Image preprocessing in spatial domain

Sharpening, image derivatives, Laplacian, edges

Revision: 1.2, dated: May 25, 2007

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

Spatial Filtering — overview

We have learned

- smoothing
- remove noise
- pattern matching (normalised cross–correlation)

2/35

- smoothing
- remove noise
- pattern matching (normalised cross–correlation)

We will learn today

- sharpening
- image derivatives
- edges

Sharpening

Enhancing differences. So, the kernels involve differences — combine positive and negative weights.

- unsharp masking
- 1st and 2nd derivatives

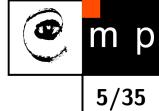
3/35

- Often appears in Image manipulation packages (Gimp, ImageMagick)
- Quite powerful it cannot do miracles, though.

Idea: Subtract out the blur.

Procedure:

- 1. Blur the image
- 2. Subtract from original
- 3. Multiply by a weight
- 4. Combine (add to) with the original

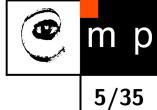


$$g = f + \alpha(f - f_b)$$

- f original image
- \bullet f_b blurred image
- \bullet g sharpened result
- lacktriangle α controls the sharpening

What is the unsharp mask?

.



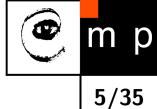
$$g = f + \alpha(f - f_b)$$

- lacktriangle f original image
- \bullet f_b blurred image
- \bullet g sharpened result
- lacktriangle α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$

-



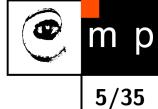
$$g = f + \alpha(f - f_b)$$

- lacktriangle f original image
- \bullet f_b blurred image
- g sharpened result
- lacktriangle α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$
$$= (\mathbf{1} + \alpha (\mathbf{1} - B)) * f$$

.



$$g = f + \alpha(f - f_b)$$

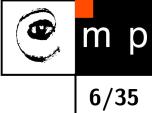
- f original image
- \bullet f_b blurred image
- g sharpened result
- lacktriangle α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$
$$= (\mathbf{1} + \alpha (\mathbf{1} - B)) * f$$
$$= U * f$$

where U is the desired unsharp mask.

Unsharp masking — Blur image



Unsharp masking — Subtract from original

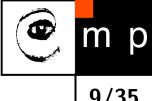
7/35

Unsharp masking — Adding to the original

8/35



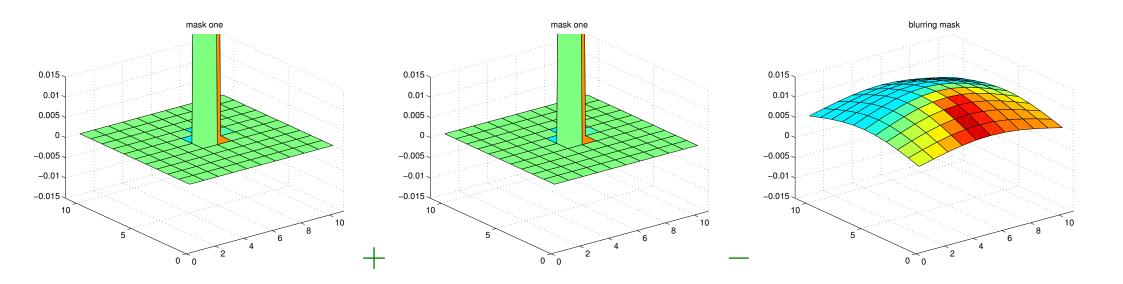
Unsharp masking — Result



Unsharp masking — unsharp mask $oldsymbol{U}$

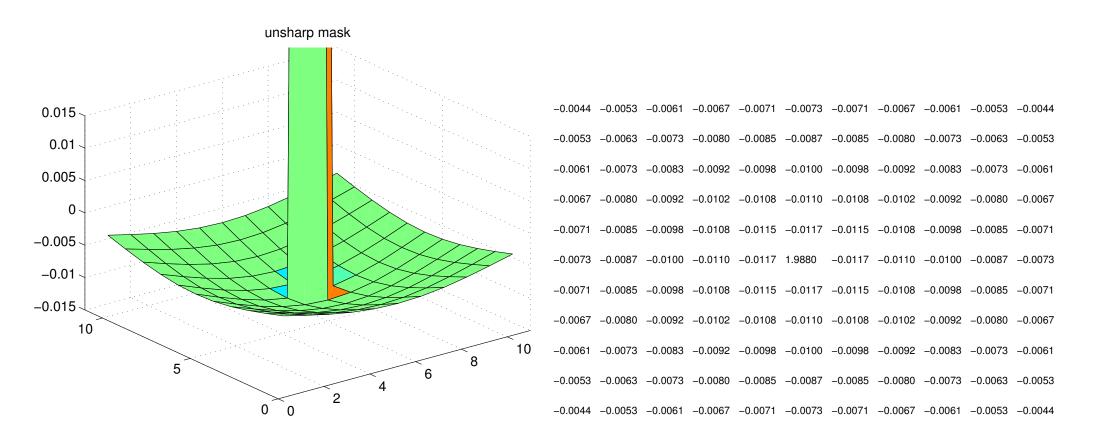
10/35

$$U = \mathbf{1} + \alpha(\mathbf{1} - B)$$



Unsharp masking — unsharp mask $oldsymbol{U}$

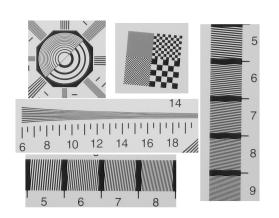
$$U = \mathbf{1} + \alpha(\mathbf{1} - B)$$

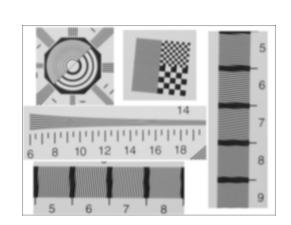


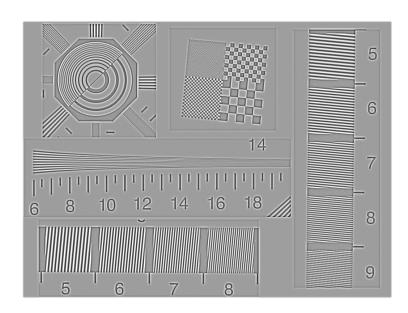
We may combine only masks not the whole images!

Unsharp masking — Subtract from original

12/35

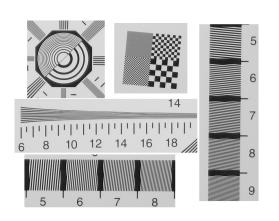


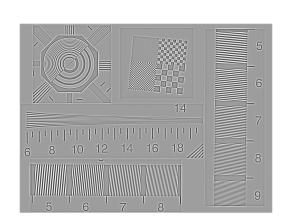


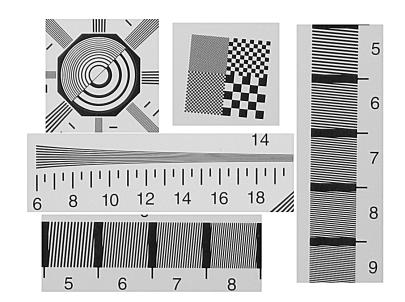


Unsharp masking — Adding to the original

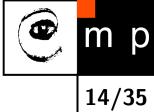
13/35

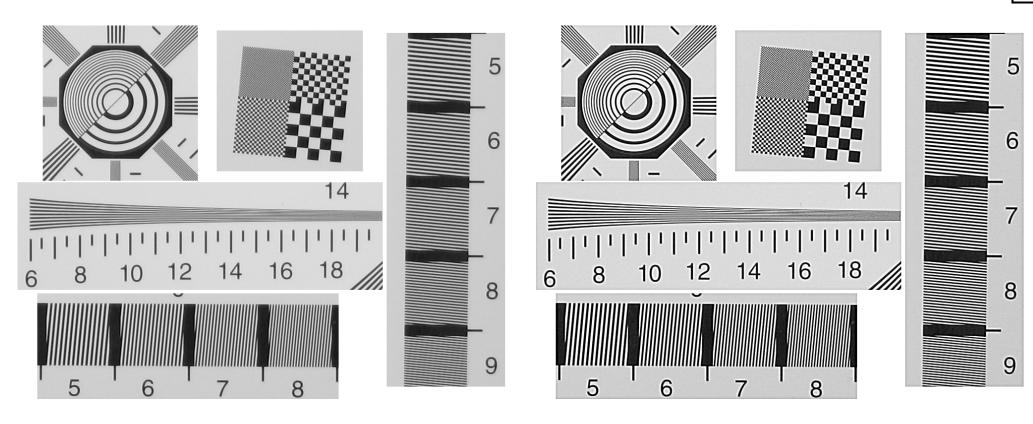




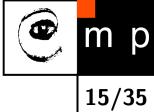


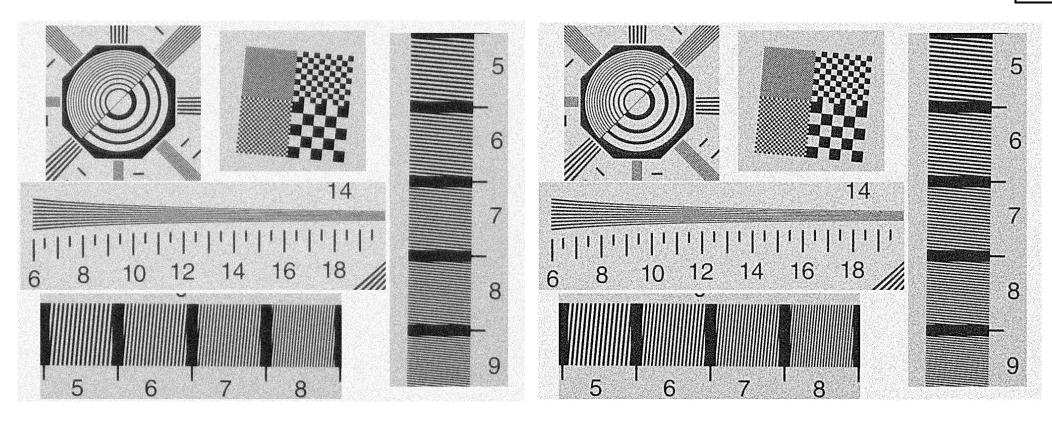
Unsharp masking — Result



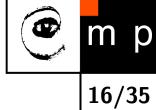


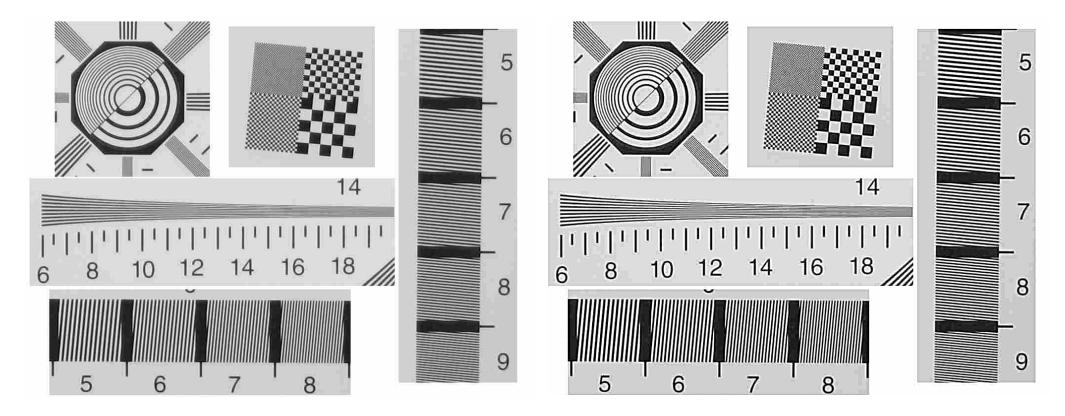
Unsharp masking — Problems with noise





Unsharp masking — Problems lossy JPG compression

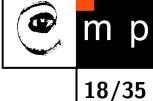




Unsharp masking — revisited

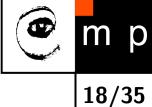
- Often appears in Image manipulation packages (Gimp, ImageMagick).
- It may help in practice. Low-cost lenses blur the image.
- Quite powerful it cannot do miracles, though.
- It also emphasises noise and JPG artifacts.

Image derivatives



- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them

Image derivatives



- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them

- ◆ First derivative local changes to the signal. (from physics: speed is derivative of a position with respect to time)
- Second derivative changes to change (from physics: acceleration is
 . . .)

