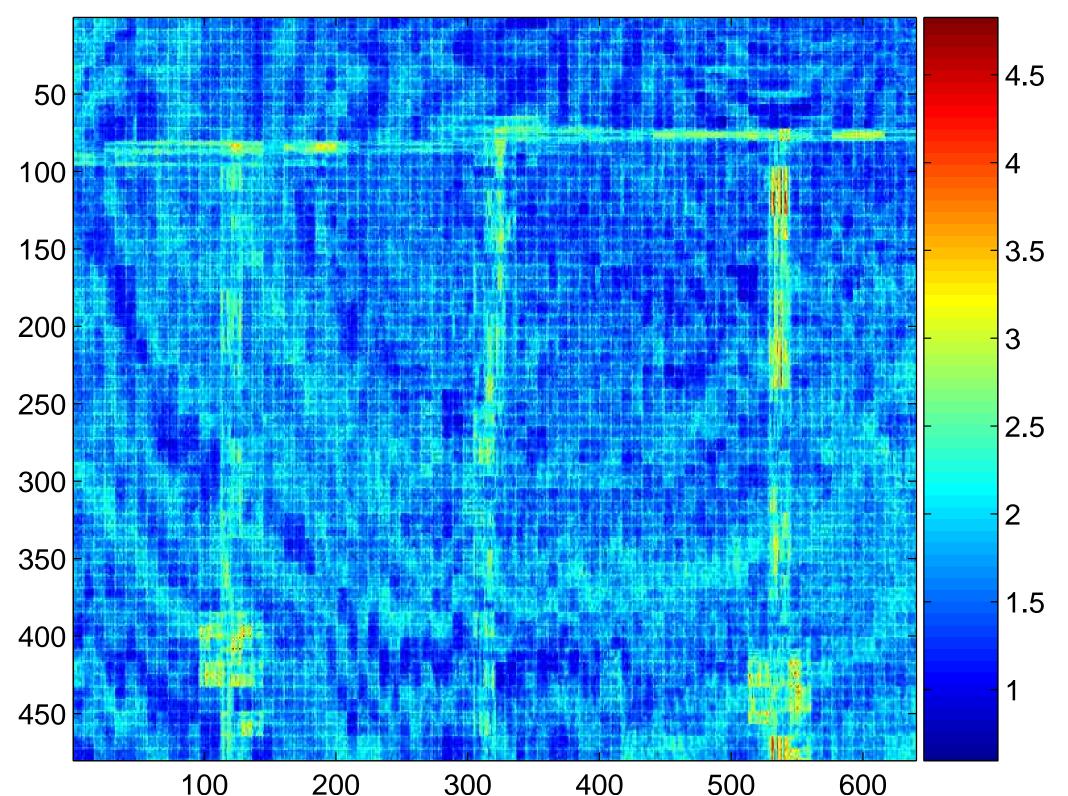


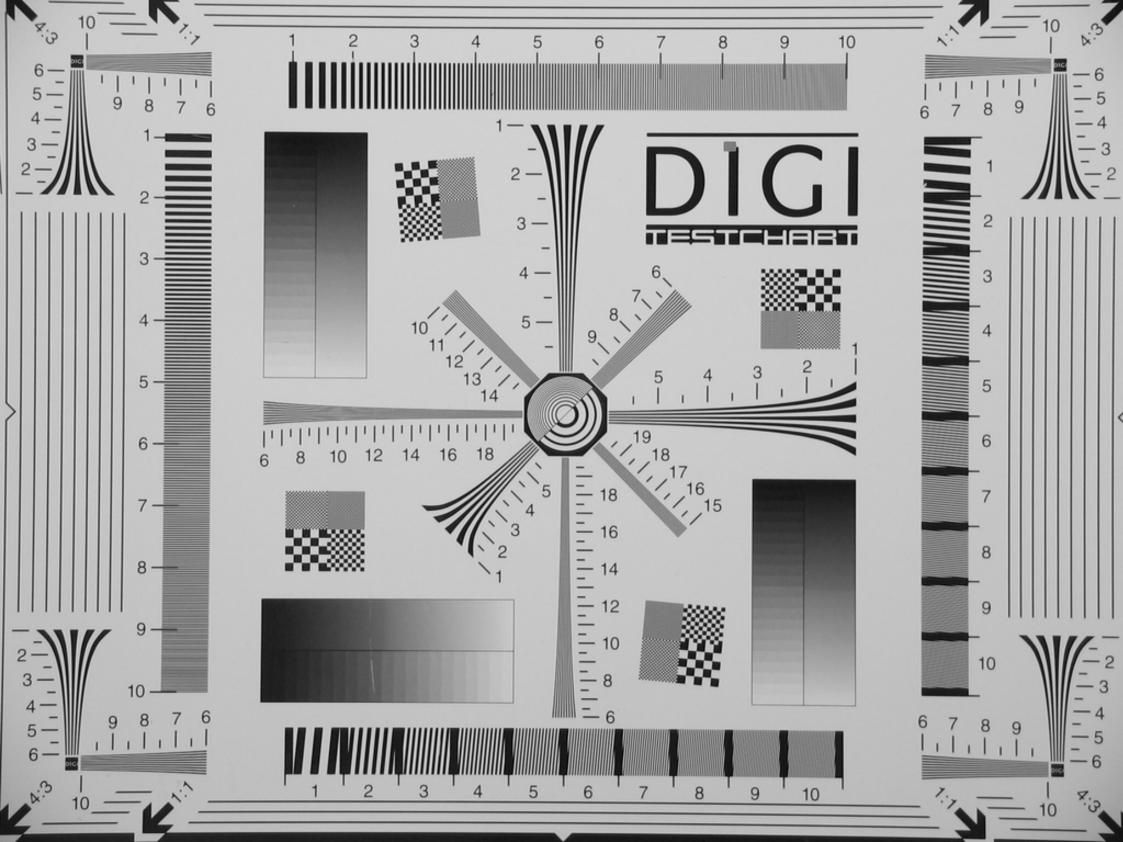


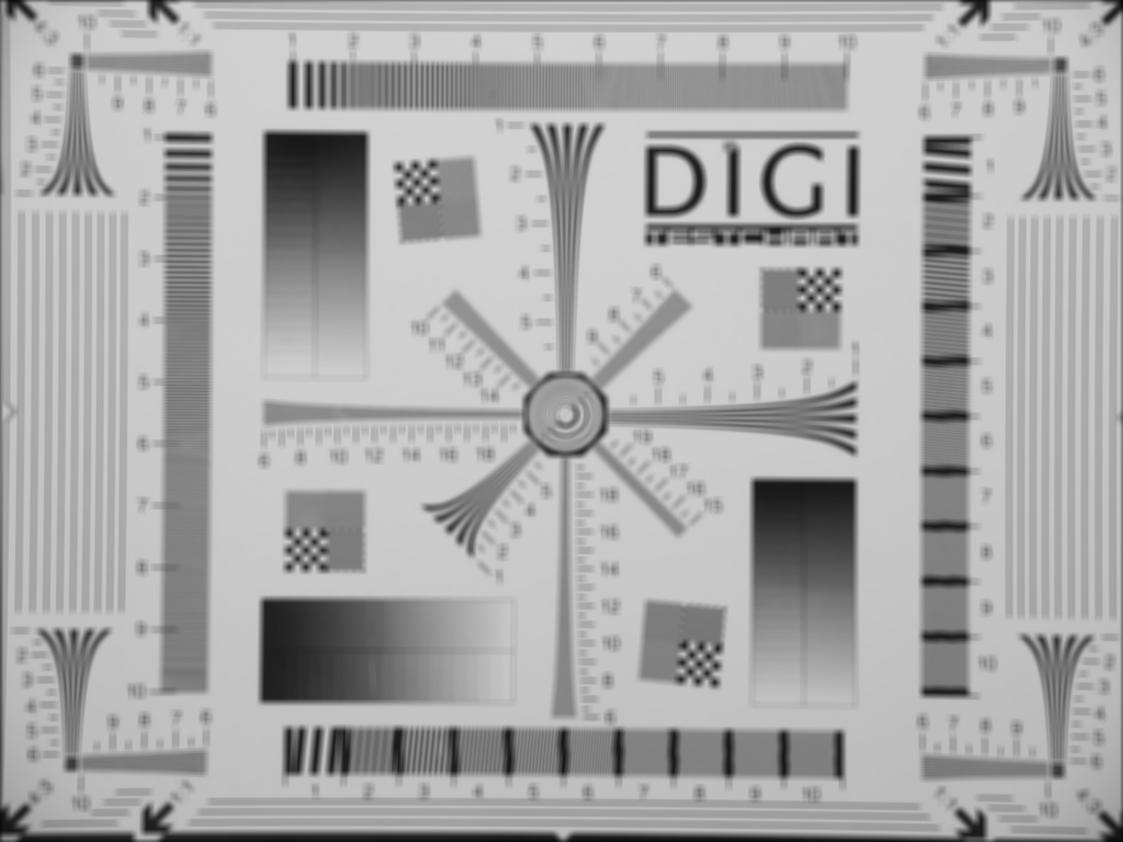
Standard deviation in red channel

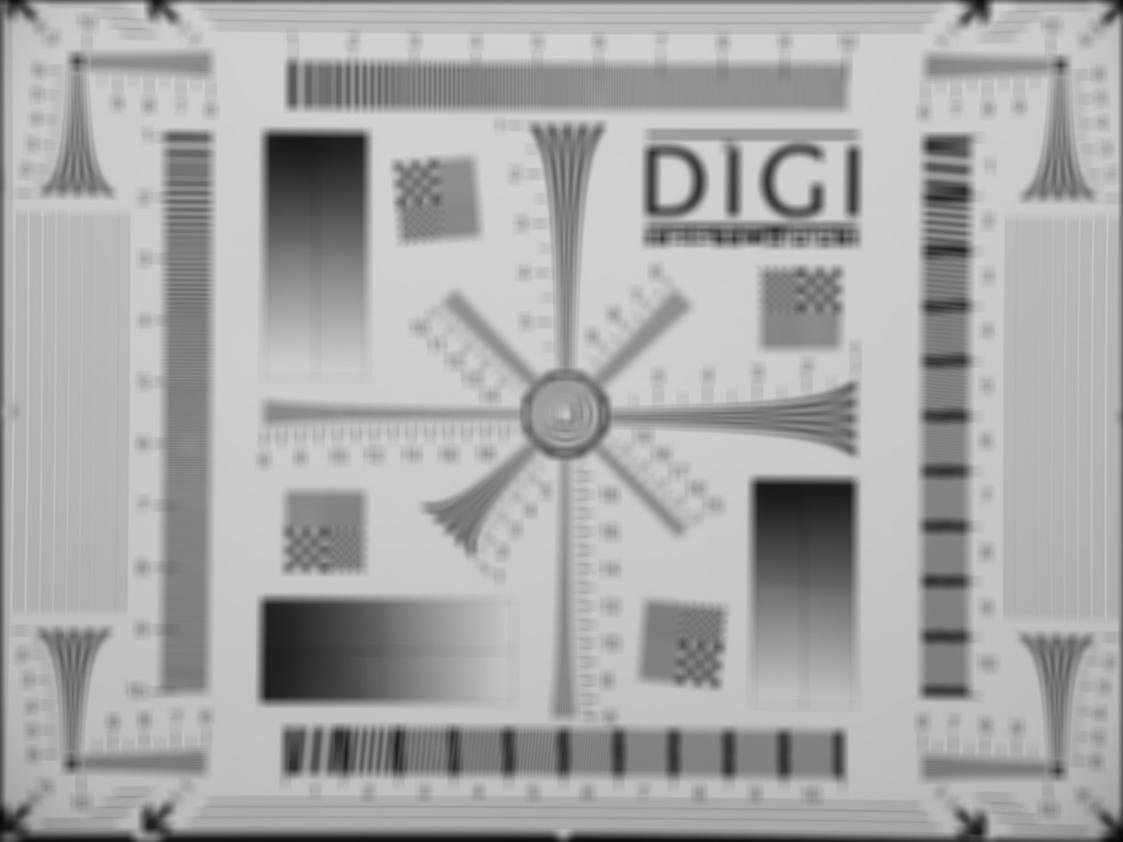


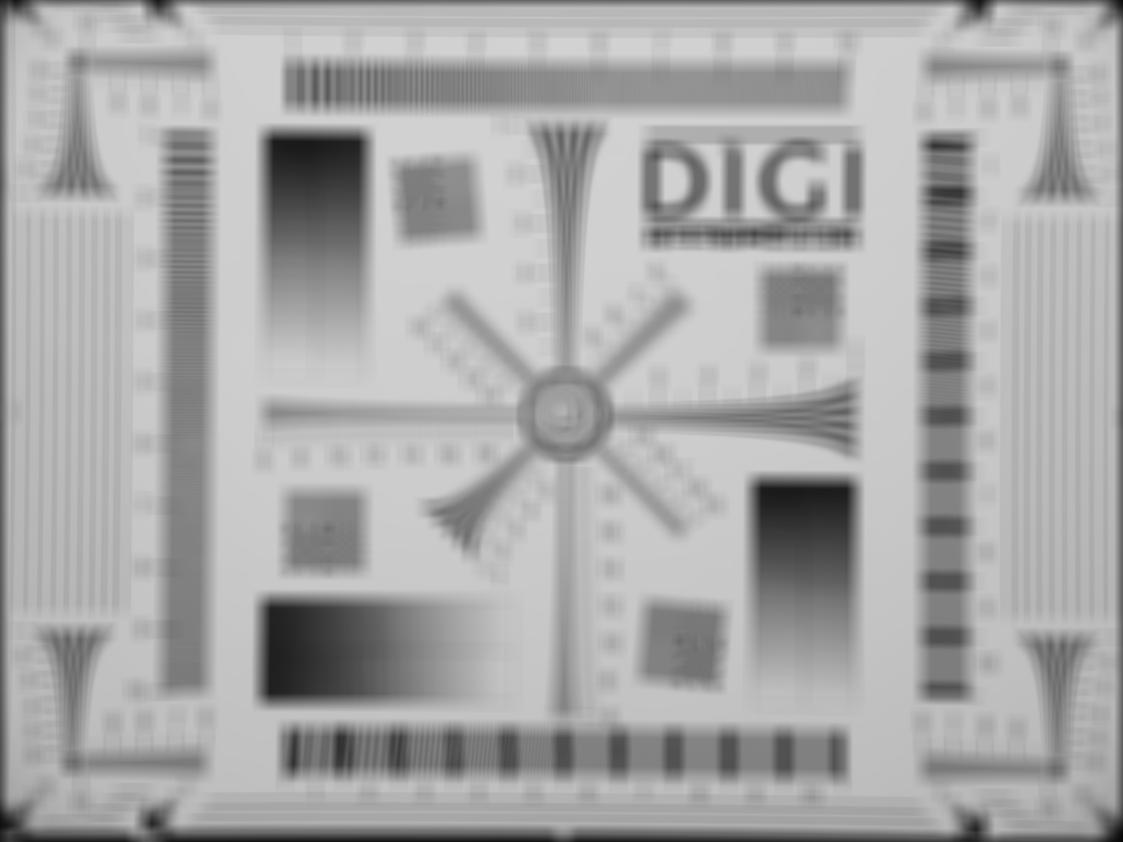
