Image preprocessing in spatial domain

Sharpening, image derivatives, Laplacian, edges

Revision: 1.2, dated: May 25, 2007

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering **Center for Machine Perception**, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

Spatial Filtering — overview

We have learned

- smoothing
- remove noise
- pattern matching (normalised cross-correlation)

We will learn today

- sharpening
- image derivatives
- edges

Sharpening

Enhancing differences. So, the kernels involve differences — combine positive and negative weights.

- unsharp masking
- 1st and 2nd derivatives

Unsharp masking

- Often appears in Image manipulation packages (Gimp, ImageMagick)
- Quite powerful it cannot do miracles, though.

Idea: Subtract out the blur.

Procedure:

- 1. Blur the image
- 2. Subtract from original
- 3. Multiply by a weight
- 4. Combine (add to) with the original

Unsharp masking — Mathematically

$$g = f + \alpha (f - f_b)$$

- ♦ f original image
- f_b blurred image
- \bullet g sharpened result
- $\blacklozenge~\alpha$ controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$
$$= (\mathbf{1} + \alpha (\mathbf{1} - B)) * f$$
$$= U * f$$

where U is the desired unsharp mask.

Unsharp masking — Blur image

Unsharp masking — Subtract from original

Unsharp masking — Adding to the original

Unsharp masking — Result

 $U = \mathbf{1} + \alpha(\mathbf{1} - B)$

Unsharp masking — unsharp mask U

 $U = \mathbf{1} + \alpha(\mathbf{1} - B)$

	-0.0044	-0.0053	-0.0061	-0.0067	-0.0071	-0.0073	-0.0071	-0.0067	-0.0061	-0.0053	-0.0044
	-0.0053	-0.0063	-0.0073	-0.0080	-0.0085	-0.0087	-0.0085	-0.0080	-0.0073	-0.0063	-0.0053
	-0.0061	-0.0073	-0.0083	-0.0092	-0.0098	-0.0100	-0.0098	-0.0092	-0.0083	-0.0073	-0.0061
	-0.0067	-0.0080	-0.0092	-0.0102	-0.0108	-0.0110	-0.0108	-0.0102	-0.0092	-0.0080	-0.0067
	-0.0071	-0.0085	-0.0098	-0.0108	-0.0115	-0.0117	-0.0115	-0.0108	-0.0098	-0.0085	-0.0071
	-0.0073	-0.0087	-0.0100	-0.0110	-0.0117	1.9880	-0.0117	-0.0110	-0.0100	-0.0087	-0.0073
	-0.0071	-0.0085	-0.0098	-0.0108	-0.0115	-0.0117	-0.0115	-0.0108	-0.0098	-0.0085	-0.0071
_	-0.0067	-0.0080	-0.0092	-0.0102	-0.0108	-0.0110	-0.0108	-0.0102	-0.0092	-0.0080	-0.0067
0	-0.0061	-0.0073	-0.0083	-0.0092	-0.0098	-0.0100	-0.0098	-0.0092	-0.0083	-0.0073	-0.0061
	-0.0053	-0.0063	-0.0073	-0.0080	-0.0085	-0.0087	-0.0085	-0.0080	-0.0073	-0.0063	-0.0053
	-0.0044	-0.0053	-0.0061	-0.0067	-0.0071	-0.0073	-0.0071	-0.0067	-0.0061	-0.0053	-0.0044

We may combine only masks not the whole images!

Unsharp masking — Subtract from original

Unsharp masking — Adding to the original

Unsharp masking — Problems with noise

Unsharp masking — revisited

- Often appears in Image manipulation packages (Gimp, ImageMagick).
- It may help in practice. Low-cost lenses blur the image.
- Quite powerful it cannot do miracles, though.
- It also emphasises noise and JPG artifacts.

Image derivatives

- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them
- First derivative local changes to the signal. (from physics: speed is derivative of a position with respect to time)
- Second derivative changes to change (from physics: acceleration is

 ...)

Derivative — reminder from calculus

Consider a 1D signal f(x)

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

However, for sampled (discrete) signals, the smallest difference h is one. So,

$$\frac{d}{dx}f(x) \approx \frac{f(x+1) - f(x)}{1}$$

This called forward difference

Backward difference

Remind that the limit $\lim_{h\to 0}$

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist for both $\lim_{h\to 0+}$ and $\lim_{h\to 0-}$

So going from negative side of \boldsymbol{h}

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

Sampled variant

$$\frac{d}{dx}f(x) \approx \frac{f(x) - f(x-1)}{1}$$

Kernels for derivatives

Image is 2D function f(x, y). Derivatives may also be along y- direction

Forward difference — x direction

۲

m p

23/35

Backward difference — \boldsymbol{x} direction

Central difference — x direction

250

200

150

100 50

0 -50

-100 -150

-200 -250

Central difference — \boldsymbol{x} and \boldsymbol{y} direction

@ m p

Forward

Backward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$
$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

Second derivatives

Difference of differences

$$\frac{d^2}{dx^2}f(x) \approx (f(x+1) - f(x)) - (f(x) - f(x-1))$$

= $f(x+1) - 2f(x) + f(x-1)$

Second derivatives — derivative of derivative

2D derivatives

Differentiate in one dimension, ignore the other

$rac{\partial}{\partial x}$			$\frac{\partial}{\partial x}$ $\frac{\partial}{\partial y}$					$rac{\partial^2}{\partial x^2}$					$\frac{\partial^2}{\partial y^2}$		
0	0	0		0	-1	0		0	0	0		0	+1	0	
-1	0	+1		0	0	0		+1	-2	+1		0	-2	0	
0	0	0		0	+1	0]	0	0	0		0	+1	0	

\smile		٢
9	m	n

Differentiate in one dimension and smooth in the other

-1 0

2D derivatives with smoothing

+1 *

1

1

=

-1 0

-1 0 +1

+1

The Gradient

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Magnitude

$$\|\nabla f(x,y)\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2},$$

is steepness in

direction

$$\psi = \operatorname{atan} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \;,$$

A way to do the edge detection. Edge direction is perpendicular to $\psi.$

The Laplacian

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Sum of second derivatives in x and y directions.
- Sort of an overall curvature.

With kernels:

0	0	0		0	+1	0		0	+1	0
+1	-2	+1	+	0	-2	0	=	1	-4	1
0	0	0		0	+1	0		0	+1	0

Extrema of partial derivatives are good candidates for edges.

Places where the Laplacian changes from positive to negative are also good potential edges.

m p

35/35