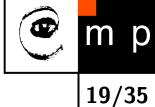
Derivative — reminder from calculus

Consider a 1D signal f(x)

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

19/35

Derivative — reminder from calculus



Consider a 1D signal f(x)

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

However, for sampled (discrete) signals, the smallest difference h is one. So,

$$\frac{d}{dx}f(x) \approx \frac{f(x+1) - f(x)}{1}$$

This called forward difference

Backward difference

Remind that the limit $\lim_{h\to 0}$

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist for both $\lim_{h\to 0+}$ and $\lim_{h\to 0-}$

Backward difference

20/35

Remind that the limit $\lim_{h\to 0}$

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist for both $\lim_{h\to 0+}$ and $\lim_{h\to 0-}$

So going from negative side of h

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x) - f(x - h)}{h}$$

Sampled variant

$$\frac{d}{dx}f(x) \approx \frac{f(x) - f(x-1)}{1}$$

Kernels for derivatives

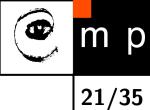
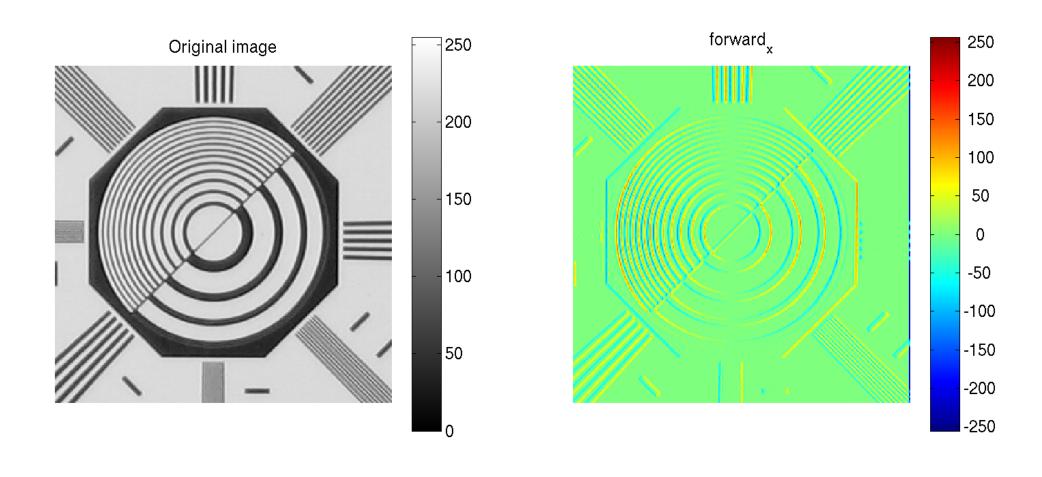


Image is 2D function f(x,y). Derivatives may also be along y- direction

m p

Forward difference — x direction



23/35

250

200

150

100

50

0

-50

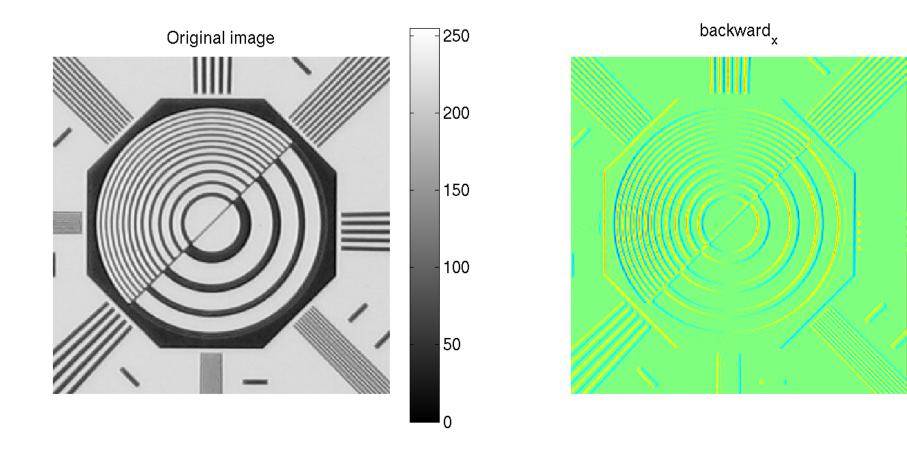
-100

-150

-200

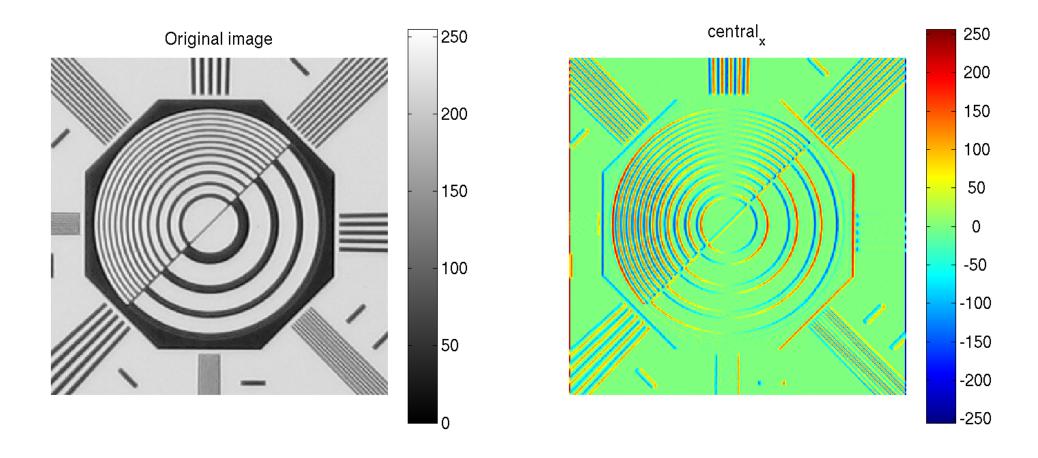
-250

Backward difference — x direction

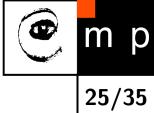


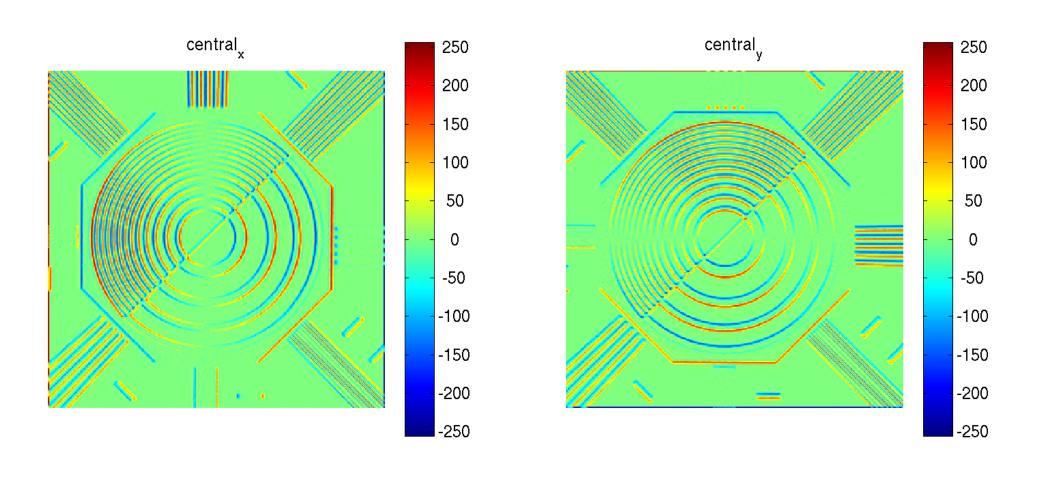
m p 24/35

Central difference — x direction



Central difference — \boldsymbol{x} and \boldsymbol{y} direction





Second derivatives

26/35

Forward

Backward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$

$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

26 /35

Second derivatives

Forward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$

Backward

$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

Difference of differences

$$\frac{d^2}{dx^2}f(x) \approx (f(x+1) - f(x)) - (f(x) - f(x-1))$$
$$= f(x+1) - 2f(x) + f(x-1)$$

Second derivatives

26/35

Forward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$

Backward

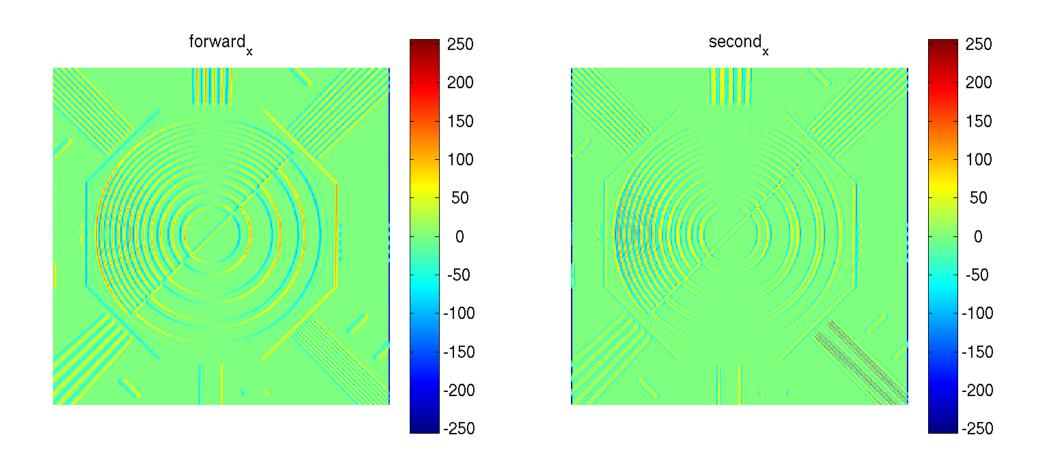
$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

Difference of differences

$$\frac{d^2}{dx^2}f(x) \approx (f(x+1) - f(x)) - (f(x) - f(x-1))$$
$$= f(x+1) - 2f(x) + f(x-1)$$

$$oxed{+1} oxed{-1} * oxed{-1} oxed{-1} = oxed{+1} oxed{-2} oxed{+1}$$

Second derivatives — derivative of derivative



2D derivatives

28/35

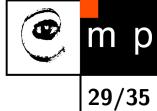
Differentiate in one dimension, ignore the other

$\frac{\partial}{\partial x}$							
0	0	0					
-1	0	+1					
0	0	0					

$$egin{array}{c|cccc} & rac{\partial}{\partial y} & & & & \\ \hline 0 & -1 & 0 & & \\ 0 & 0 & 0 & & \\ \hline 0 & +1 & 0 & & \\ \hline \end{array}$$

$rac{\partial^2}{\partial y^2}$							
0	+1	0					
0	-2	0					
0	+1	0					

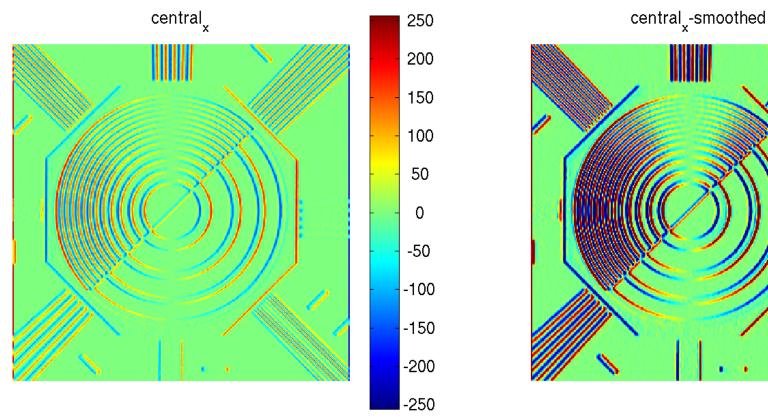
2D derivatives with smoothing

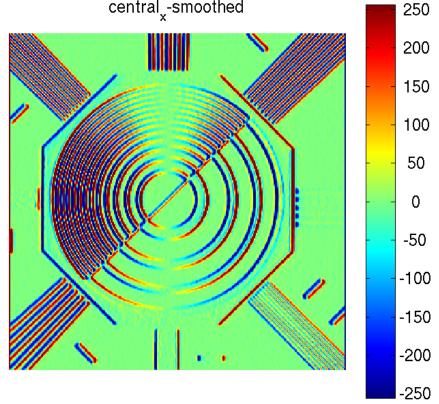


Differentiate in one dimension and smooth in the other

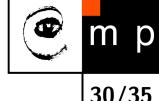
2D derivatives with smoothing

Differentiate in one dimension and smooth in the other





The Gradient



$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Magnitude

$$\|\nabla f(x,y)\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2},$$

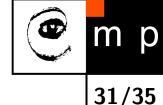
is steepness in

direction

$$\psi = \operatorname{atan}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) ,$$

A way to do the edge detection. Edge direction is perpendicular to ψ .

The Laplacian



$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- lacktriangle Sum of second derivatives in x and y directions.
- Sort of an overall curvature.

The Laplacian

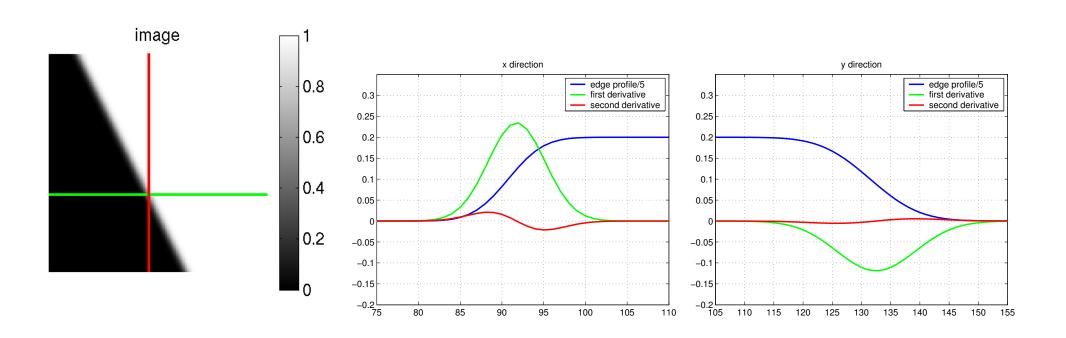
$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- lacktriangle Sum of second derivatives in x and y directions.
- Sort of an overall curvature.