Standard deviation in red channel

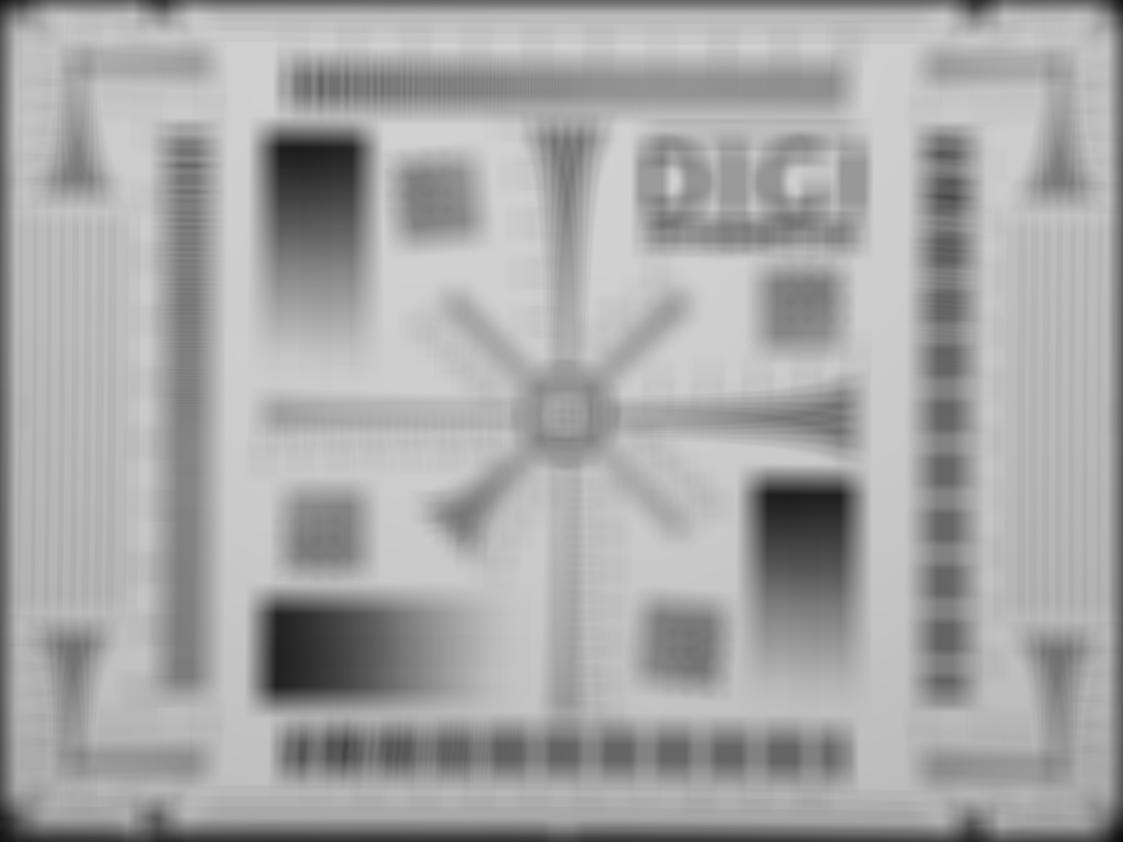


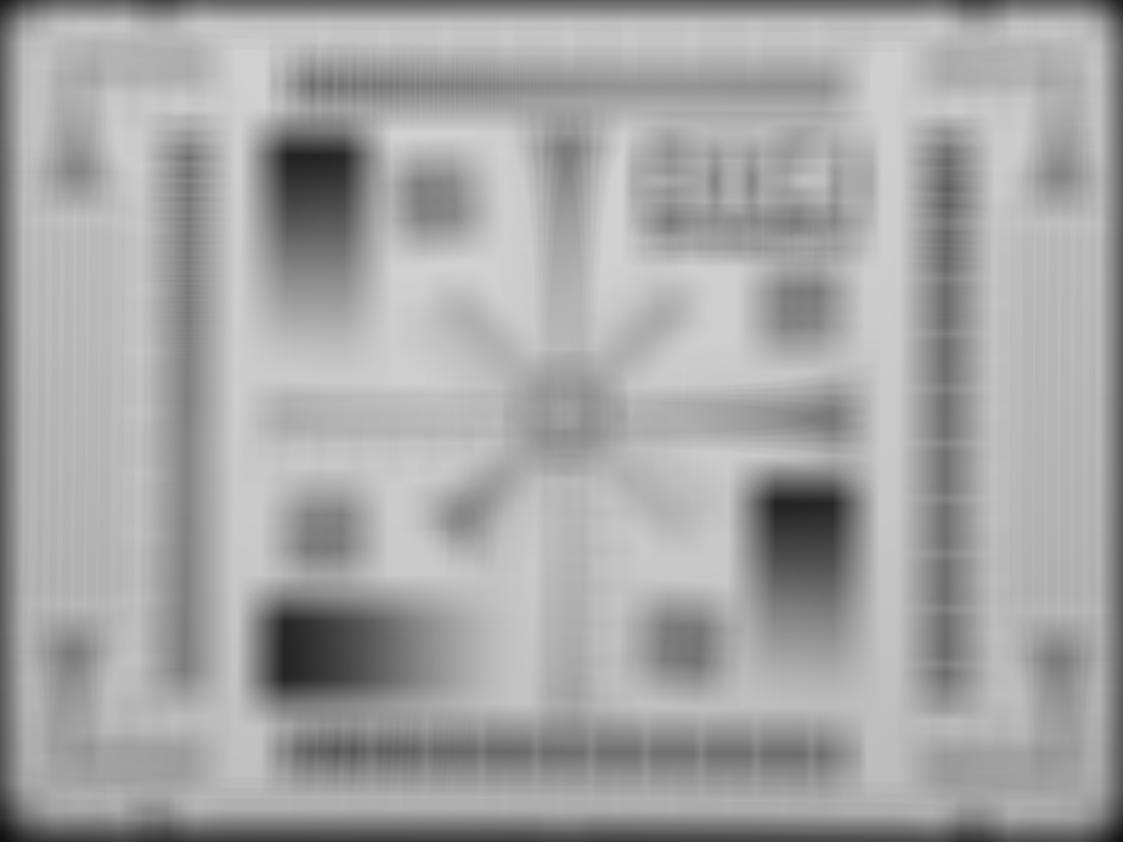


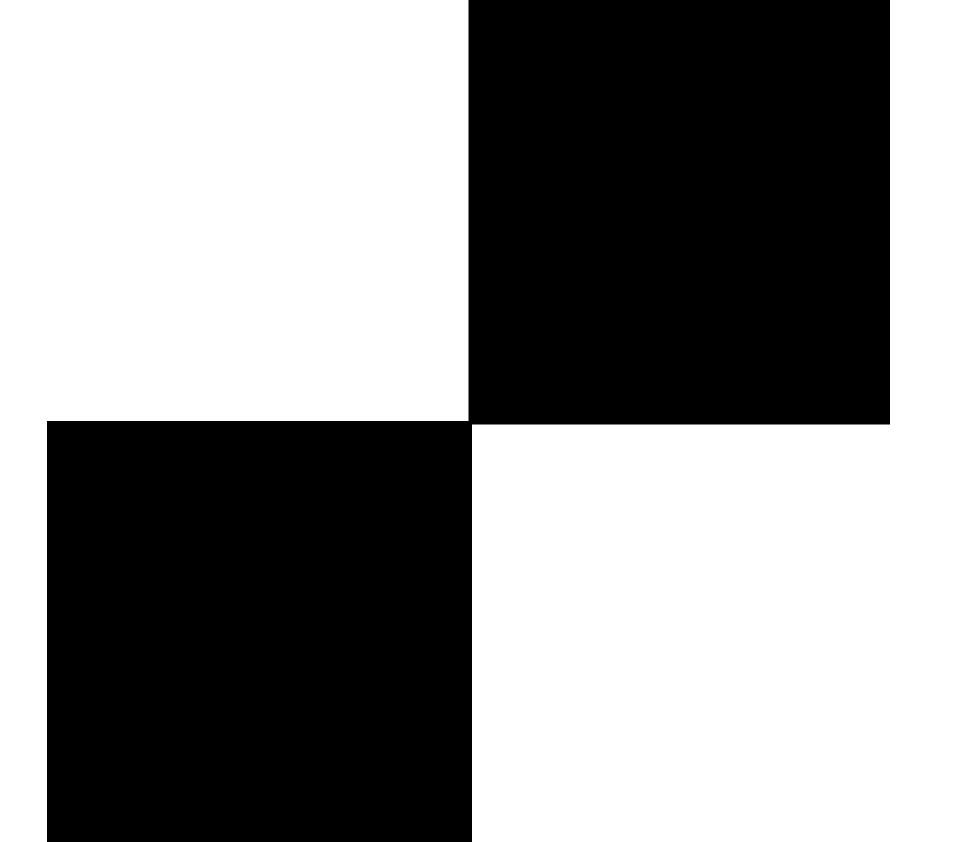


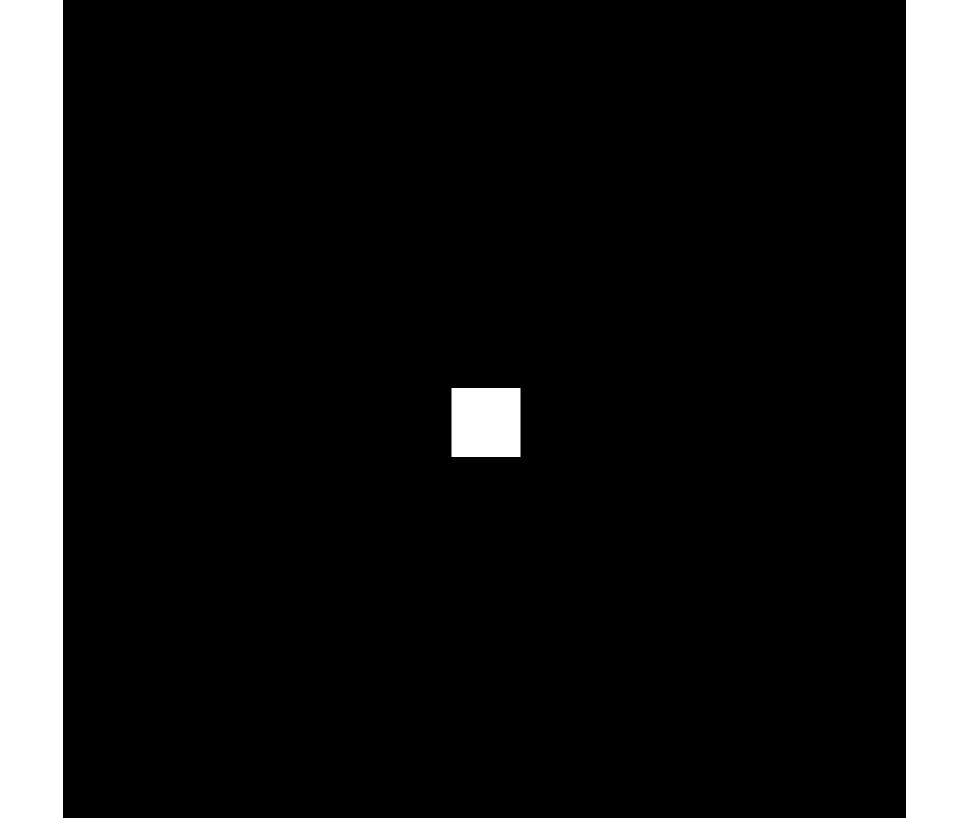


