Image preprocessing in spatial domain

Sharpening, image derivatives, Laplacian, edges
Revision: 1.2, dated: May 25, 2007

Tomáš Svoboda
Czech Technical University, Faculty of Electrical Engineering
Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~svoboda

Spatial Filtering - overview

We have learned

- smoothing
- remove noise
- pattern matching (normalised cross-correlation)

We will learn today

- sharpening
- image derivatives
- edges

Sharpening

Enhancing differences. So, the kernels involve differences - combine positive and negative weights.

- unsharp masking
- 1st and 2nd derivatives

Unsharp masking

- Often appears in Image manipulation packages (Gimp, ImageMagick)
- Quite powerful it cannot do miracles, though.

Idea: Subtract out the blur.
Procedure:

1. Blur the image
2. Subtract from original
3. Multiply by a weight
4. Combine (add to) with the original

Unsharp masking - Mathematically

$$
g=f+\alpha\left(f-f_{b}\right)
$$

- f original image
- f_{b} blurred image
- g sharpened result
- α controls the sharpening

What is the unsharp mask?

$$
\begin{aligned}
g & =\mathbf{1} * f+\alpha(\mathbf{1} * f-B * f) \\
& =(\mathbf{1}+\alpha(\mathbf{1}-B)) * f \\
& =U * f
\end{aligned}
$$

where U is the desired unsharp mask.

Unsharp masking - Subtract from original

[^0]

Unsharp masking - unsharp mask U

$$
U=\mathbf{1}+\alpha(\mathbf{1}-B)
$$

Unsharp masking - unsharp mask U

$$
U=\mathbf{1}+\alpha(\mathbf{1}-B)
$$

We may combine only masks not the whole images!

Unsharp masking - Subtract from original

Unsharp masking - Adding to the original

Unsharp masking - Problems with noise

Unsharp masking - Problems lossy JPG compression

- Often appears in Image manipulation packages (Gimp, ImageMagick).
- It may help in practice. Low-cost lenses blur the image.
- Quite powerful it cannot do miracles, though.
- It also emphasises noise and JPG artifacts.

Image derivatives

18/35

- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them
- First derivative - local changes to the signal. (from physics: speed is derivative of a position with respect to time)
- Second derivative - changes to change (from physics: acceleration is ...)

Derivative - reminder from calculus

Consider a 1D signal $f(x)$

$$
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

However, for sampled (discrete) signals, the smallest difference h is one. So,

$$
\frac{d}{d x} f(x) \approx \frac{f(x+1)-f(x)}{1}
$$

This called forward difference

Backward difference

Remind that the limit $\lim _{h \rightarrow 0}$

$$
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

must exist for both $\lim _{h \rightarrow 0+}$ and $\lim _{h \rightarrow 0-}$

So going from negative side of h

$$
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h}
$$

Sampled variant

$$
\frac{d}{d x} f(x) \approx \frac{f(x)-f(x-1)}{1}
$$

Kernels for derivatives

Image is 2D function $f(x, y)$. Derivatives may also be along y - direction

Forward difference $-x$ direction

Backward difference - x direction

Central difference - x direction

Second derivatives

Forward

$$
\frac{d}{d x} f(x) \approx f(x+1)-f(x)
$$

Backward

$$
\frac{d}{d x} f(x) \approx f(x)-f(x-1)
$$

Difference of differences

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} f(x) & \approx(f(x+1)-f(x))-(f(x)-f(x-1)) \\
& =f(x+1)-2 f(x)+f(x-1)
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline+1 & \mathbf{- 1} \\
\hline
\end{array} * \begin{array}{|l|l|}
\hline+1 & \mathbf{- 1} \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline+1 & -2 & +1 \\
\hline
\end{array}
$$

Second derivatives - derivative of derivative

2D derivatives

Differentiate in one dimension, ignore the other

$\frac{\partial}{\partial x}$			$\frac{\partial}{\partial y}$			$\frac{\partial^{2}}{\partial x^{2}}$			$\frac{\partial^{2}}{\partial y^{2}}$		
0	0	0	0	-1	0	0	0	0	0	+1	0
-1	0	+1	0	0	0	+1	-2	+1	0	-2	0
0	0	0	0	+1	0	0	0	0	0	+1	0

2D derivatives with smoothing

Differentiate in one dimension and smooth in the other

$$
\begin{array}{|l|l|l|}
\hline-1 & 0 & +1 \\
\hline
\end{array} * * \begin{array}{|l|l|l|}
\hline 1 \\
\hline 1 \\
\hline 1 \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline-1 & 0 & +1 \\
\hline-1 & 0 & +1 \\
\hline-1 & 0 & +1 \\
\hline
\end{array}
$$

The Gradient

$$
\nabla f(x, y)=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

- Magnitude

$$
\|\nabla f(x, y)\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}},
$$

is steepness in

- direction

$$
\psi=\operatorname{atan}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

A way to do the edge detection. Edge direction is perpendicular to ψ.

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Sum of second derivatives in x and y directions.
- Sort of an overall curvature.

With kernels:

0	0	0				
+1	-2	+1				
0	0	0	$+$	0	+1	0
:---	---:	---:				
0	-2	0				
0	+1	0	$=$	0	+1	0
:---	---:	---:				
1	-4	1				
0	+1	0				

What is an edge?

Extrema of partial derivatives are good candidates for edges.

Places where the Laplacian changes from positive to negative are also good potential edges.

Laplacian for sharpenning

[^0]: Unsharp masking - Adding to the original