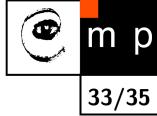
With kernels:

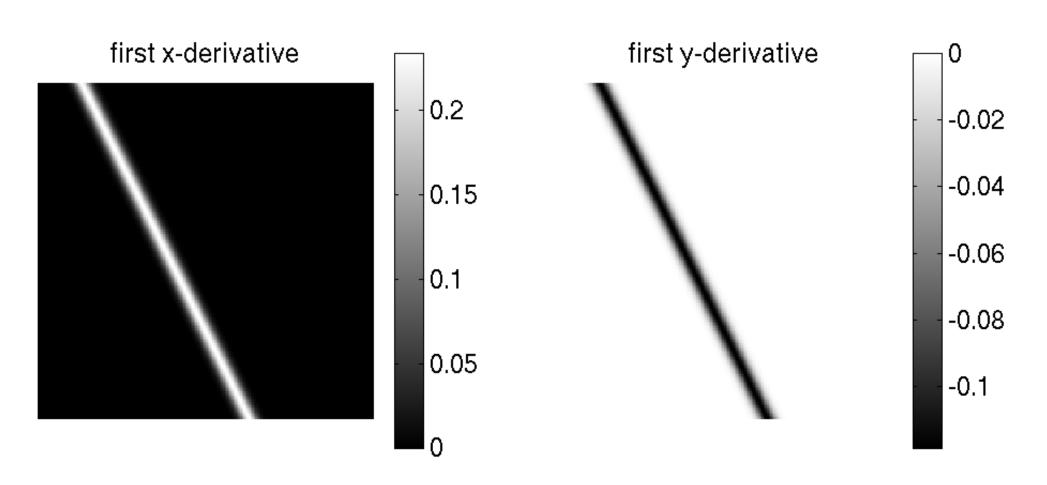
0	0	0		0	+1	0	0	+1	0
+1	-2	+1	+	0	-2	0	1	-4	1
0	0	0		0	+1	0	0	+1	0

What is an edge?



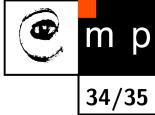
Partial derivatives

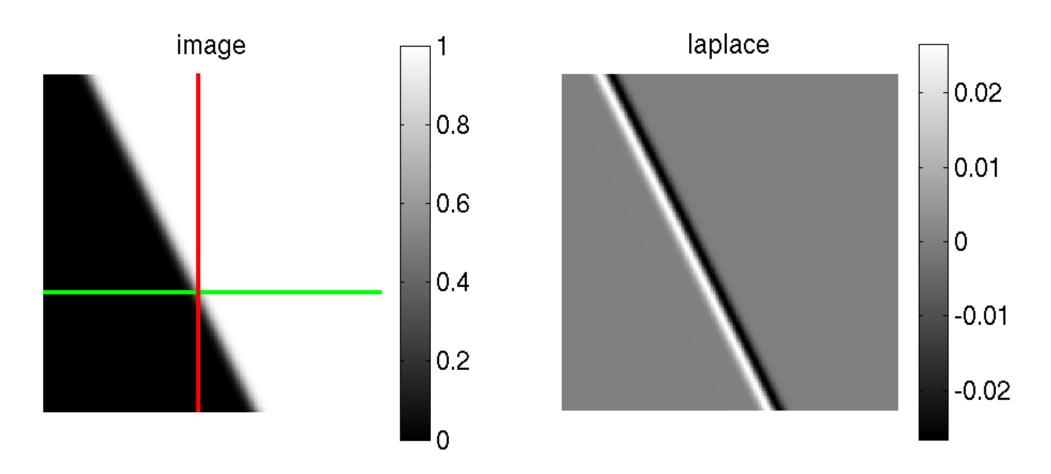




Extrema of partial derivatives are good candidates for edges.

Laplacian



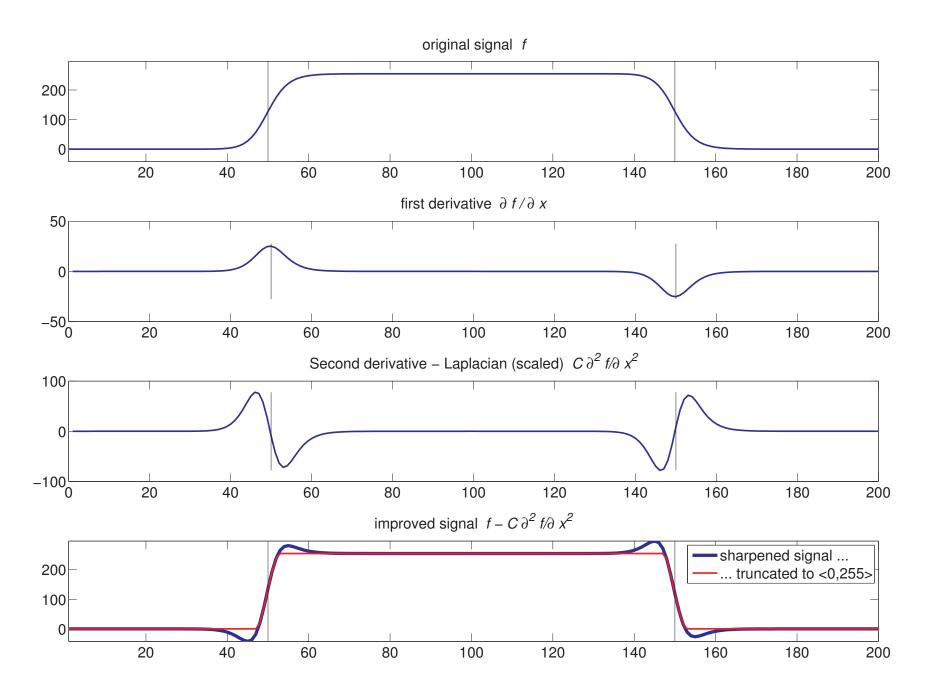


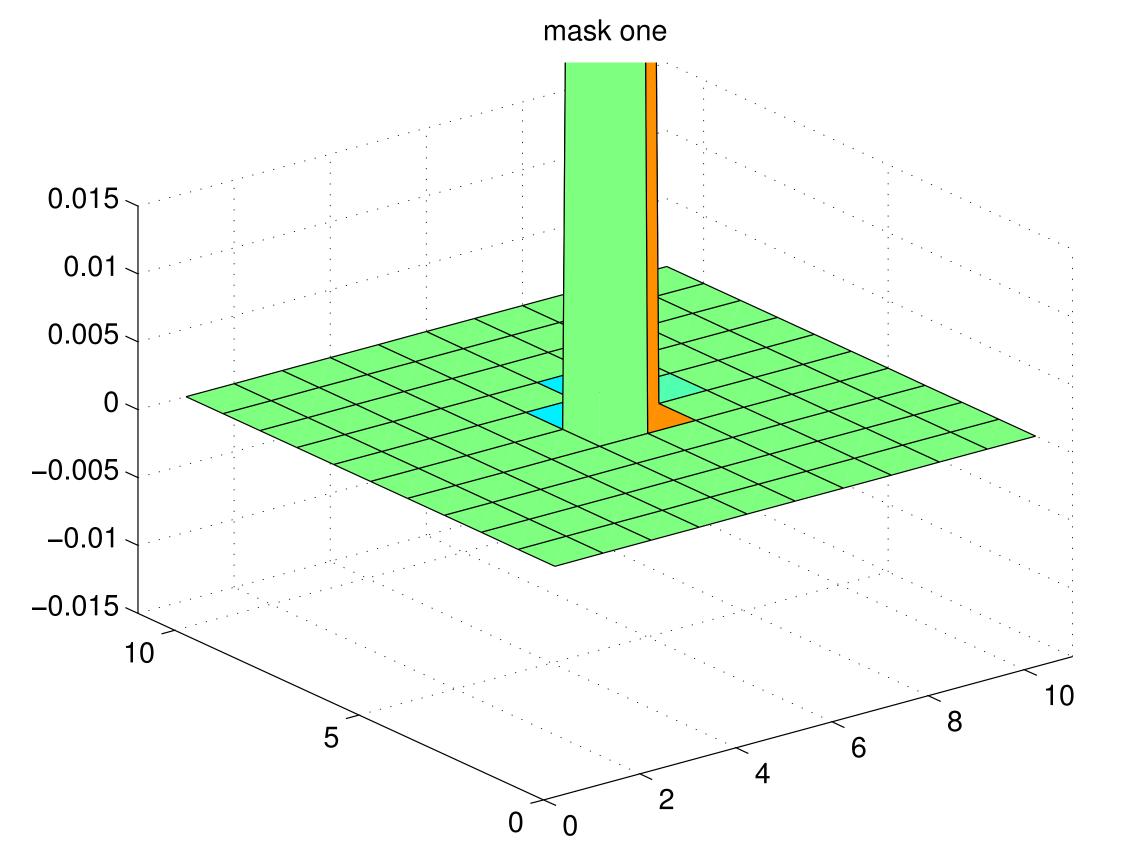
Places where the Laplacian changes from positive to negative are also good potential edges.