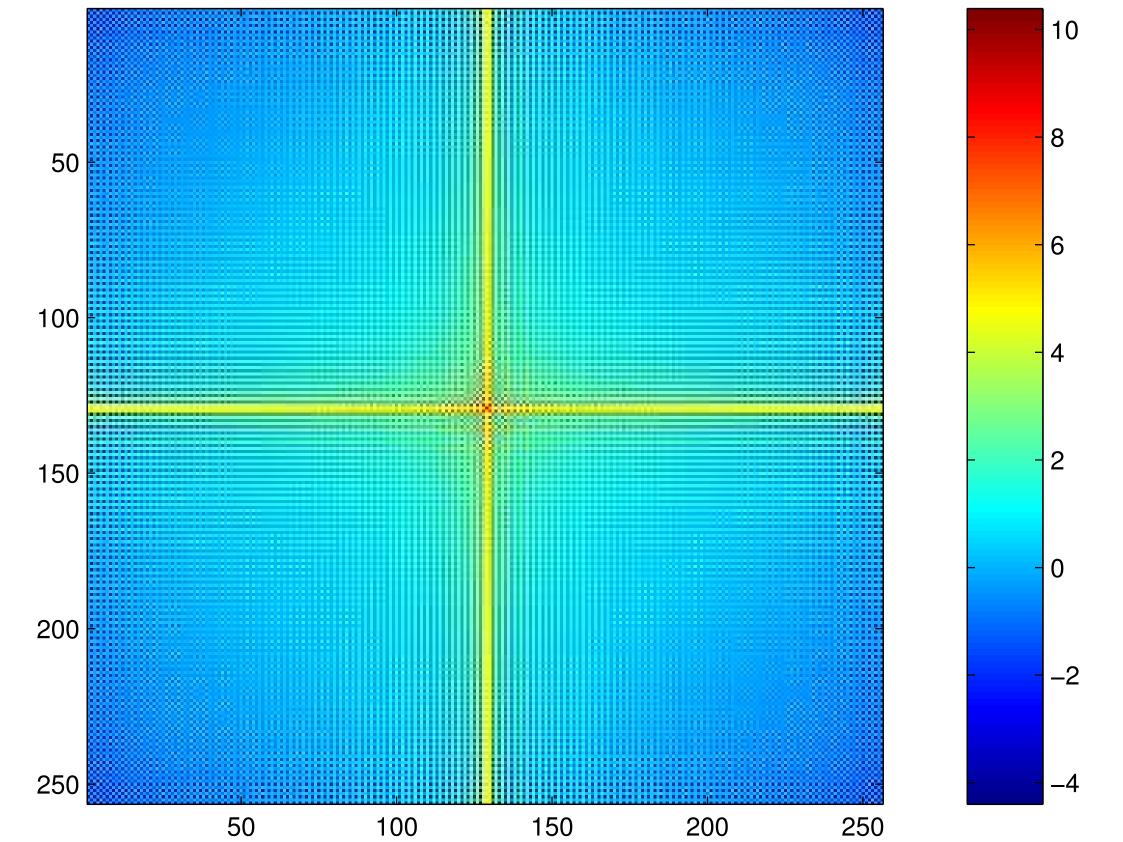


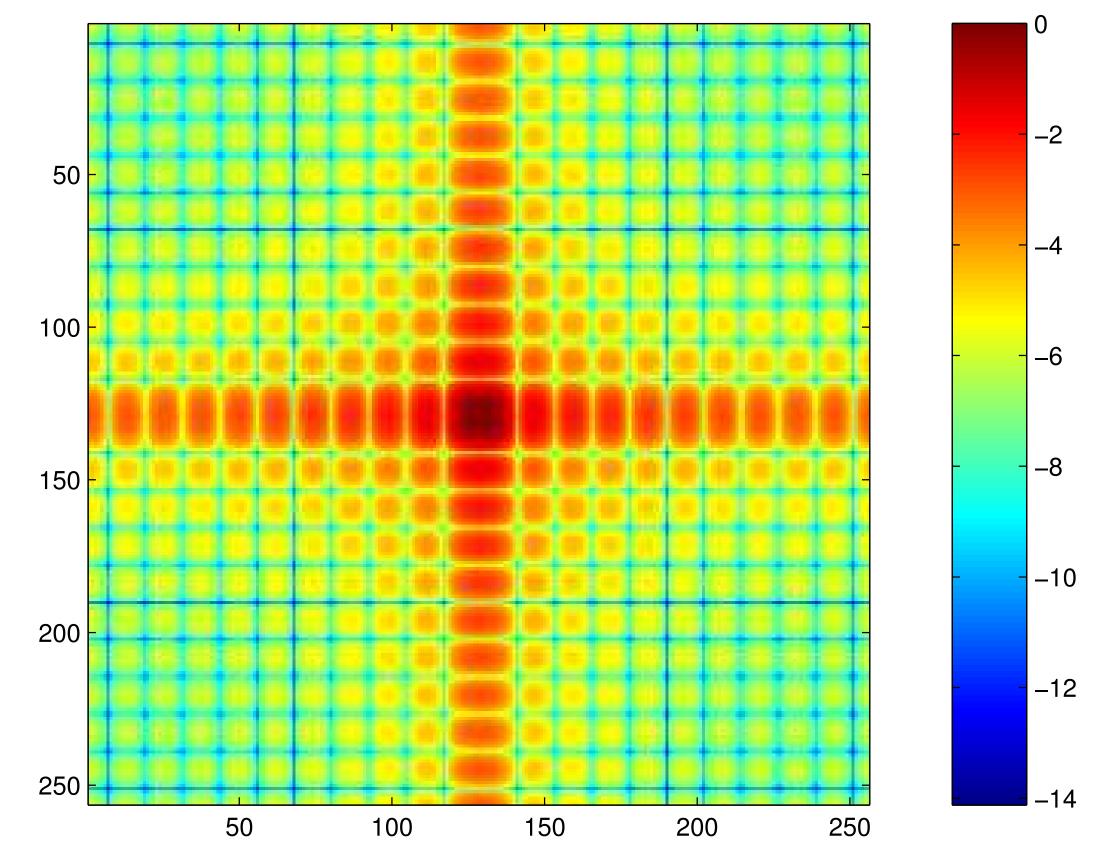


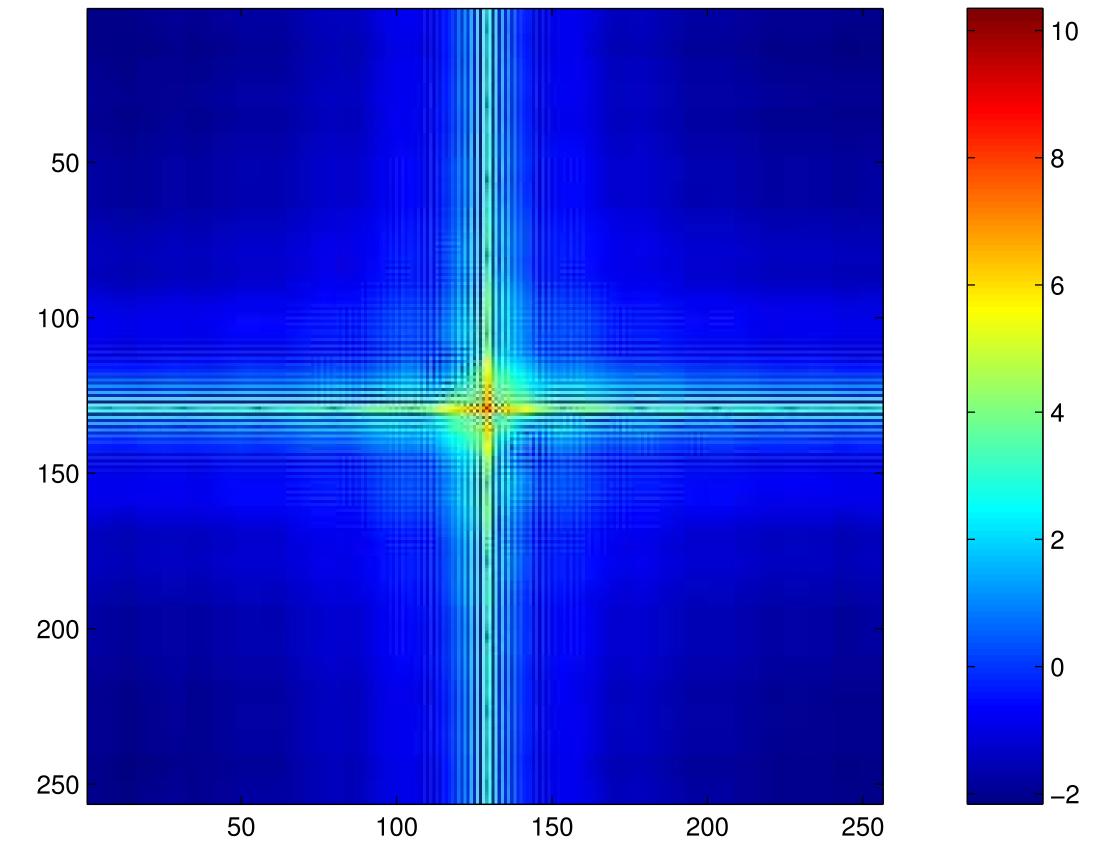


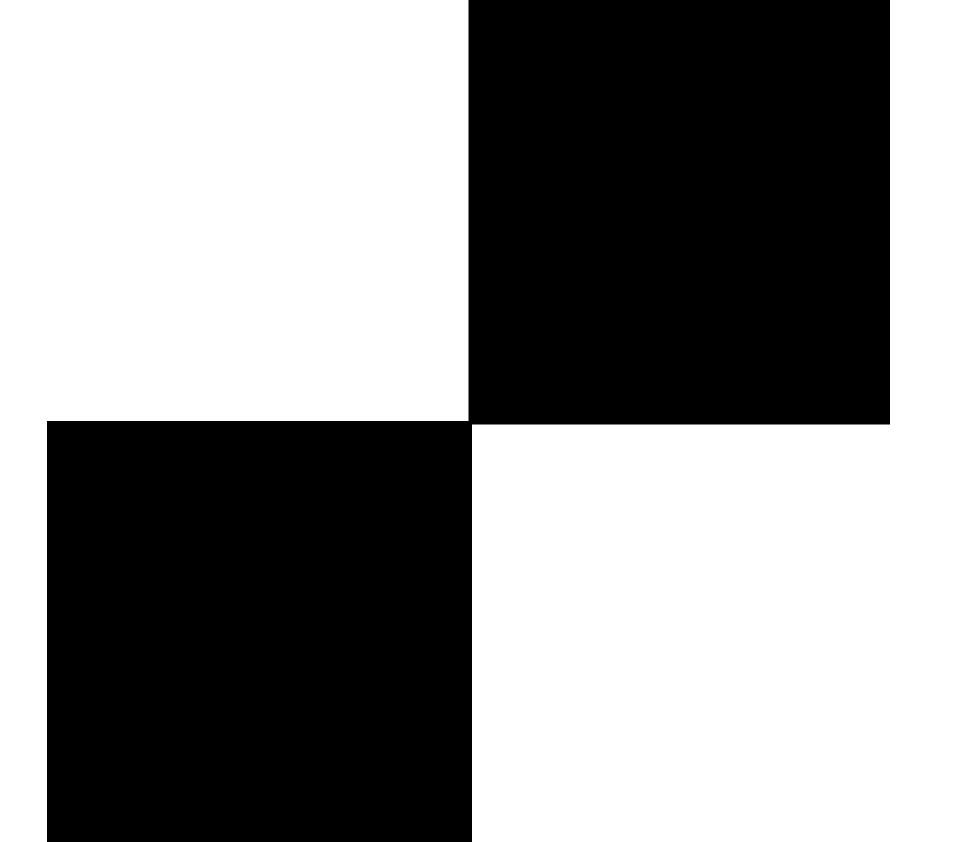


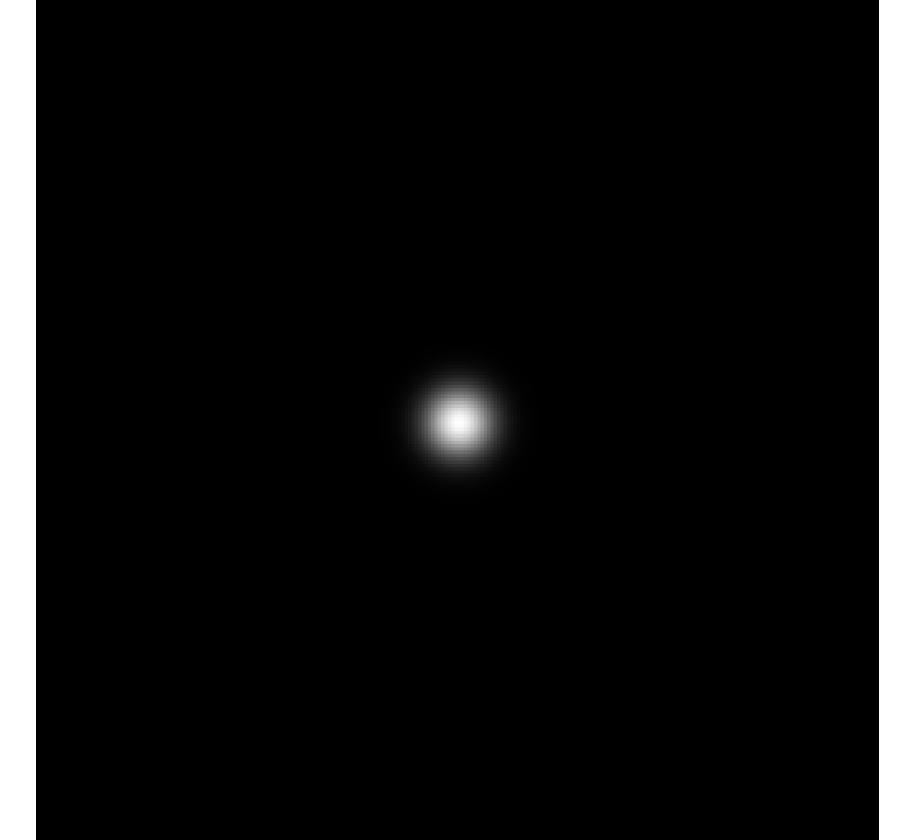


