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Spatial Filtering — overview
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We have learned
¢ smoothing
¢ remove noise
@ pattern matching (normalised cross—correlation)
We will learn today
¢ sharpening
¢ image derivatives
¢ edges
@
Sharpening ~
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Enhancing differences. So, the kernels involve differences — combine
positive and negative weights.

¢ unsharp masking

@ 1st and 2nd derivatives



@

¢ Often appears in Image manipulation packages (Gimp, ImageMagick)

Unsharp masking
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¢ Quite powerful it cannot do miracles, though.

Idea: Subtract out the blur.
Procedure:

1. Blur the image

2. Subtract from original
3. Multiply by a weight
4

. Combine (add to) with the original

Unsharp masking — Mathematically
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g=f+alf—1)

¢ original image
¢ f, blurred image
¢ ¢ sharpened result

¢ « controls the sharpening

What is the unsharp mask?

g = 1xf+adxf—Bxf)
= 1+a(l-B)xf
= Uxf

where U is the desired unsharp mask.

Unsharp masking — Blur image




Unsharp masking — Subtract from original
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Unsharp masking — Adding to the original

Unsharp masking — Result




Unsharp masking — unsharp mask U
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U=1+a(l-B)

mask one: mask one blurring mask

Unsharp masking — unsharp mask U
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U=1+a(l- B)

-0.0044 -0.0053 -0.0061 -0.0067 -0.0071 -0.0073 -0.0071 -0.0067 -0.0061 -0.0053 -0.0044
-0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 —0.0053
-0.0061 -0.0073 -0.0083 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0073 -0.0061
-0.0067 -0.0080 -0.0092 -0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067
-0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071

-0.0073 -0.0087 -0.0100 -0.0110 -0.0117 19880 -0.0117 -0.0110 -0.0100 -0.0087 -0.0073

-0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071

-0.0067 -0.0080 -0.0092 -0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067

-0.0061 -0.0073 -0.0083 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0073 -0.0061

-0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 -0.0053

-0.0044 -0.0053 -0.0061 -0.0067 -0.0071 -0.0073 -0.0071 -0.0067 -0.0061 -0.0053 -0.0044

We may combine only masks not the whole images!

Unsharp masking — Subtract from original
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Unsharp masking — Result
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Unsharp masking — Adding to the original
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Unsharp masking — Problems with noise
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Unsharp masking — Problems lossy JPG &
compression 16/35
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Unsharp masking — revisited
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¢ Often appears in Image manipulation packages (Gimp, ImageMagick).
¢ It may help in practice. Low-cost lenses blur the image.
¢ Quite powerful it cannot do miracles, though.

¢ |t also emphasises noise and JPG artifacts.

(®

Image derivatives
18/35

¢ Measure local image geometry

¢ Differential geometry a branch of mathematics built around

¢ We can use convolution to compute them

@ First derivative — local changes to the signal. (from physics: speed is
derivative of a position with respect to time)

@ Second derivative — changes to change (from physics: acceleration is

)
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Derivative — reminder from calculus
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Consider a 1D signal f(x)

d, . . fle+h) - f(x)
Ef(x) = lim

h—0 h

However, for sampled (discrete) signals, the smallest difference £ is one. So,

d ., . fle+1) - f(x)
%f(f/) ~ 1

This called forward difference

(e

Backward difference
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Remind that the limit lim;_.q

must exist for both lim;, .4 and lim,_o_

So going from negative side of h

d, . . fl@)=fl@—h)
af(l) = lim

h—0 h

Sampled variant

d ., . [fl@)-fl@-1)
af(-f«) ~ 1

Kernels for derivatives
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Image is 2D function f(x,y). Derivatives may also be along y— direction
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Forward difference — x direction

22/35
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Backward difference — x direction 70/
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Central difference — x direction




Central difference — « and y direction
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Second derivatives

Forward

d .
S~ S+ ) - ]

Backward

. \///

250

200

150

100

50

-50

-100

-150

-200

-250

central
¥

—

8

)

d
F@) ~ f@) - f 1)

Difference of differences

d2

ol @) = (fle+1) = fz)) = (f(z) - fl@ 1)

= fle+1)=2f(z)+ f(x —1)

(1] [P - [ 2]

Second derivatives — derivative of derivative
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2D derivatives

Differentiate in one dimension, ignore the other

0 2 22 02

ox oy dz? Jy?
0|0 O 0| -1]0 0|0 O 0|+110
110 +1 0 00 +1]-2]+1 0| -210
00 0 0|+110 0|0 0 0|+1]0
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C
2D derivatives with smoothing ~
Differentiate in one dimension and smooth in the other
-1]0] +1
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- 1B
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| 77 74 -150 150
é -200 200
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C
The Gradient ~

¢ Magnitude

V7 = ¢ () + (2.

1) = atan <g£, gj;) ,

is steepness in

¢ direction

A way to do the edge detection. Edge direction is perpendicular to .
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The Laplacian
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2p o Of 0%

Sum of second derivatives in = and y directions.

Sort of an overall curvature.

With kernels:
0| 0 0 0[+110 +1
+1|-2|4+1|+|0| -2|0|=|1] 4|1
0| 0 0 0[+110 +1
What is an edge?
image 1
08 0.3] - 03 =
e o
04 : o
0.2 ,nnz ~0.05]
@
Partial derivatives
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first x-derivative first y-derivative 0
02 -0.02
015 -0.04
-0.08
0.1
-0.08
0.05
-0.1
0

Extrema of partial derivatives are good candidates for edges.
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Laplacian

A |,

Places where the Laplacian changes from positive to negative are also good
potential edges.

@

Laplacian for sharpenning
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original signal f
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