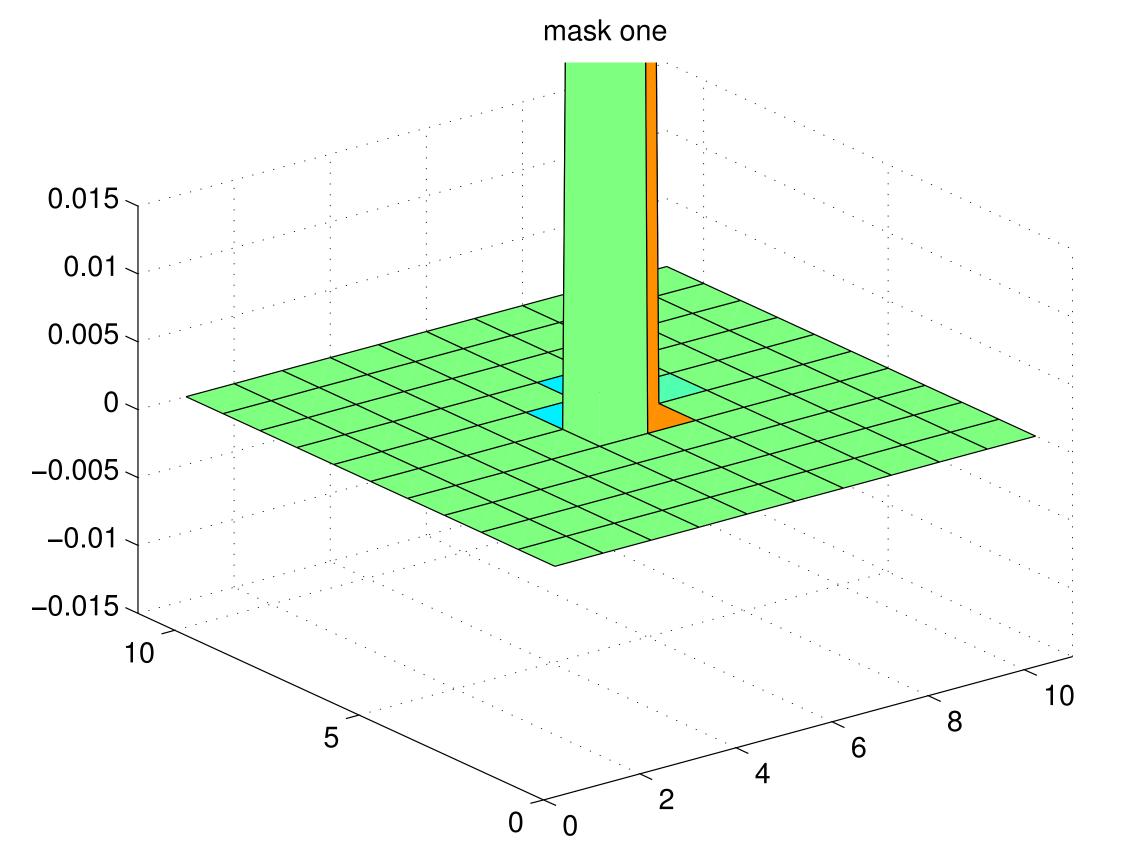
m p

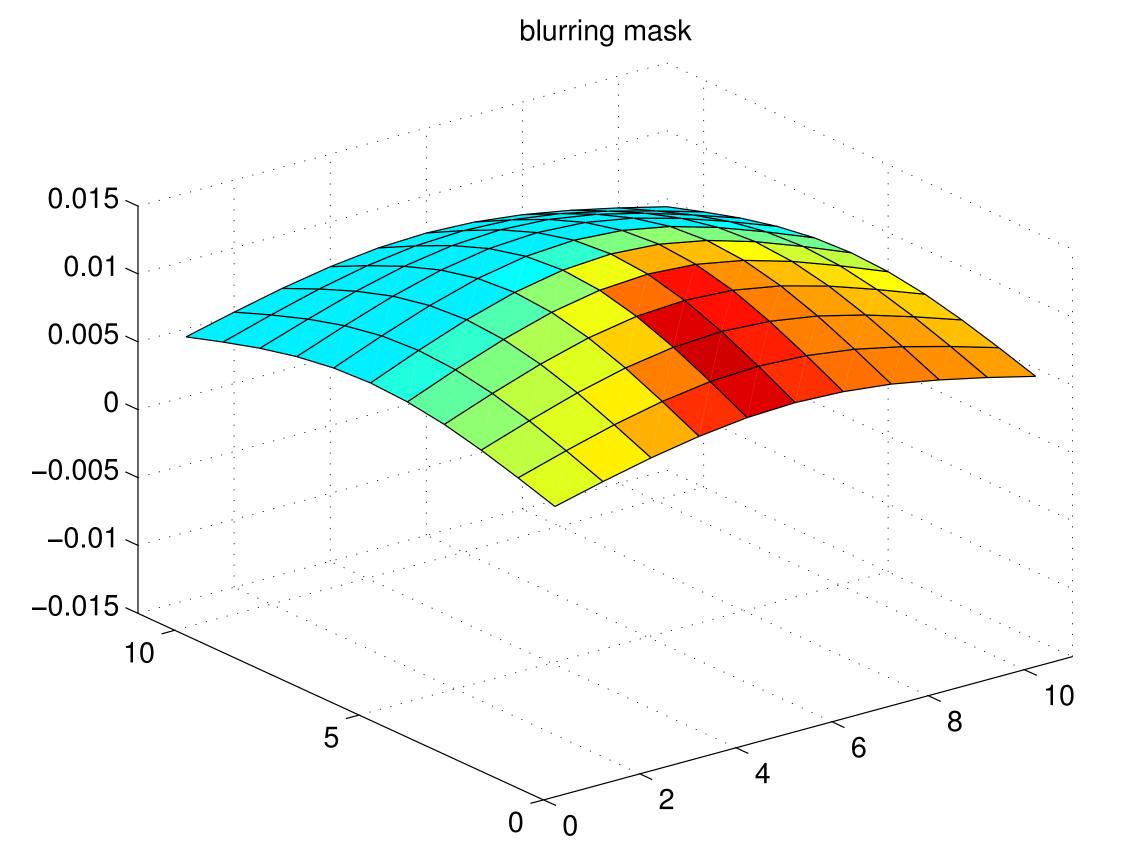
35/35

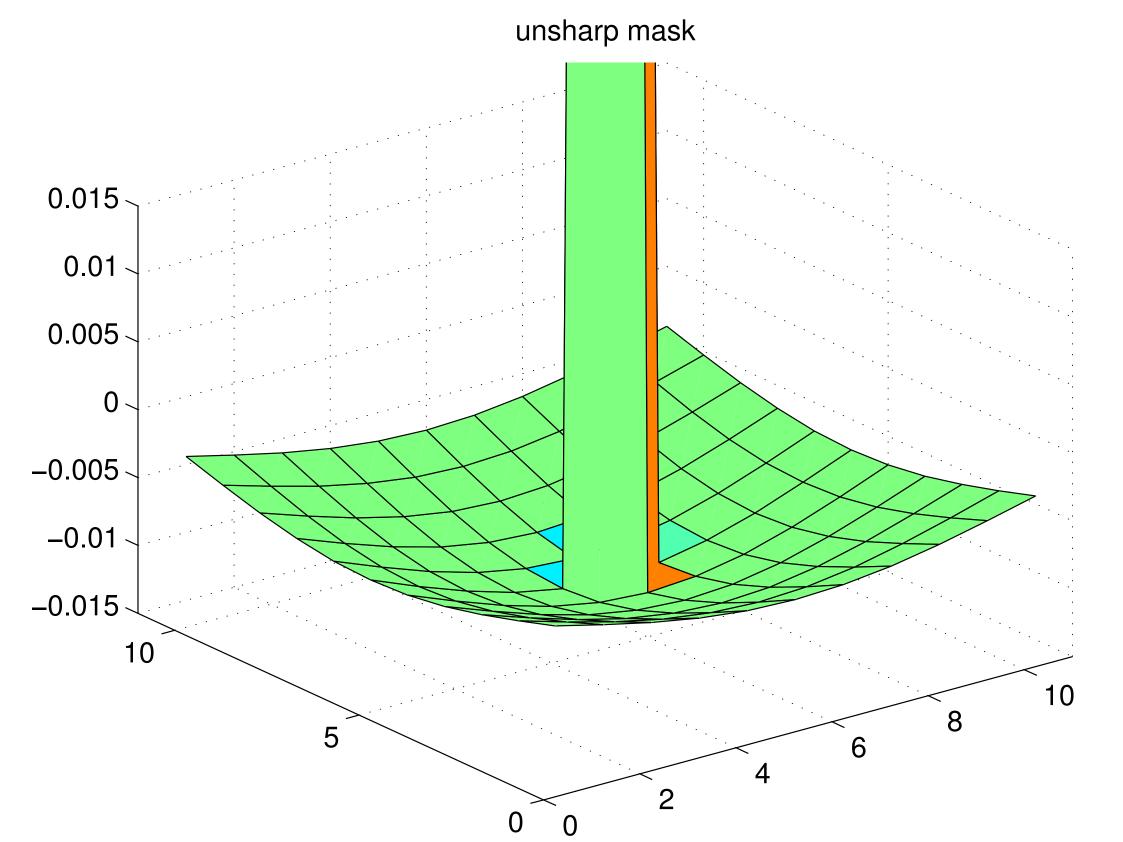
Laplacian for sharpenning



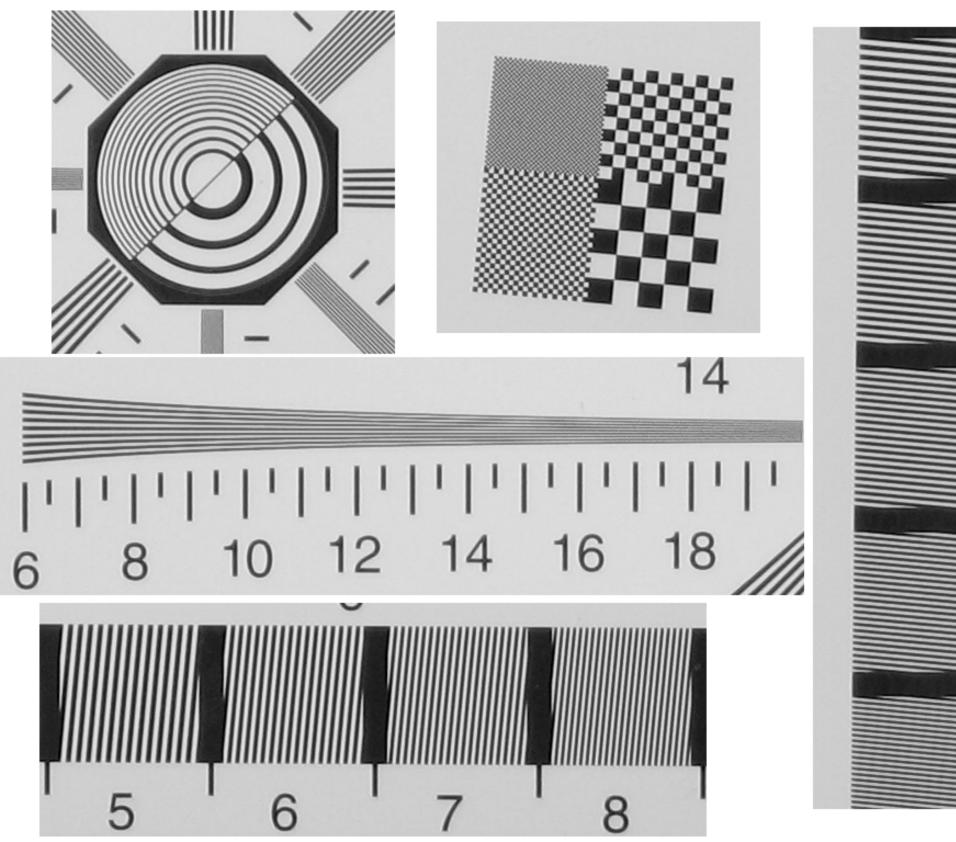


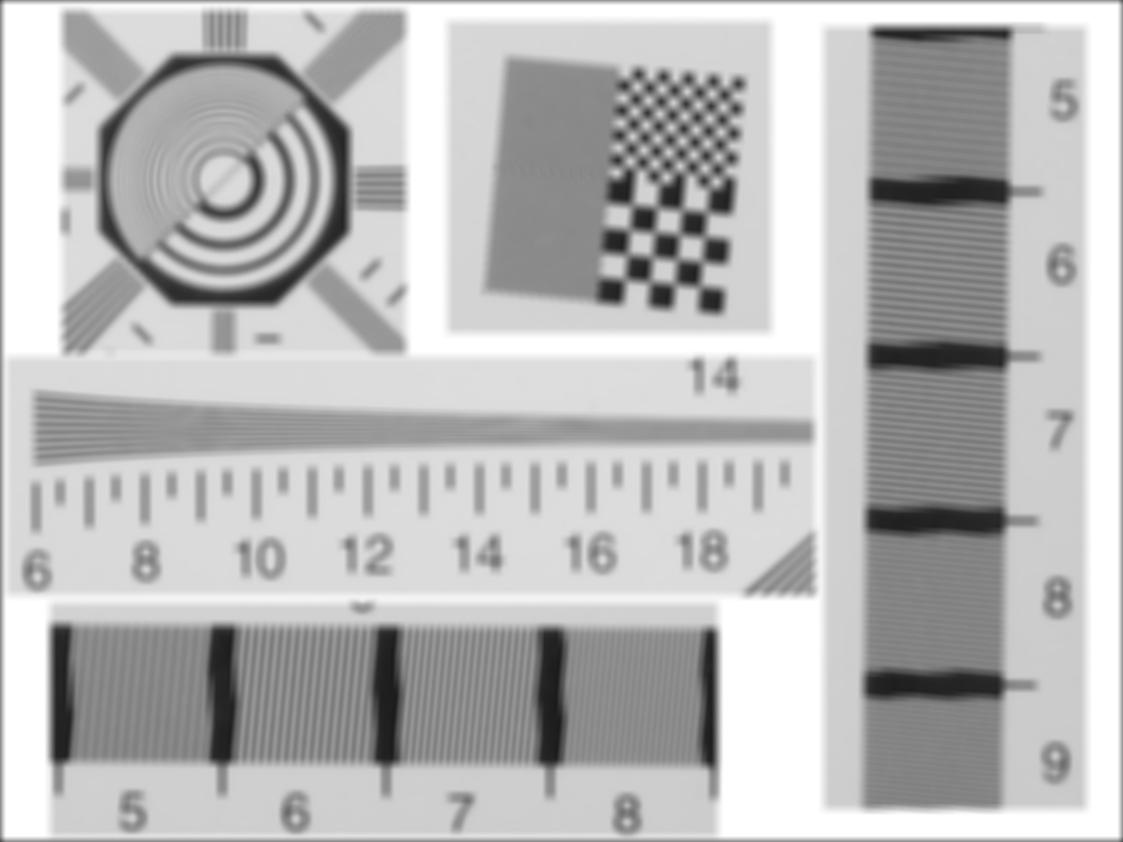


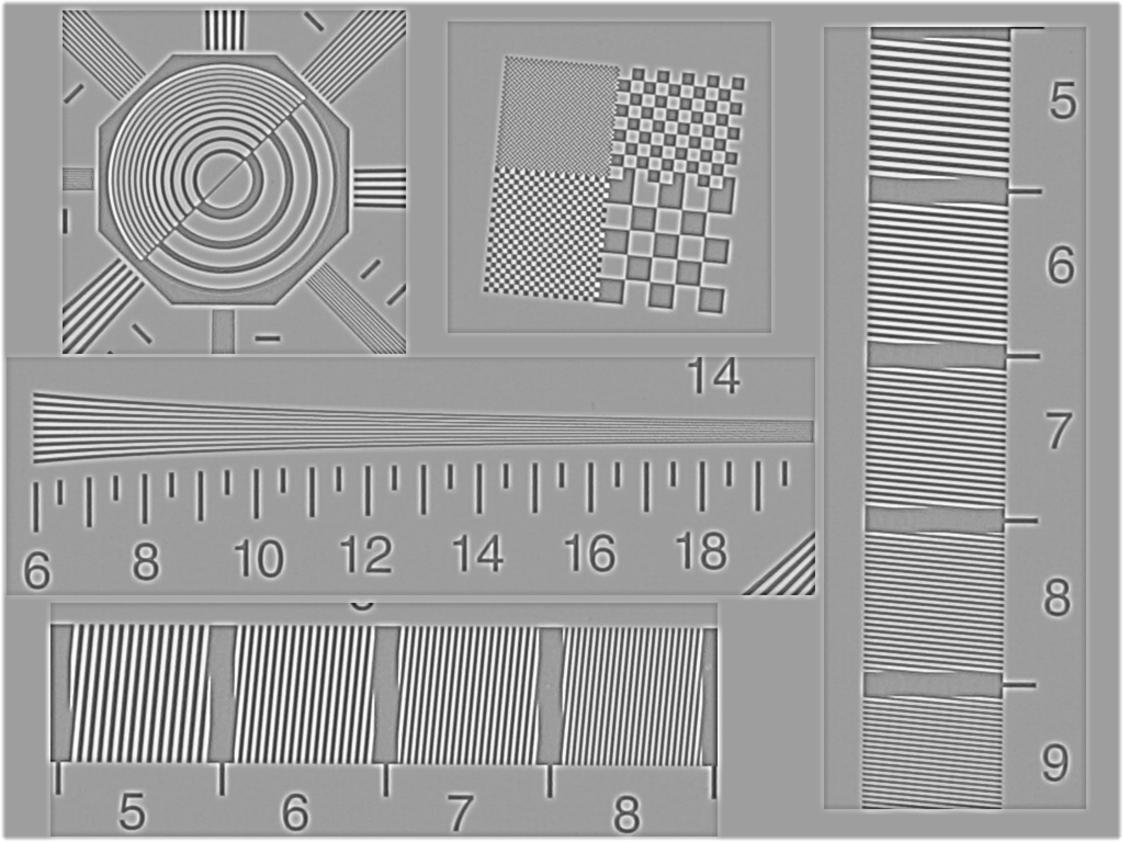


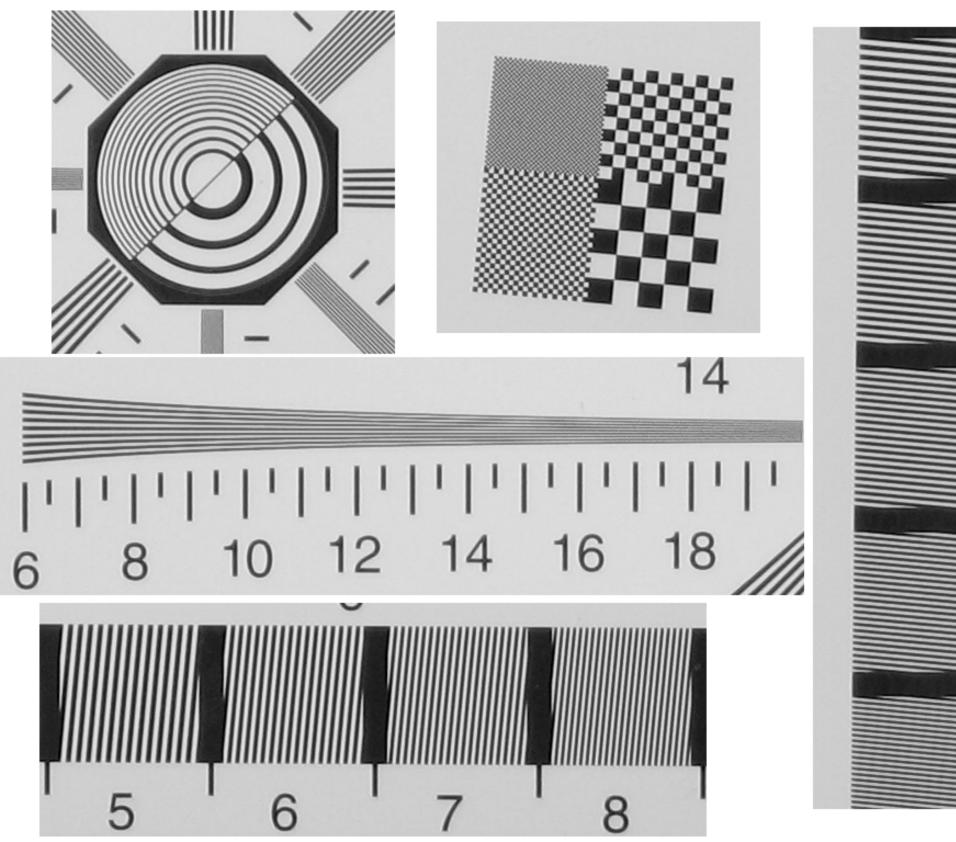


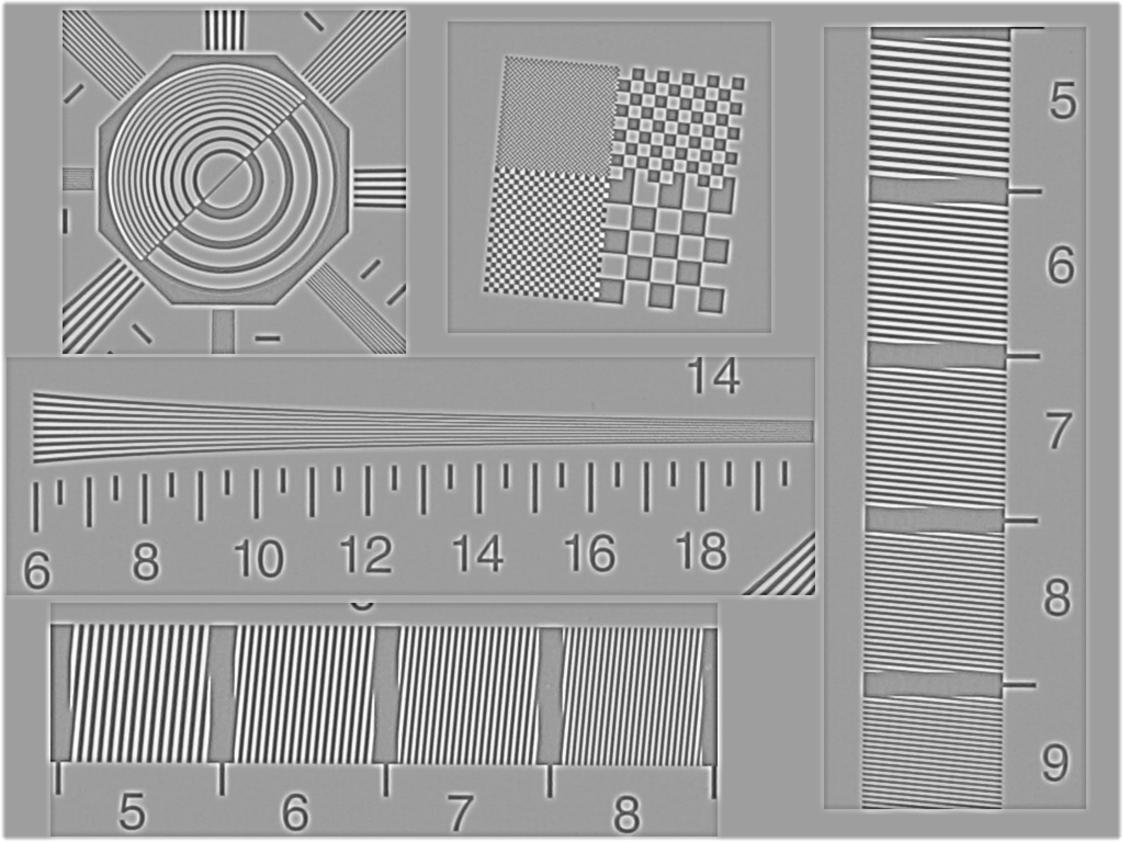
-0.0044	-0.0053	-0.0061	-0.0067	-0.0071	-0.0073	-0.0071	-0.0067	-0.0061	-0.0053	-0.0044
-0.0053	-0.0063	-0.0073	-0.0080	-0.0085	-0.0087	-0.0085	-0.0080	-0.0073	-0.0063	-0.0053
-0.0061	-0.0073	-0.0083	-0.0092	-0.0098	-0.0100	-0.0098	-0.0092	-0.0083	-0.0073	-0.0061