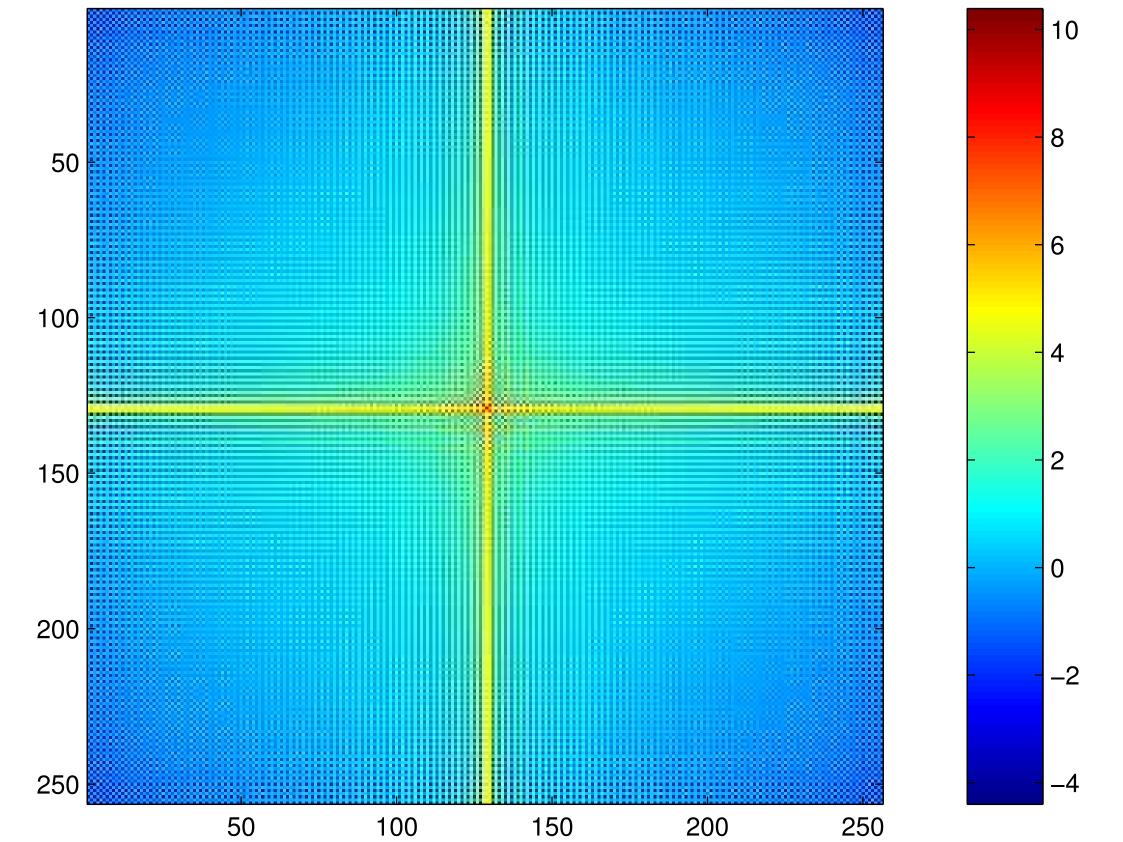


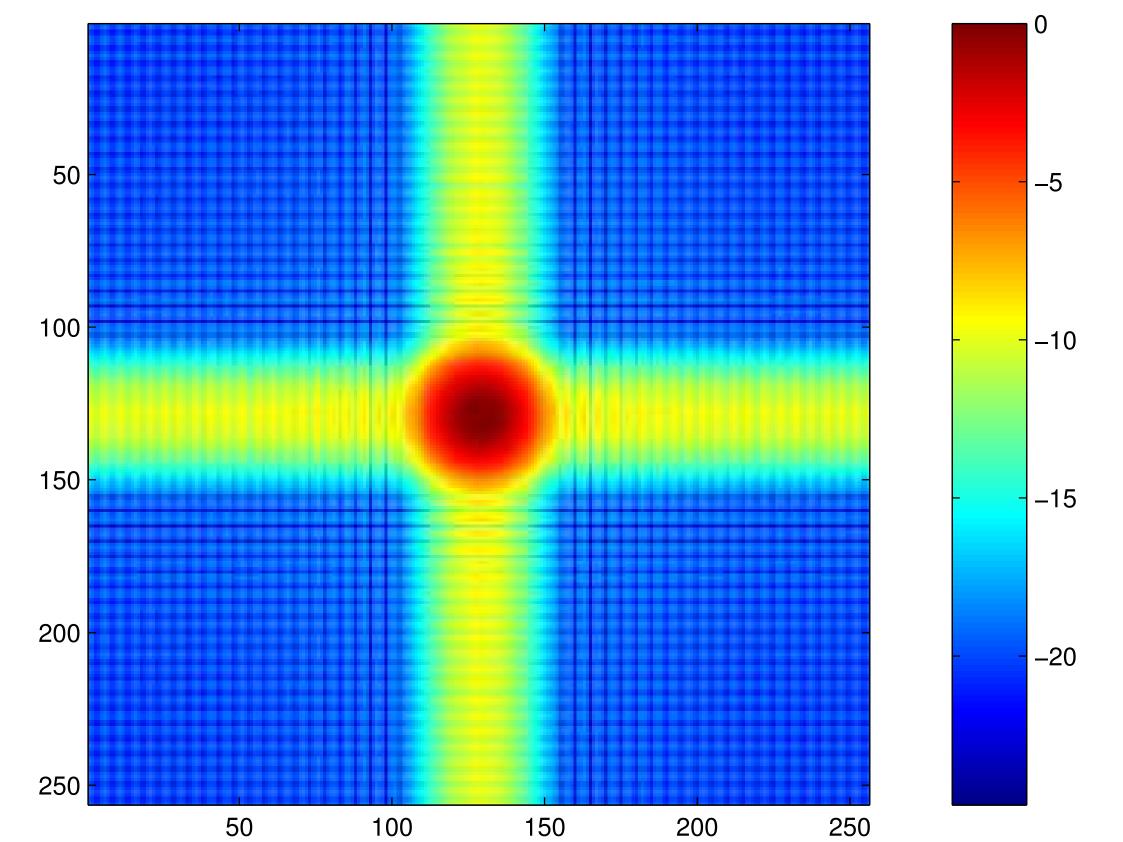


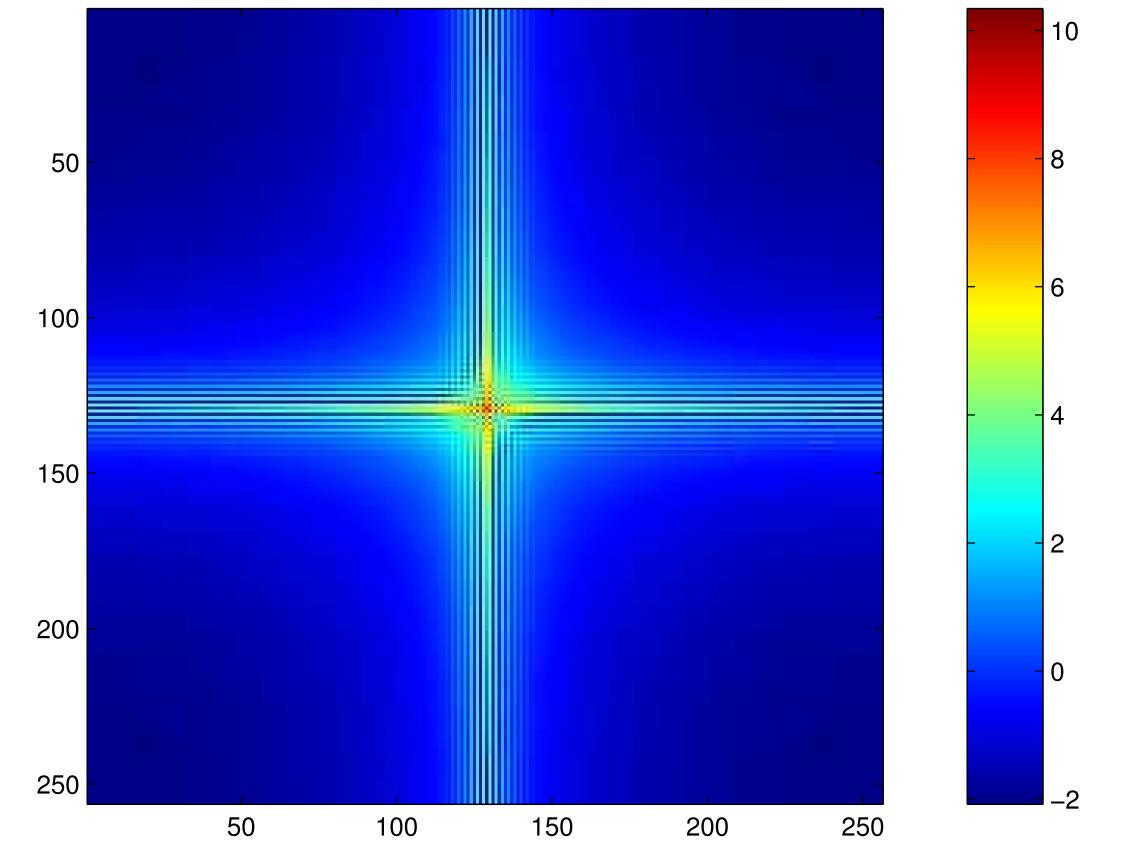


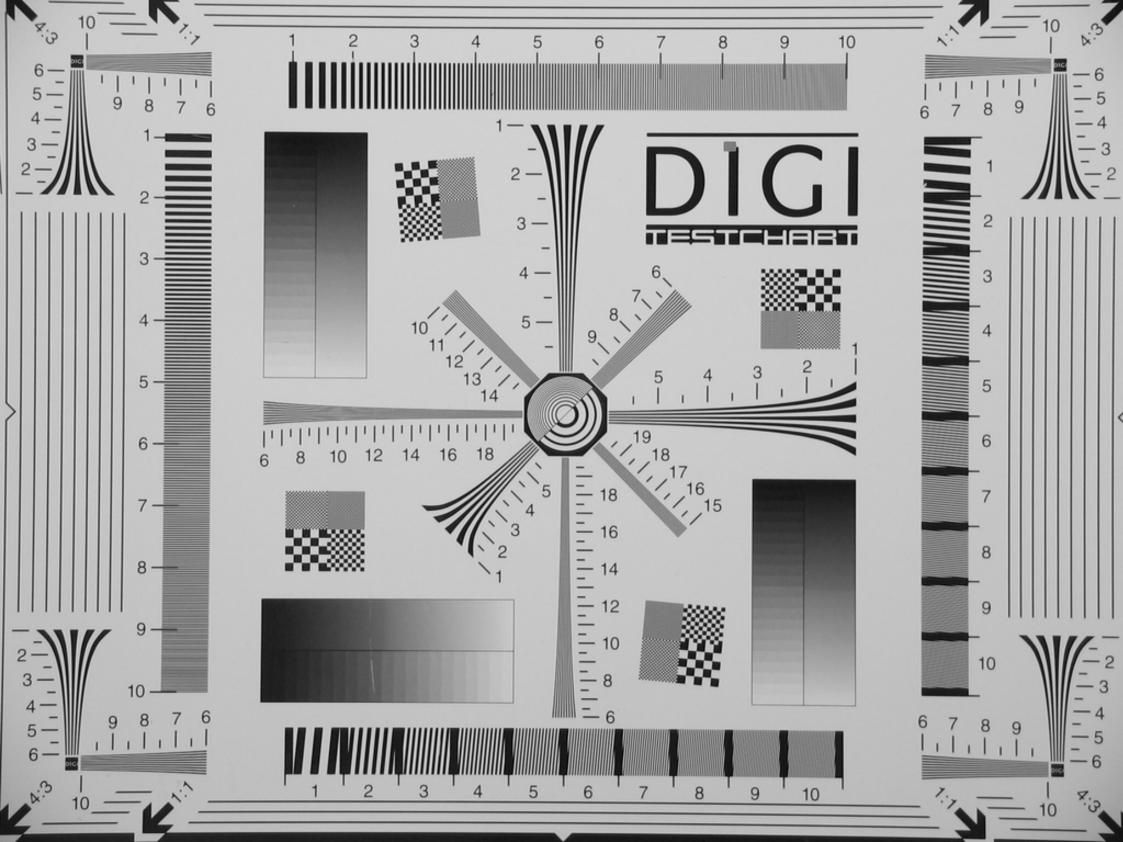


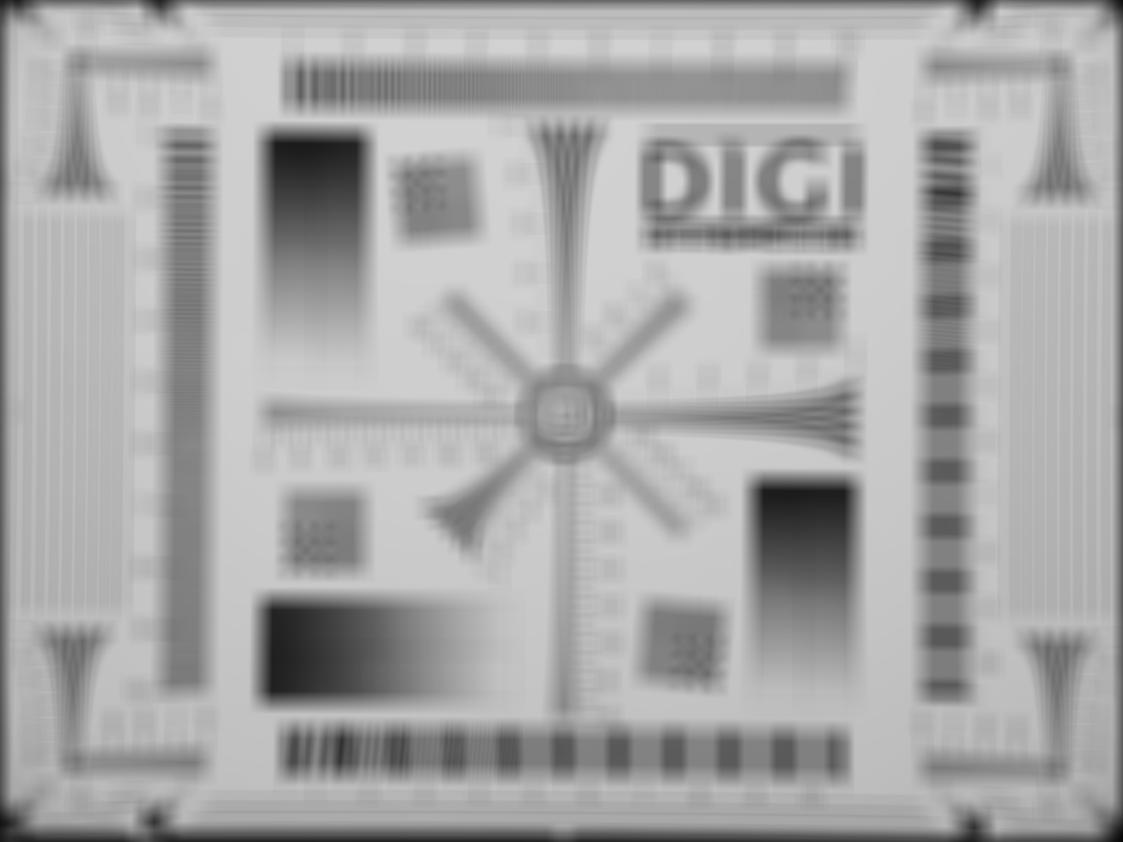


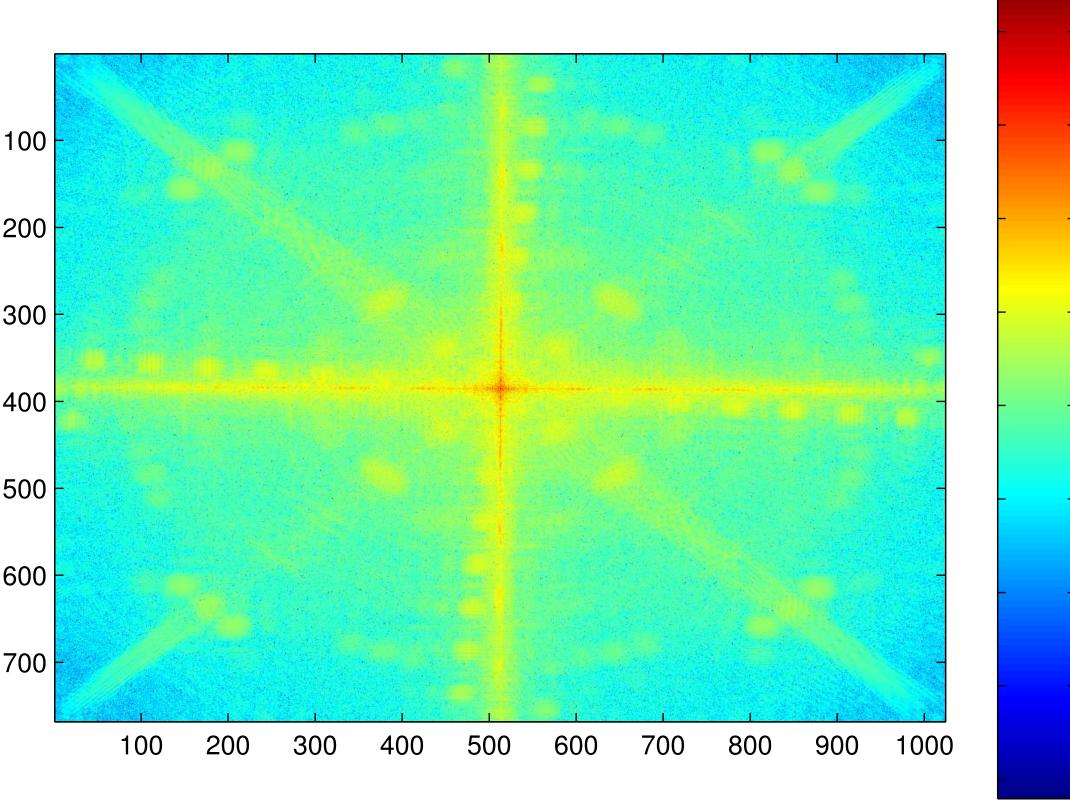