-0.0067	-0.0080	-0.0092	-0.0102	-0.0108	-0.0110	-0.0108	-0.0102	-0.0092	-0.0080	-0.0067
-0.0071	-0.0085	-0.0098	-0.0108	-0.0115	-0.0117	-0.0115	-0.0108	-0.0098	-0.0085	-0.0071
-0.0073	-0.0087	-0.0100	-0.0110	-0.0117	1.9880	-0.0117	-0.0110	-0.0100	-0.0087	-0.0073
-0.0071	-0.0085	-0.0098	-0.0108	-0.0115	-0.0117	-0.0115	-0.0108	-0.0098	-0.0085	-0.0071
-0.0067	-0.0080	-0.0092	-0.0102	-0.0108	-0.0110	-0.0108	-0.0102	-0.0092	-0.0080	-0.0067
-0.0061	-0.0073	-0.0083	-0.0092	-0.0098	-0.0100	-0.0098	-0.0092	-0.0083	-0.0073	-0.0061
-0.0053	-0.0063	-0.0073	-0.0080	-0.0085	-0.0087	-0.0085	-0.0080	-0.0073	-0.0063	-0.0053
-0.0044	-0.0053	-0.0061	-0.0067	-0.0071	-0.0073	-0.0071	-0.0067	-0.0061	-0.0053	-0.0044

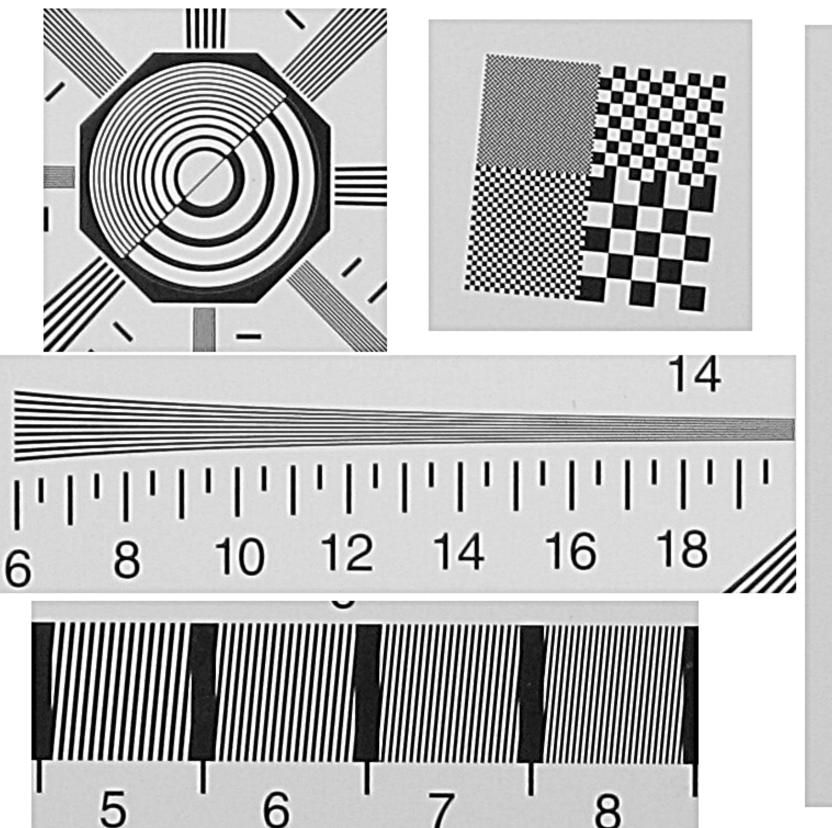


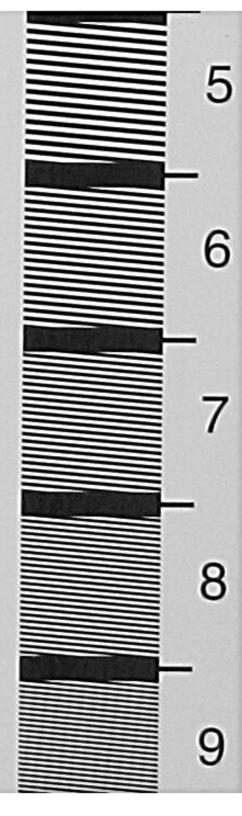


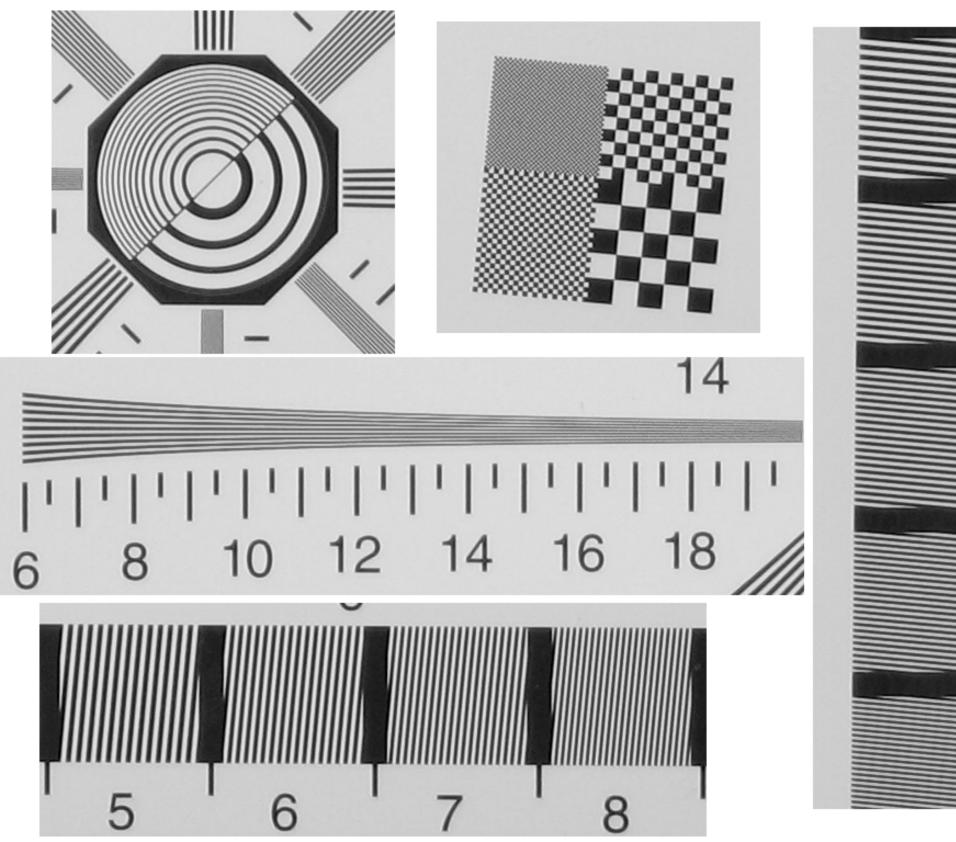


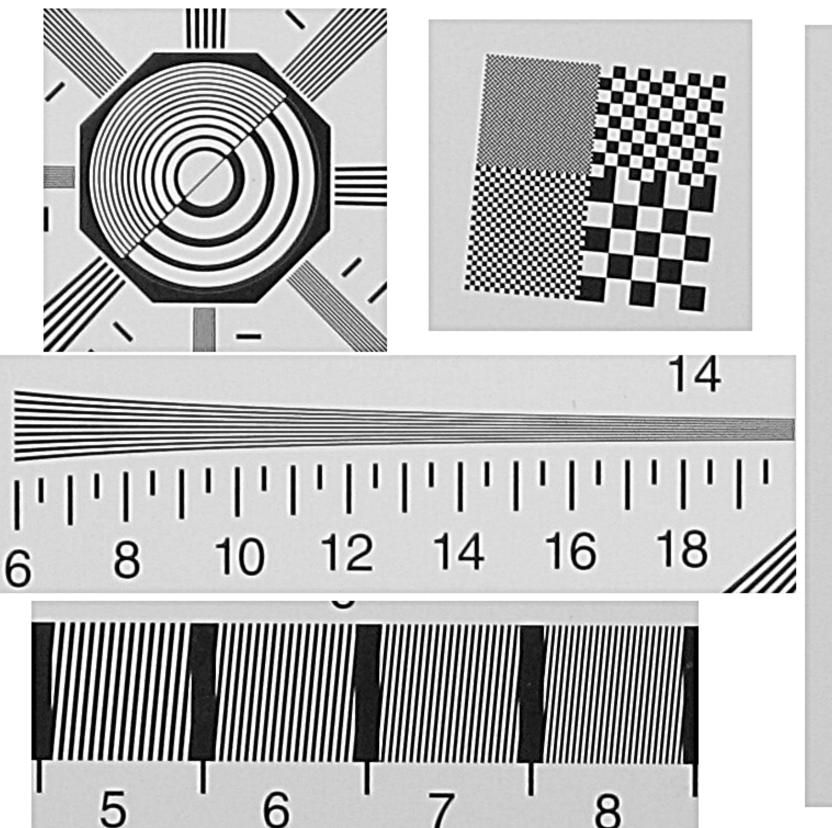


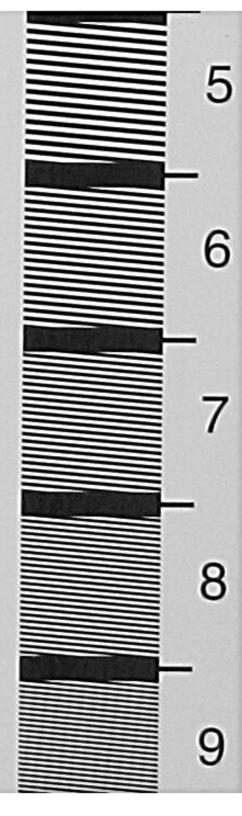


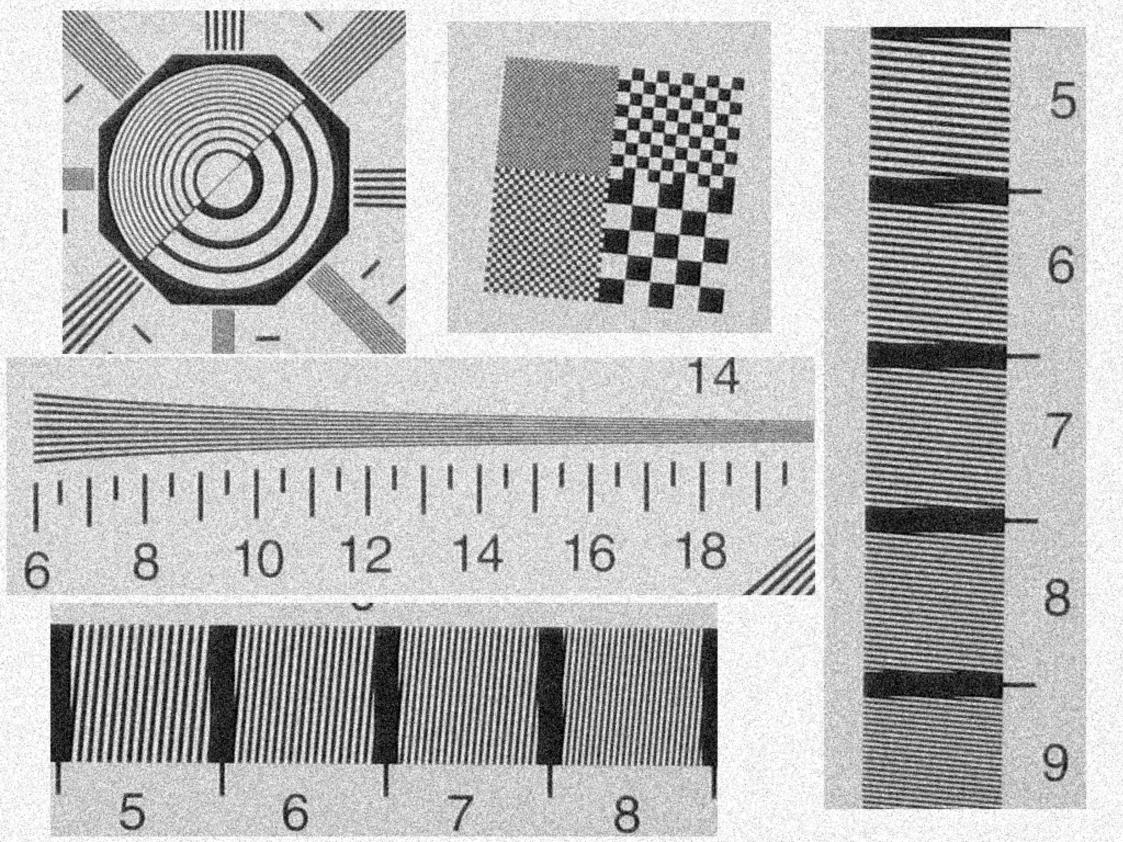


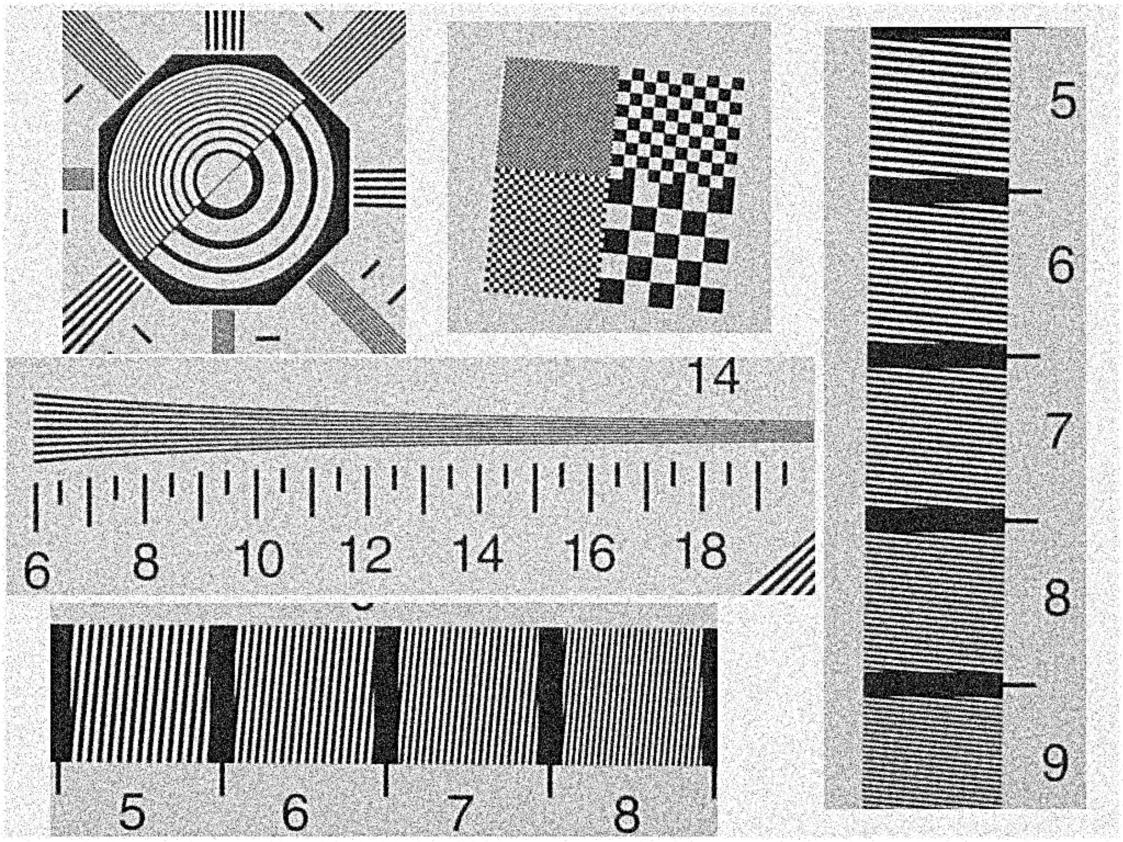