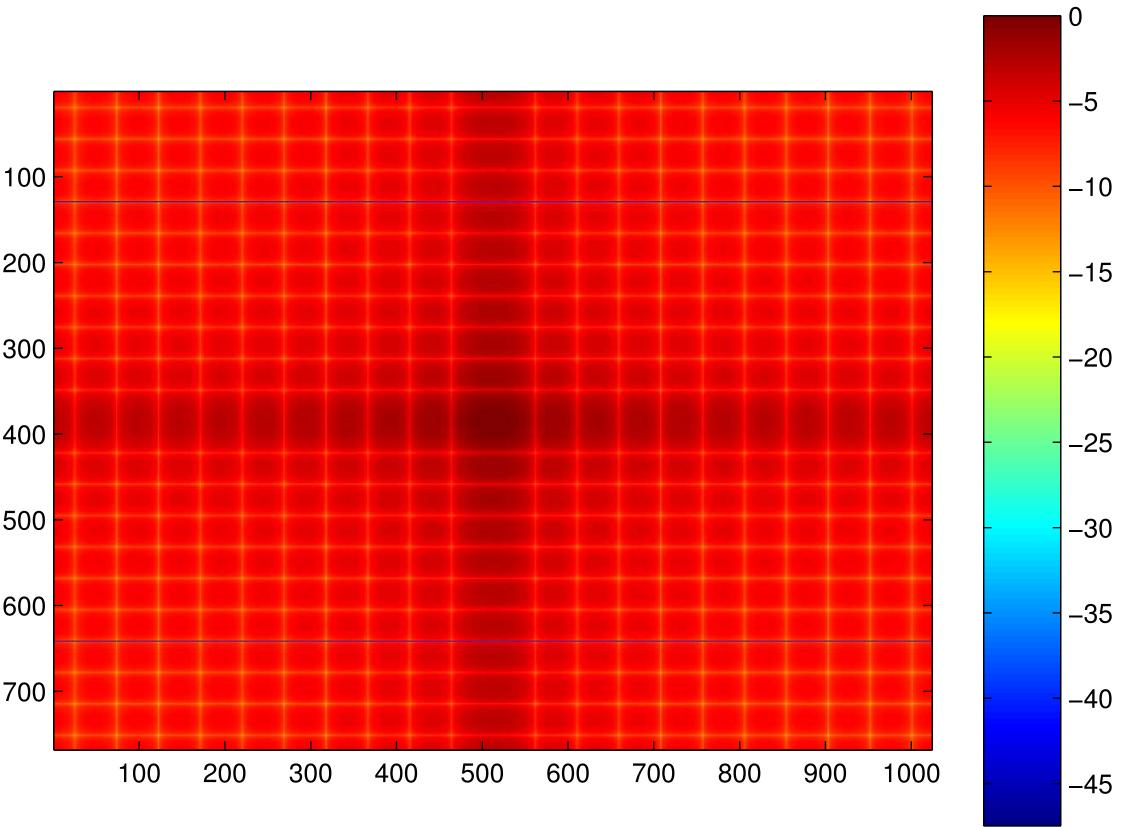


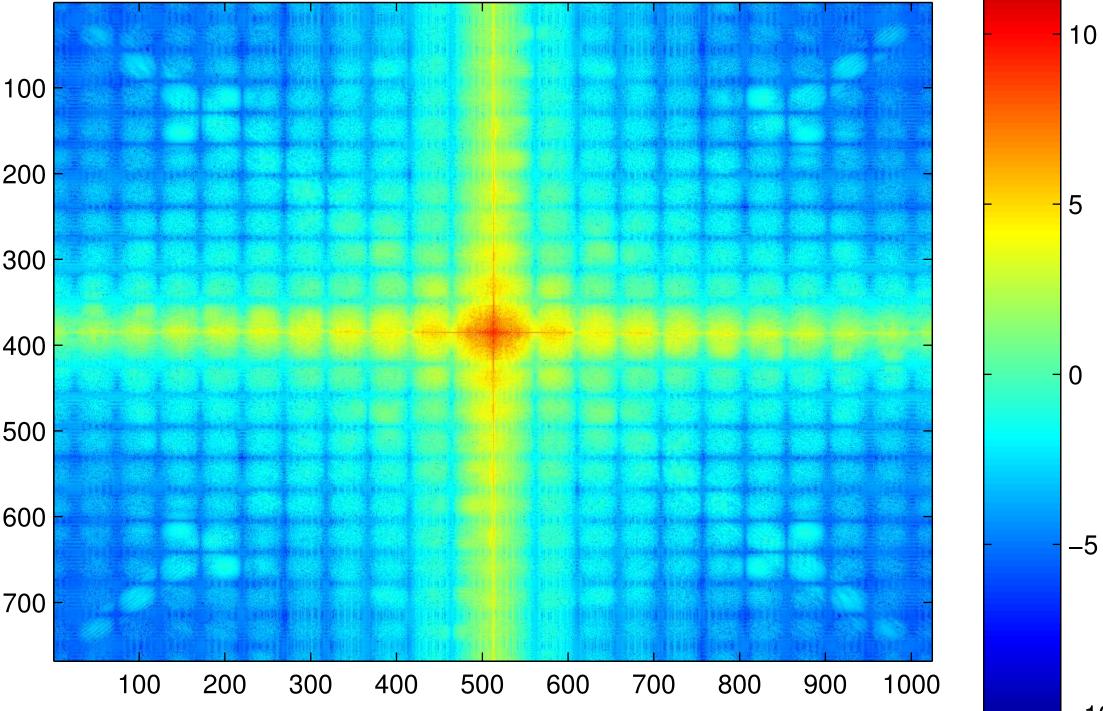




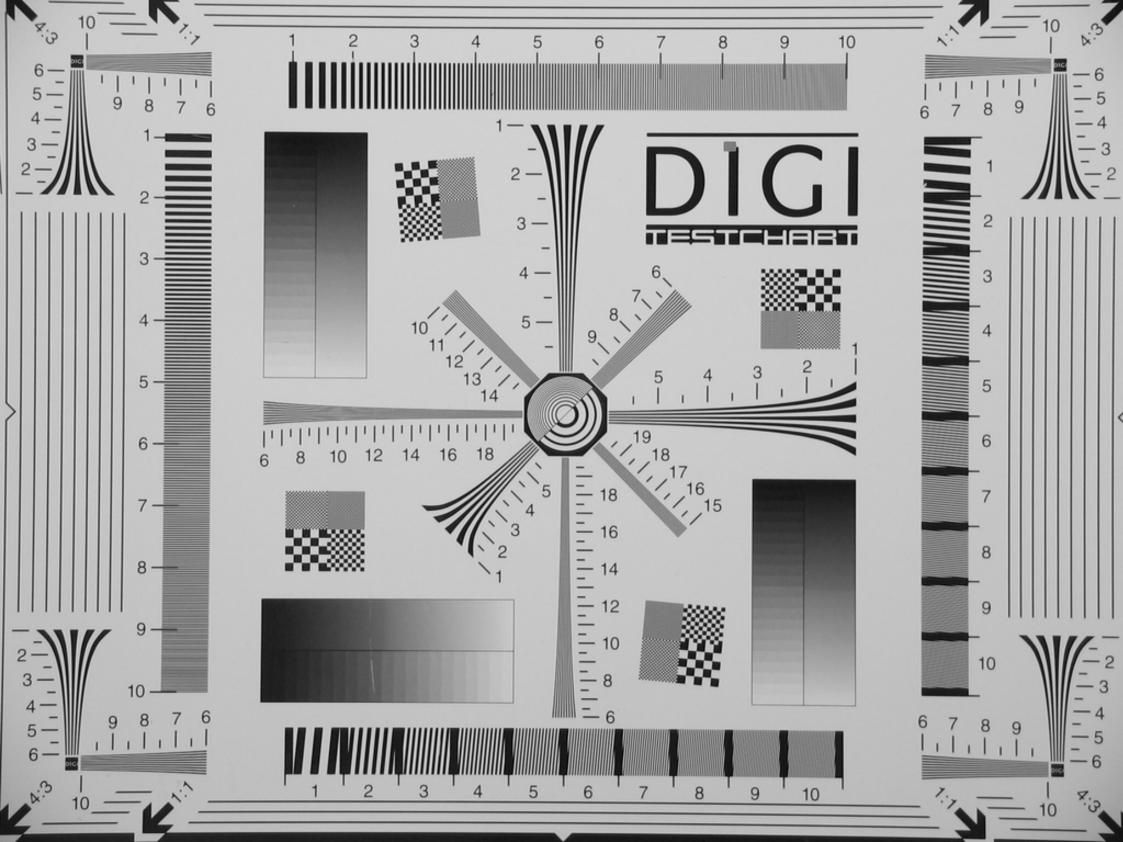
-4

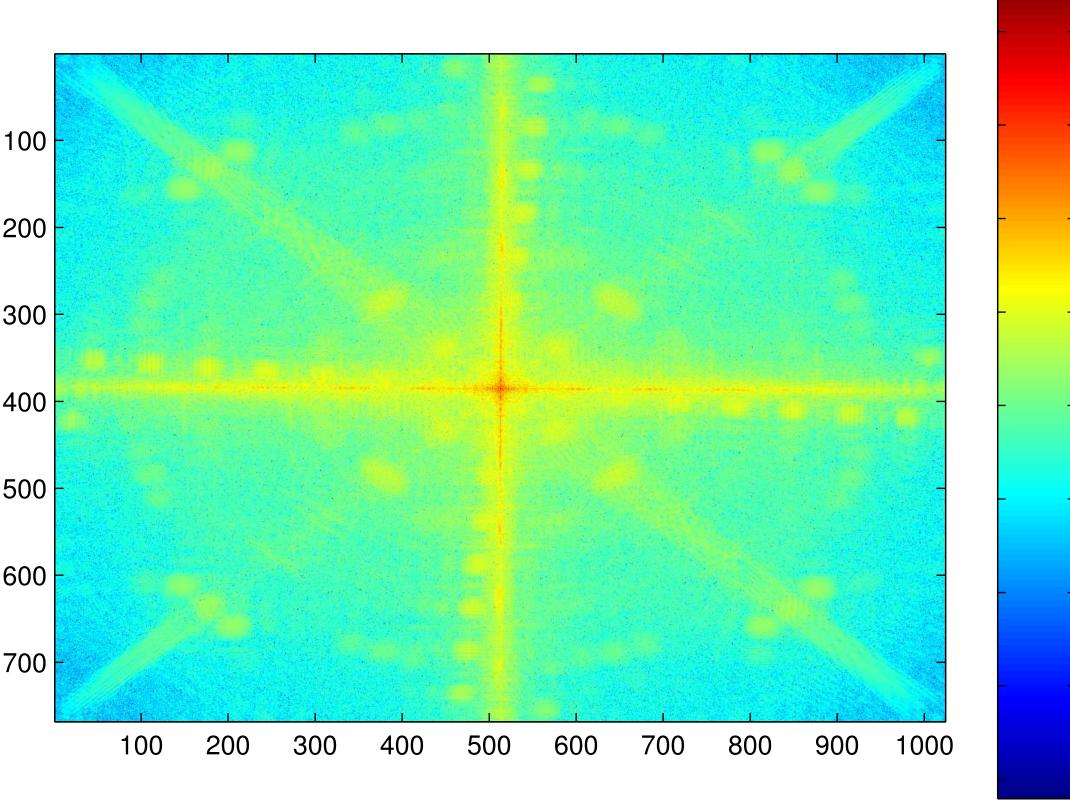
-2





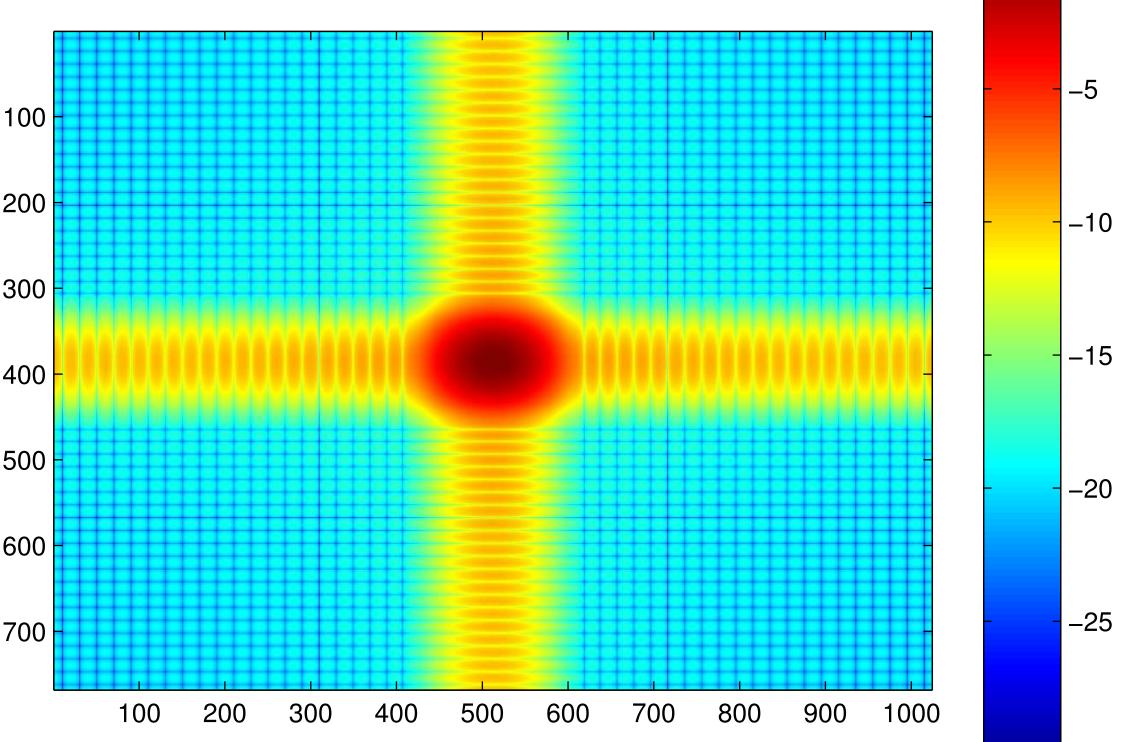
-10

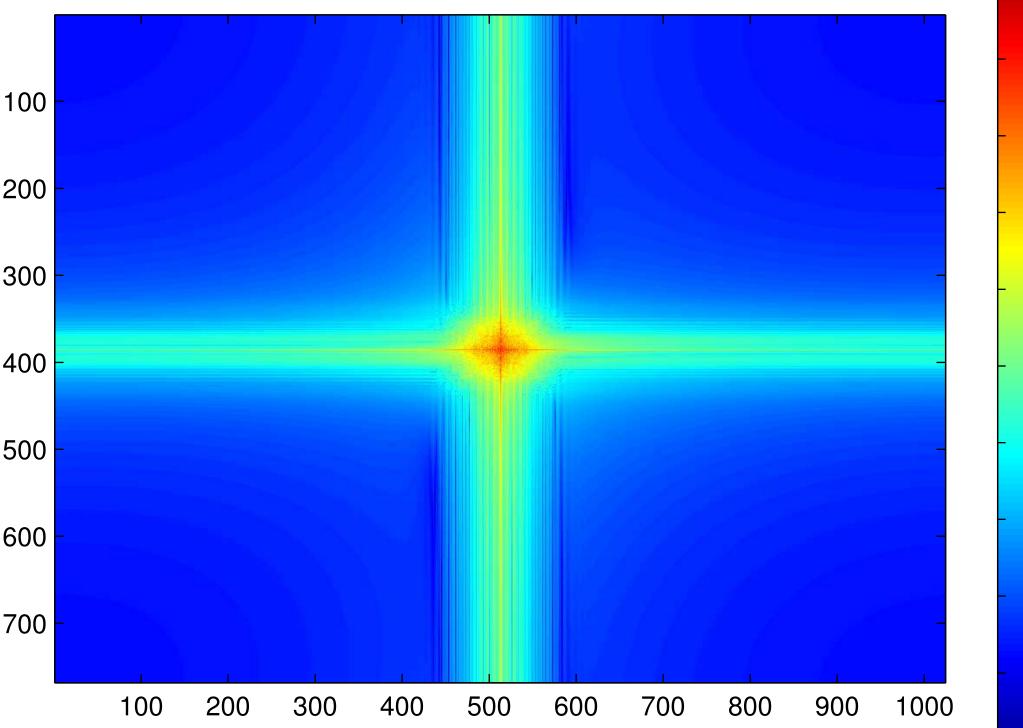


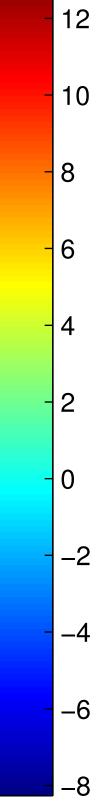


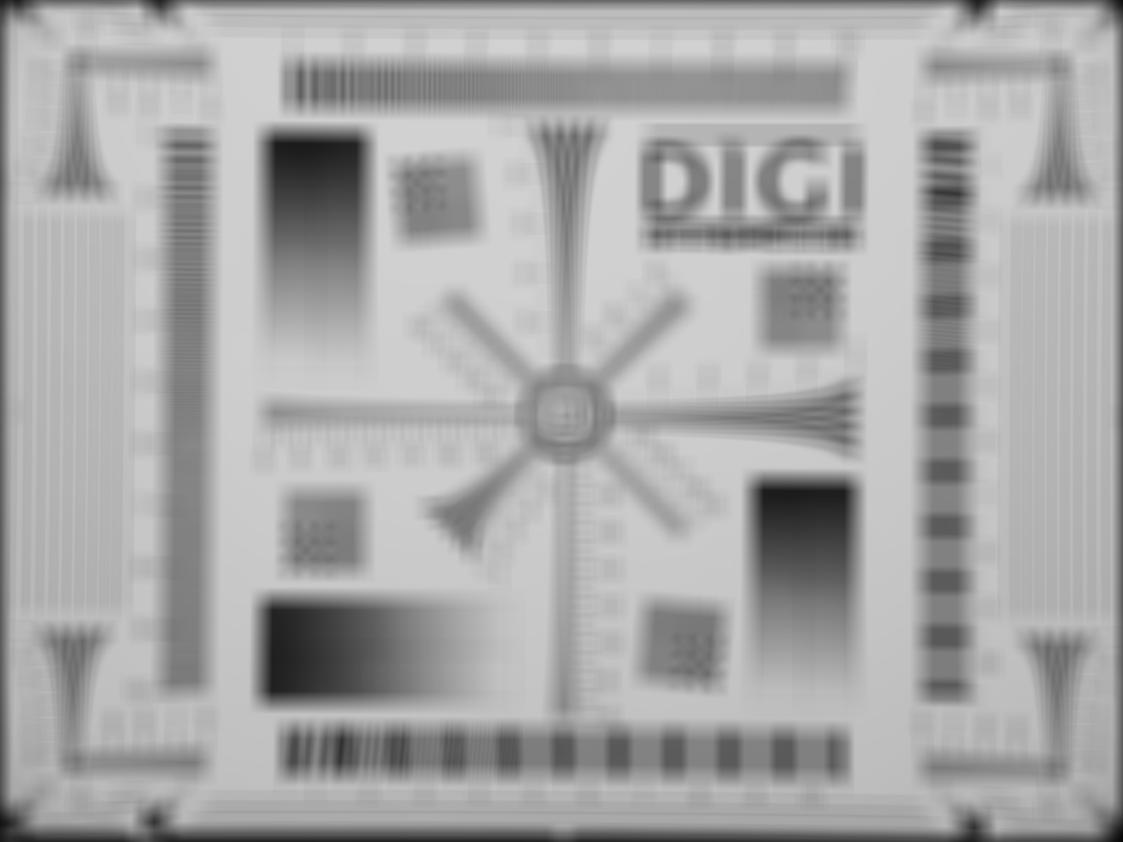
-4

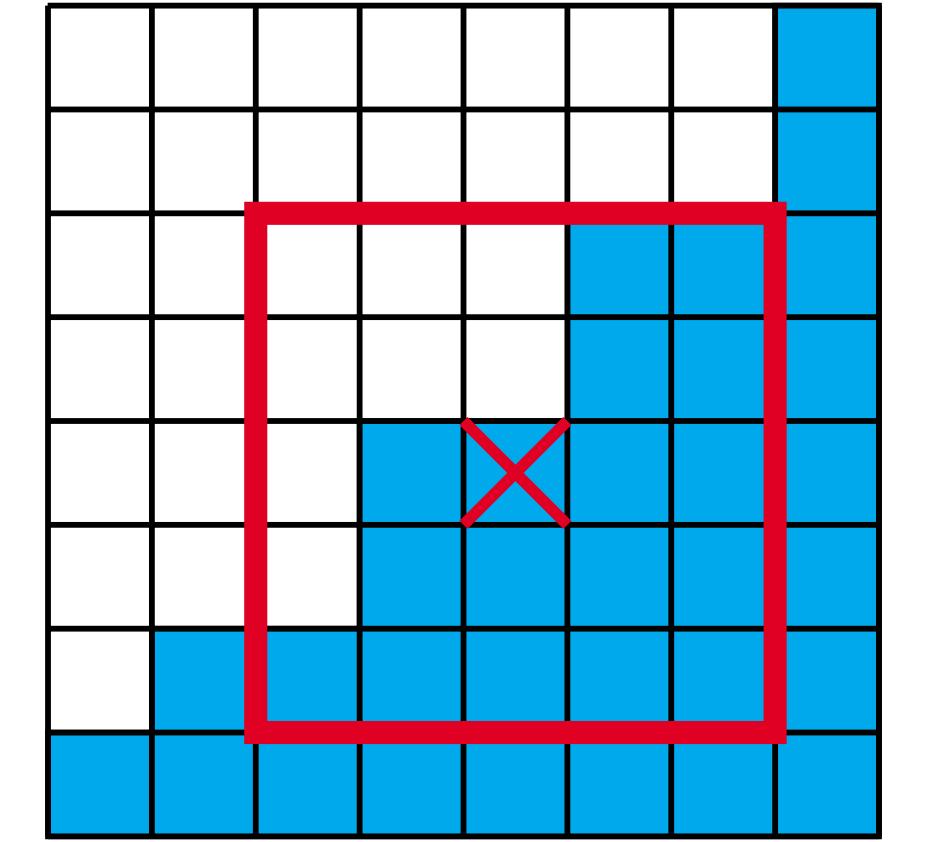
-2

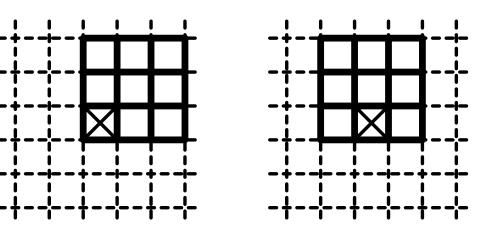