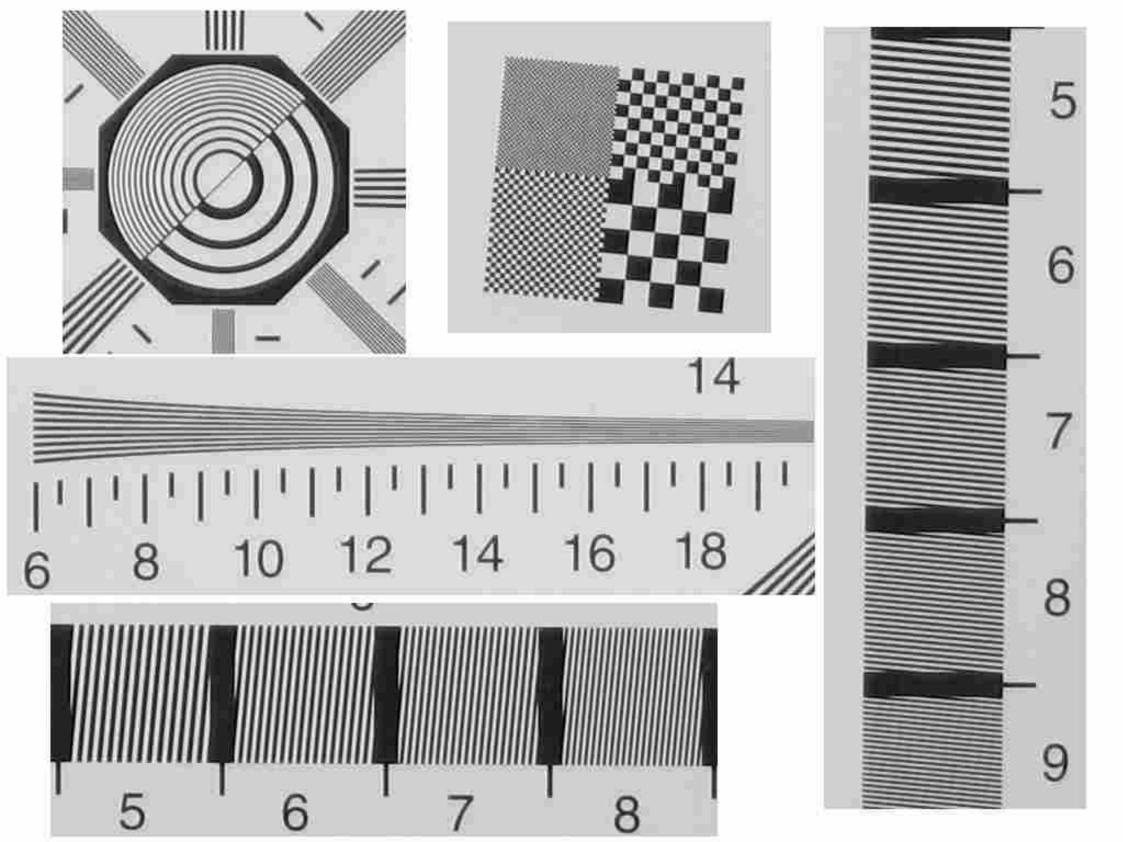


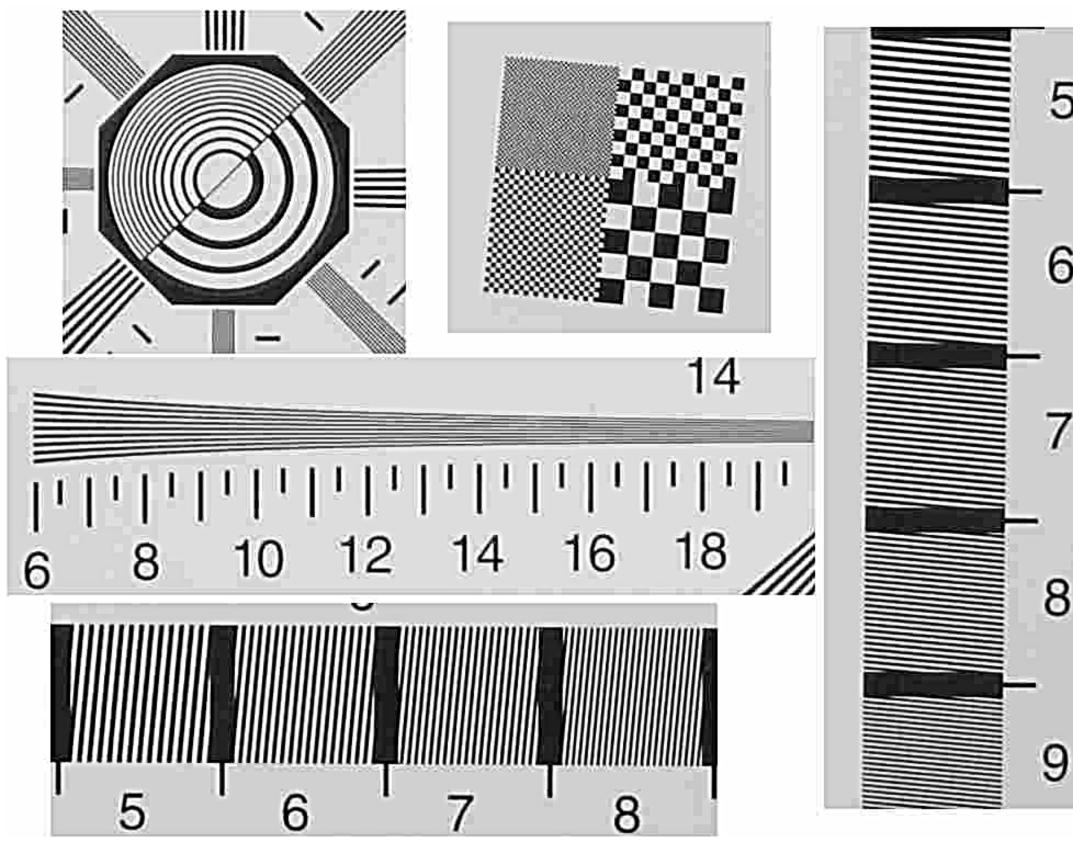


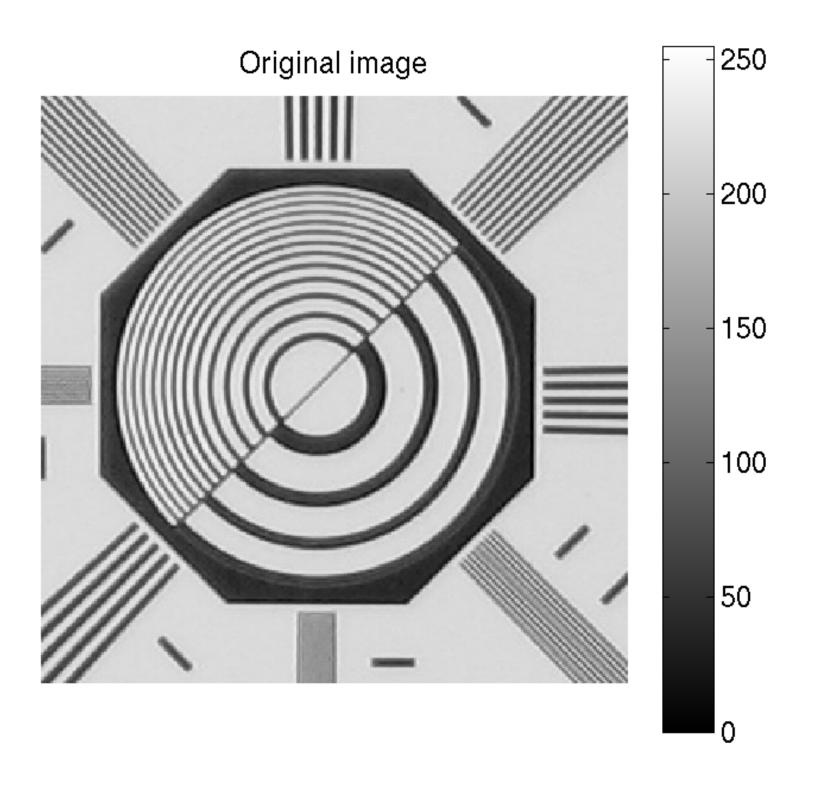


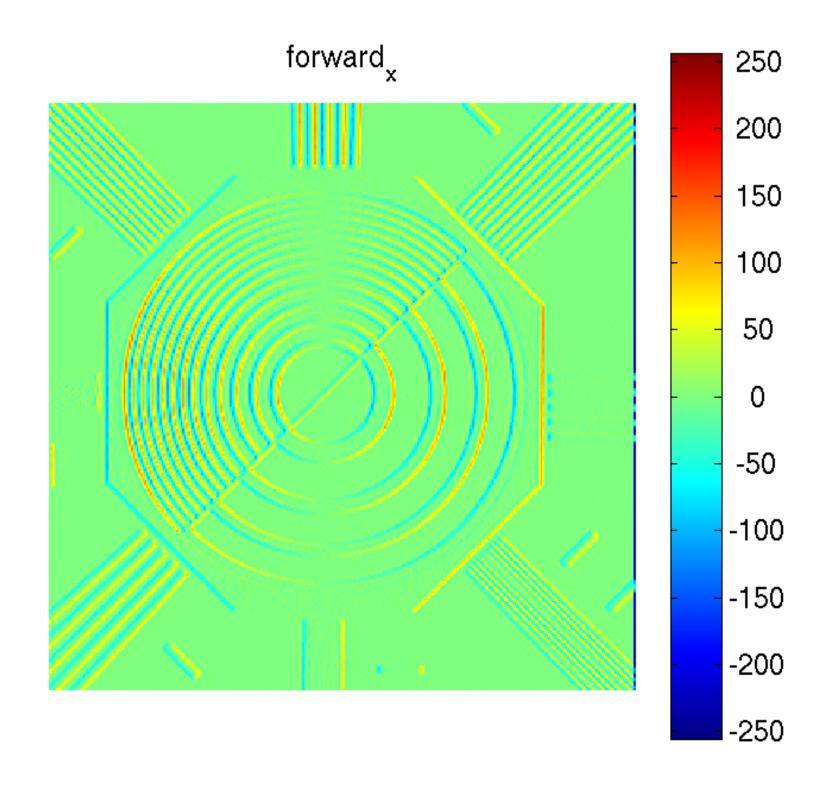


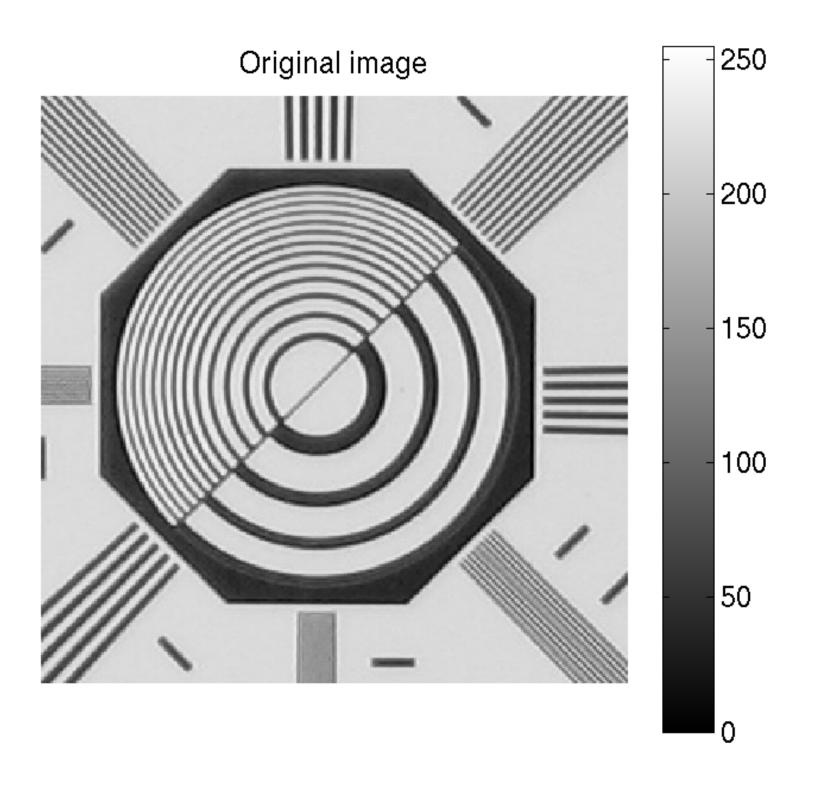


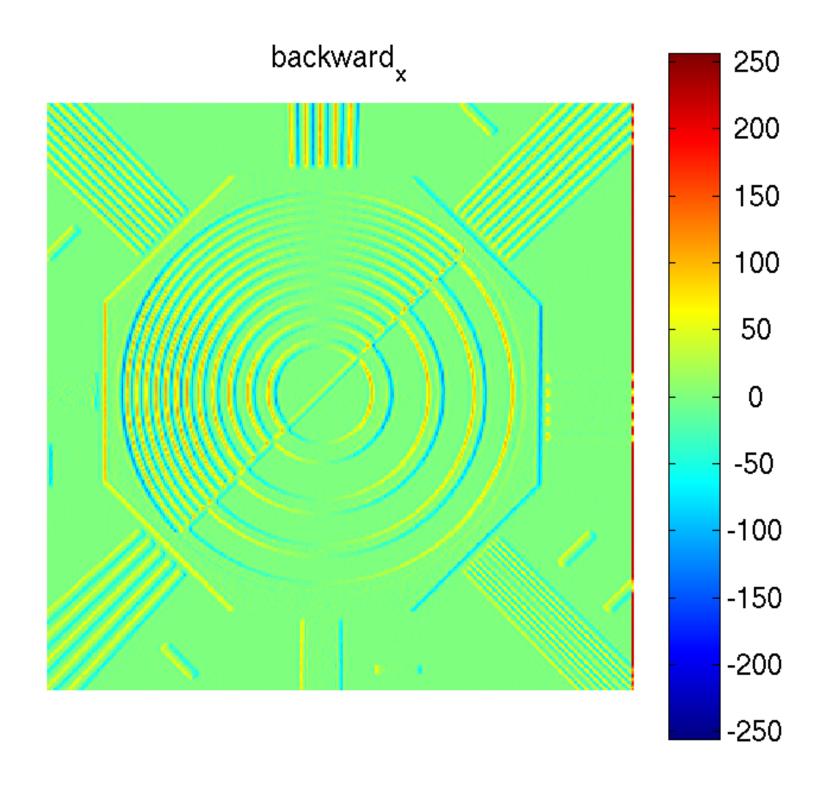


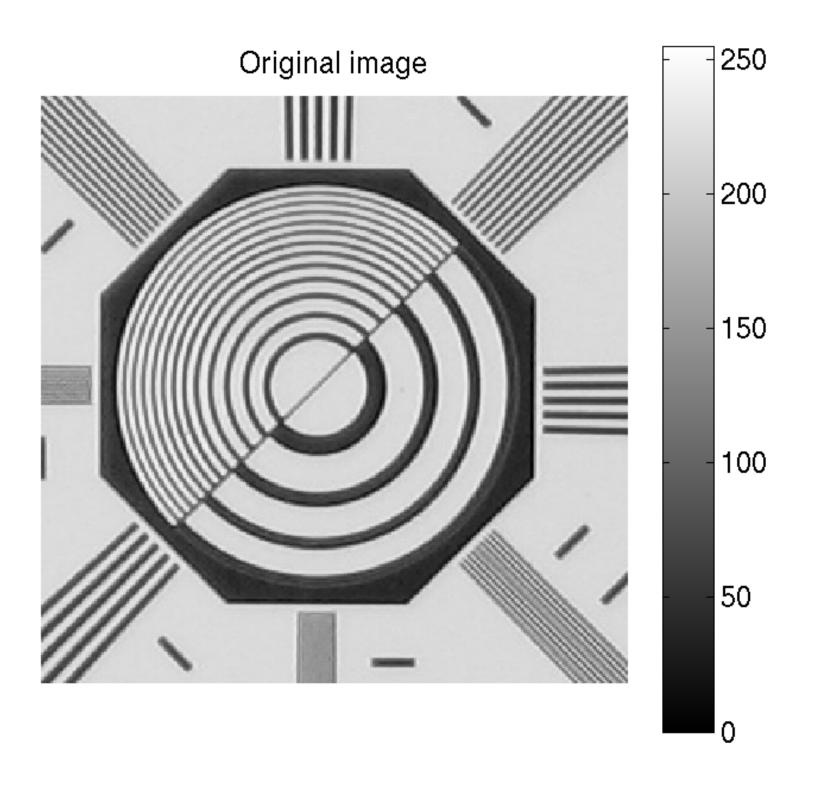


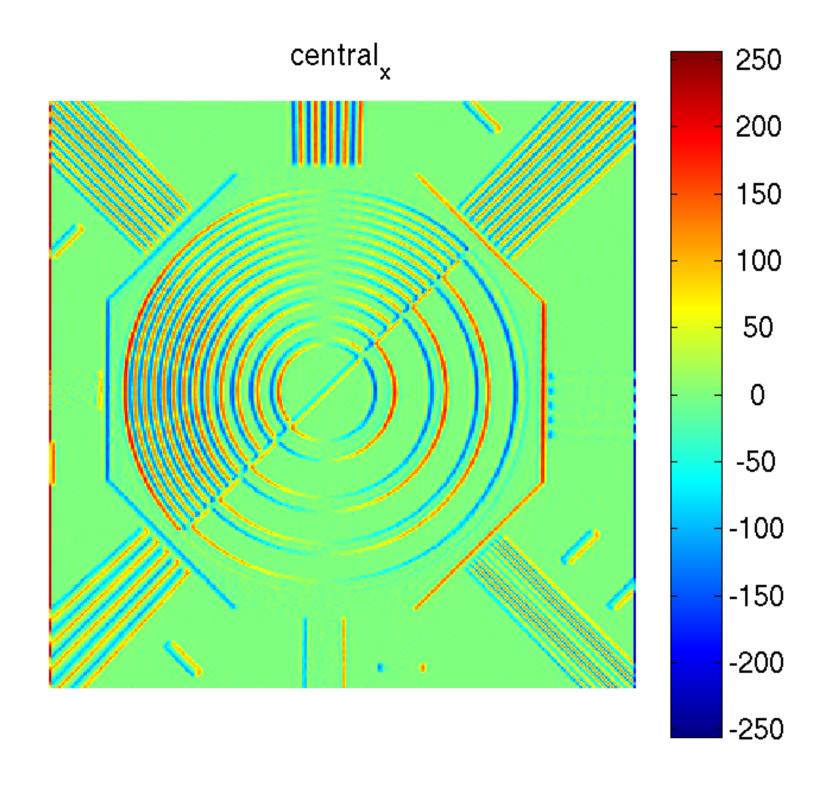