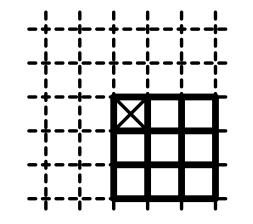




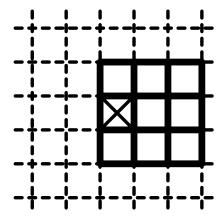




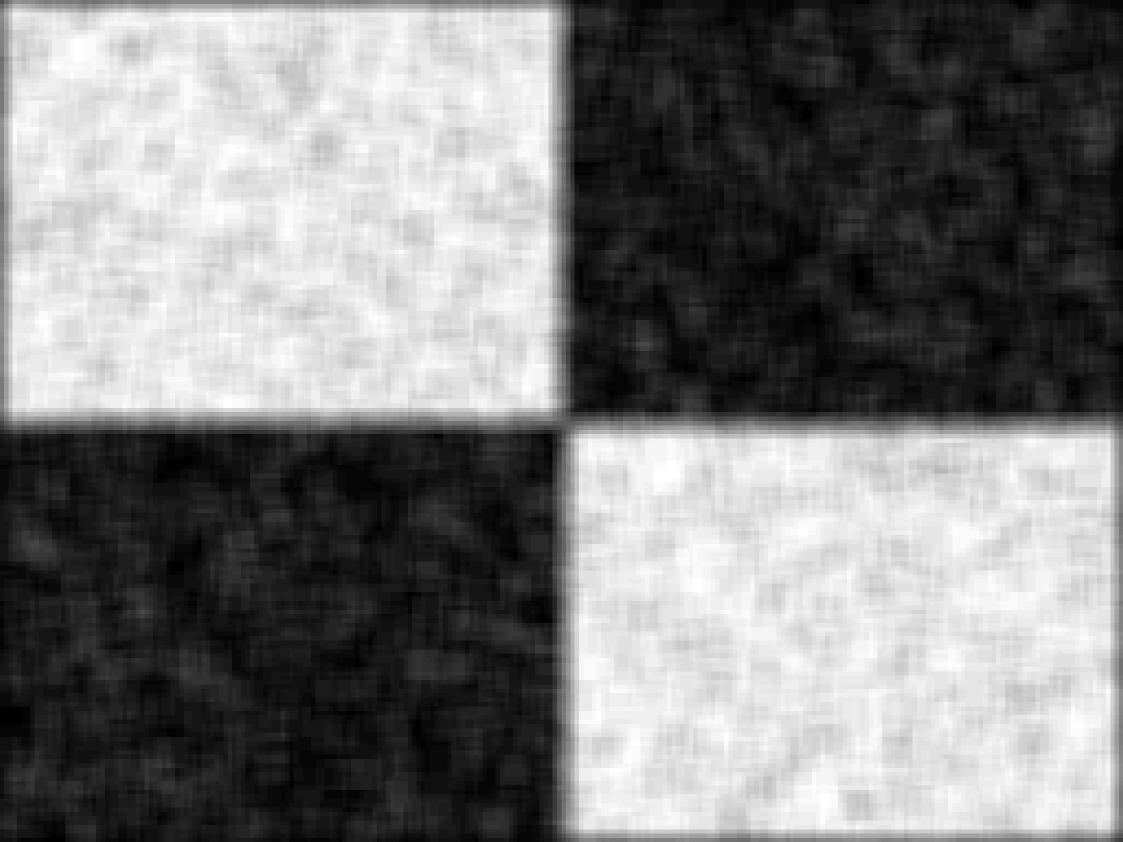




• • •

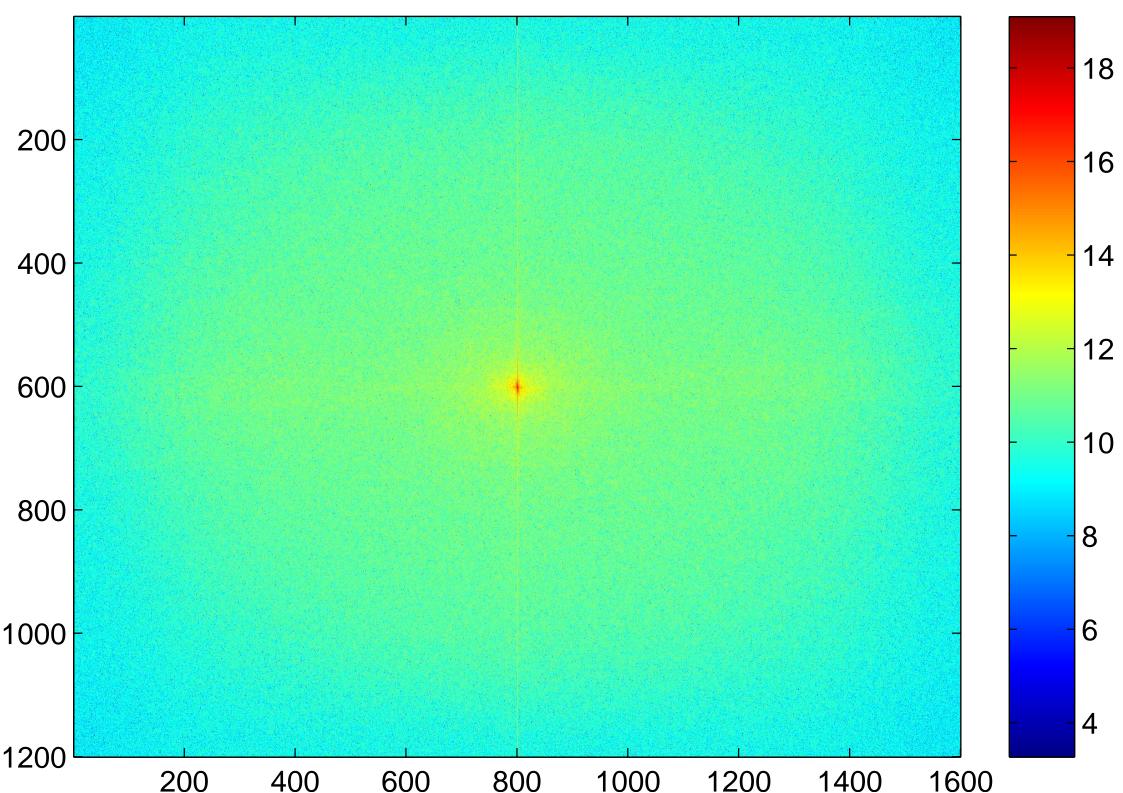


.

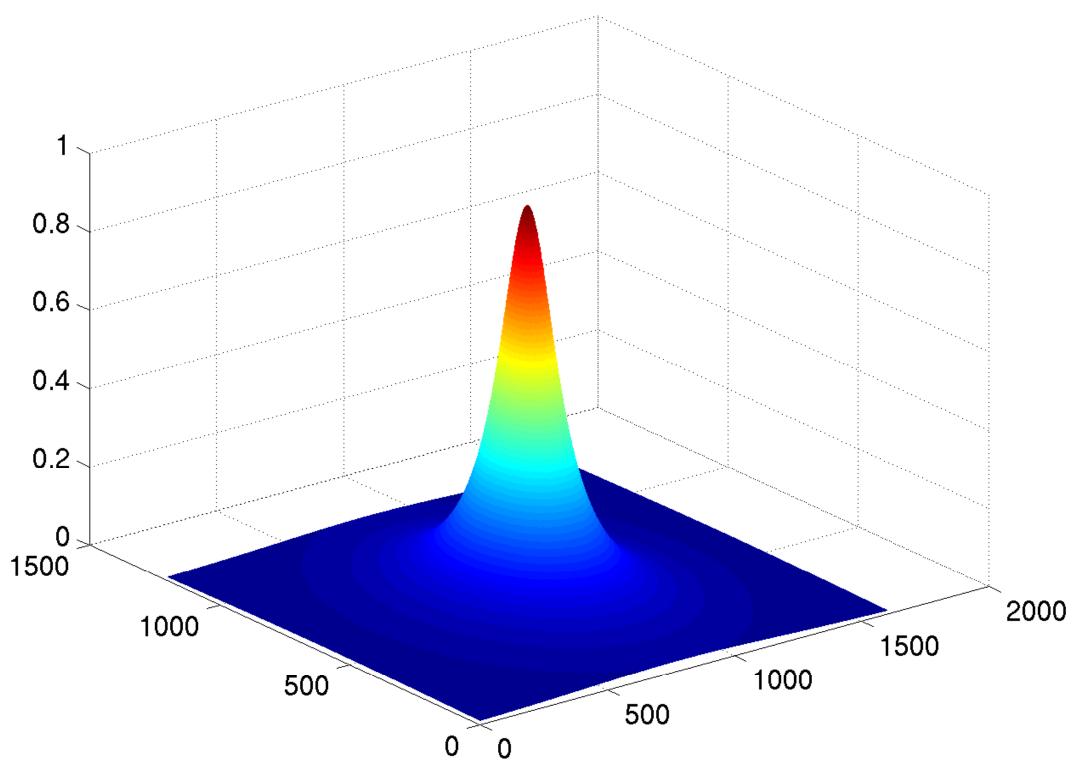


.

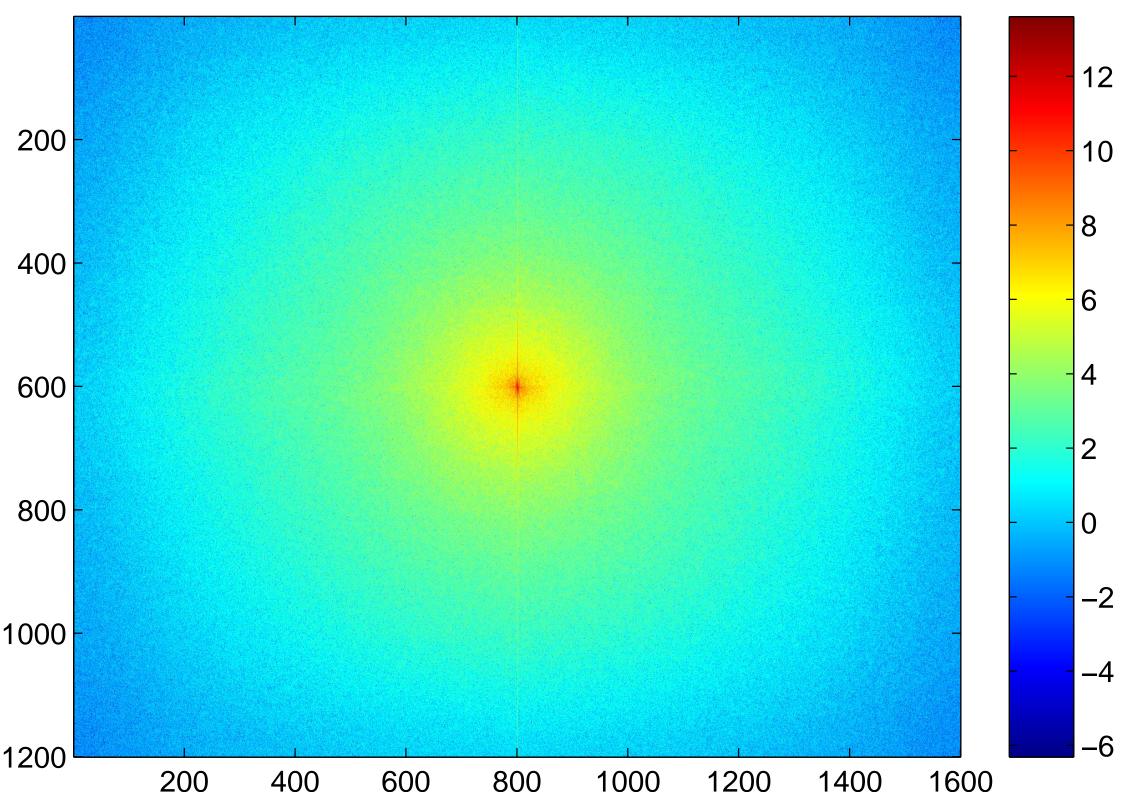
Shifted abs(FFT) of the original image



LP Buth filter n=1, cutoff=100



Shifted abs(FFT) of the filtered image



Homomorphic filter made by adaptation of Buttherworth highpass