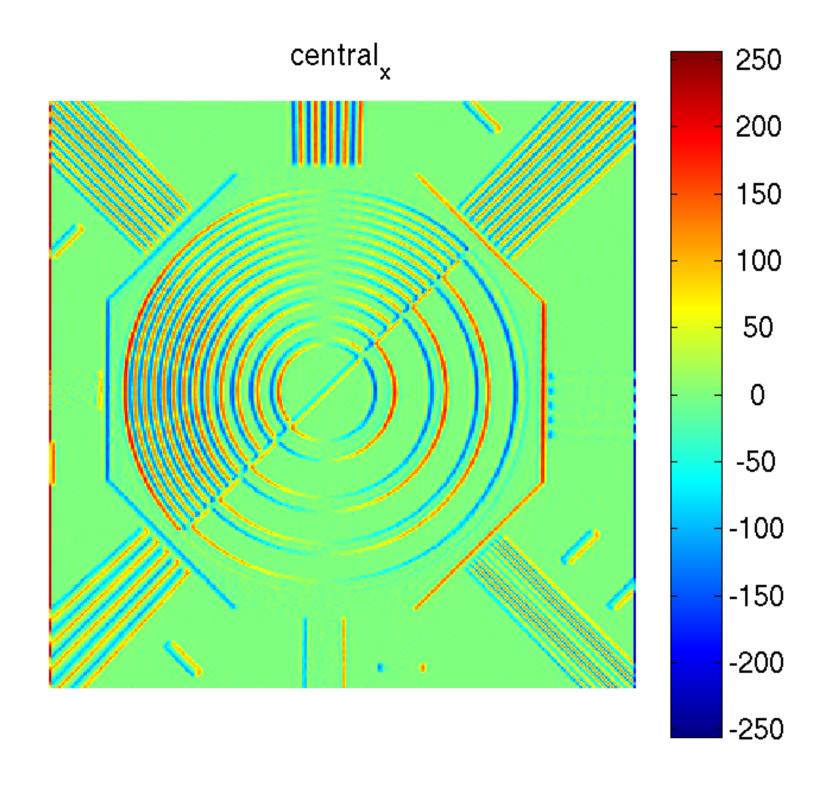


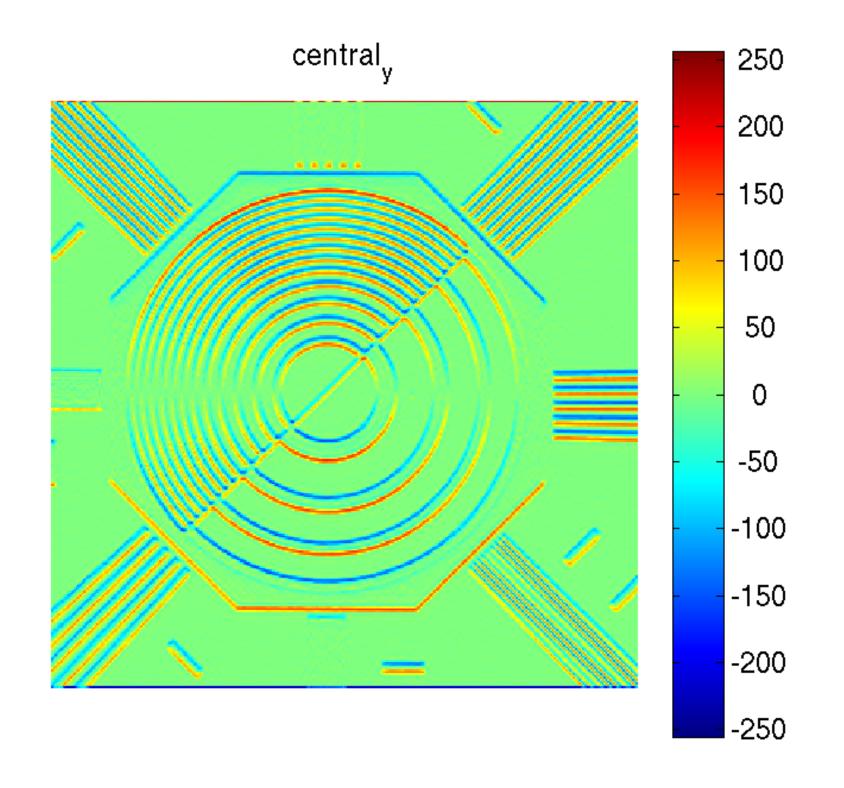


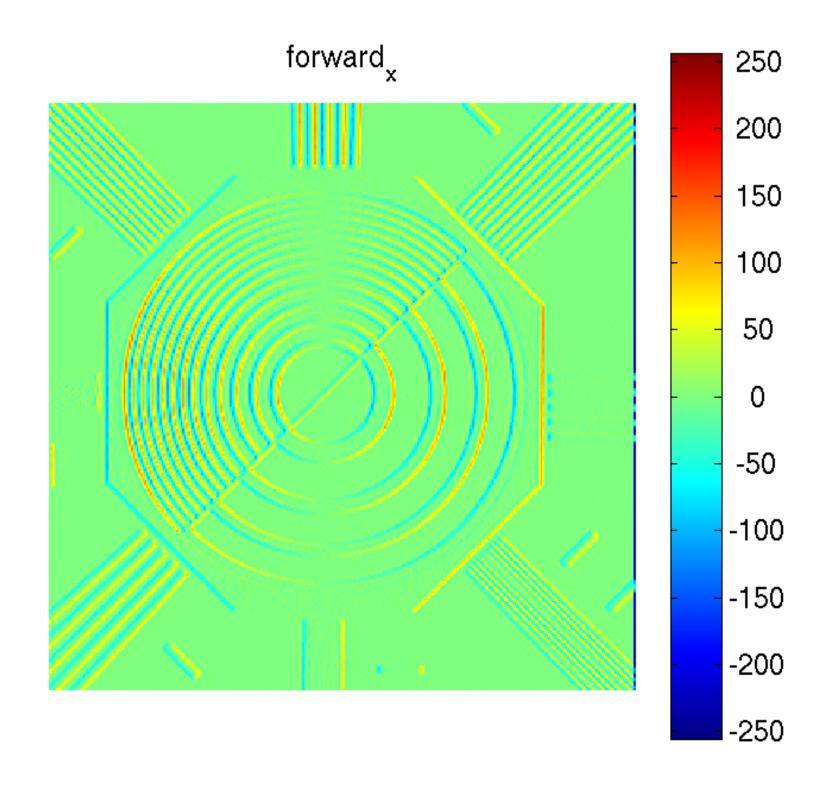


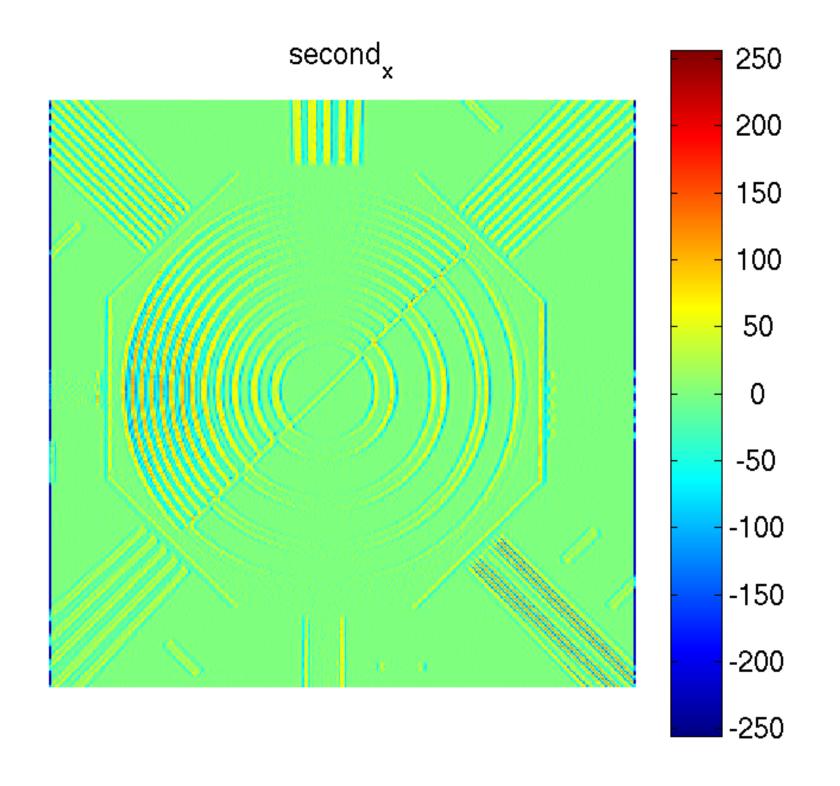


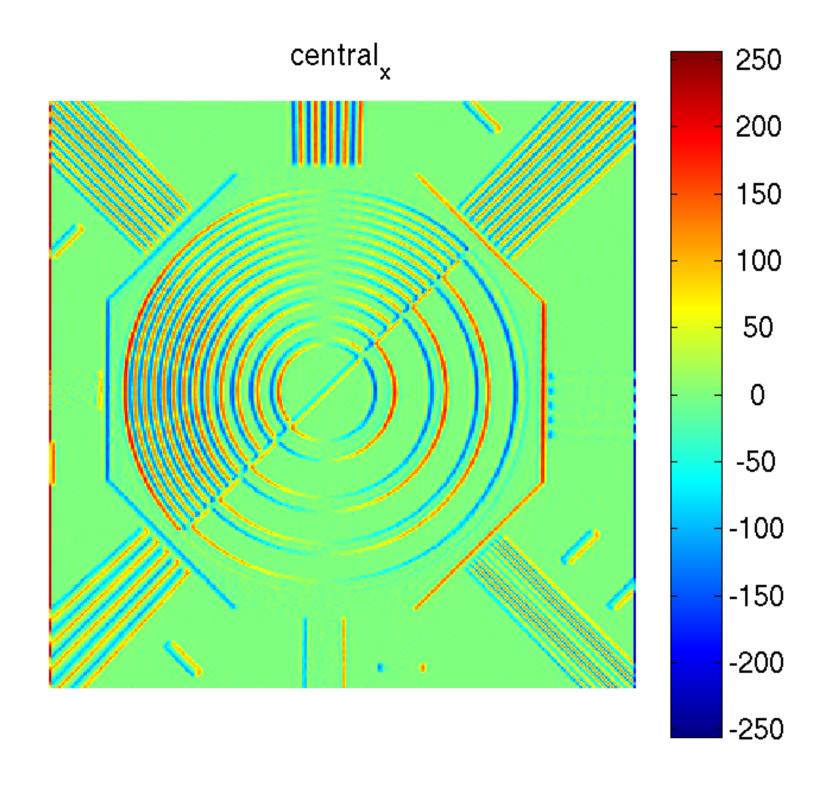


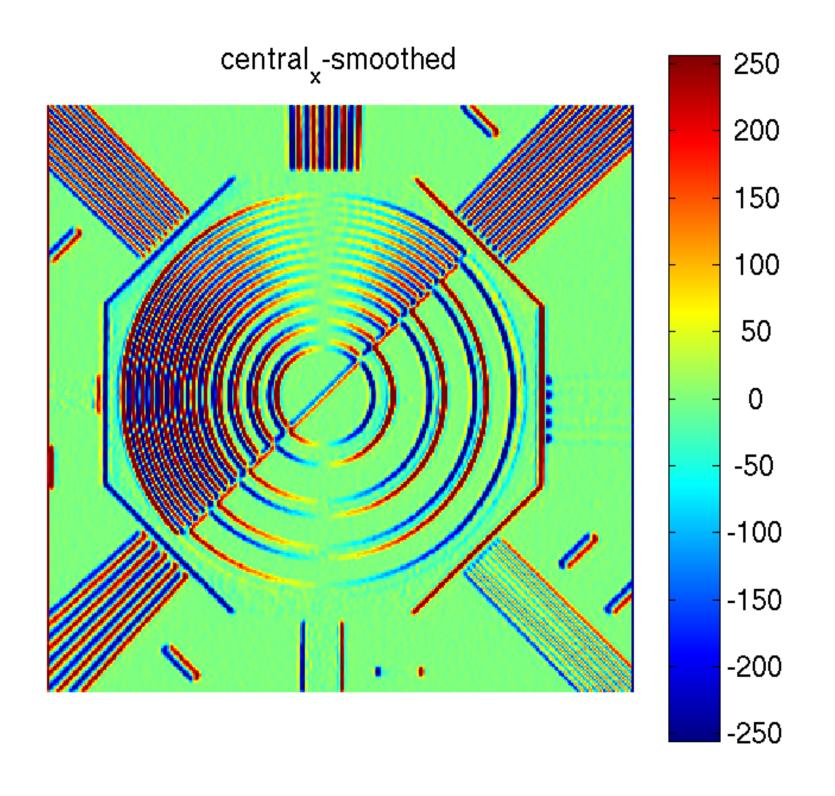


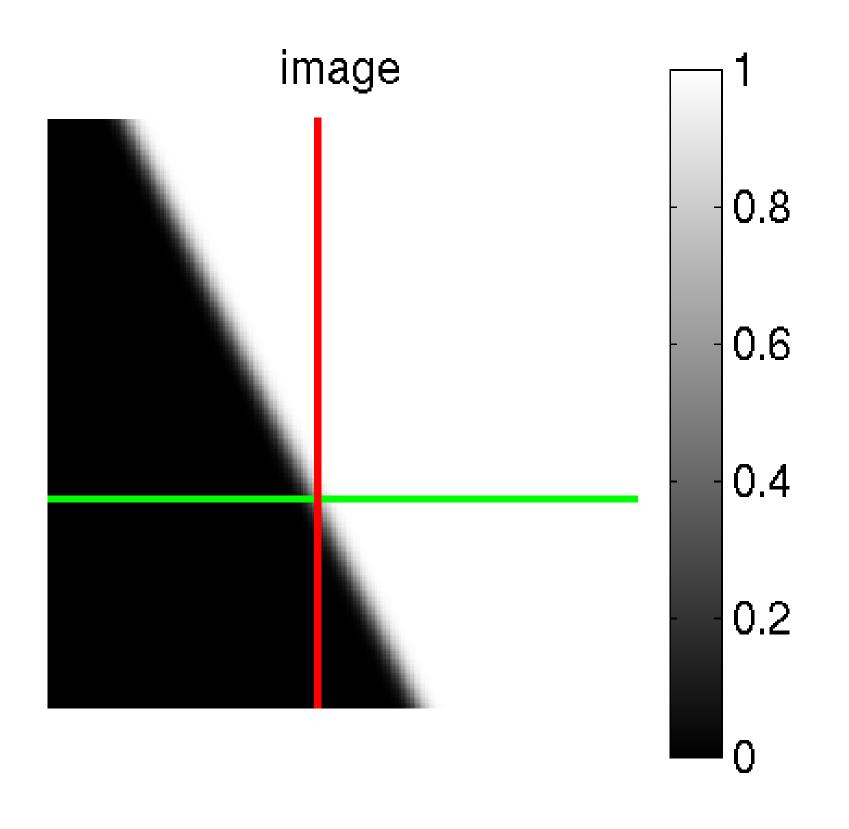




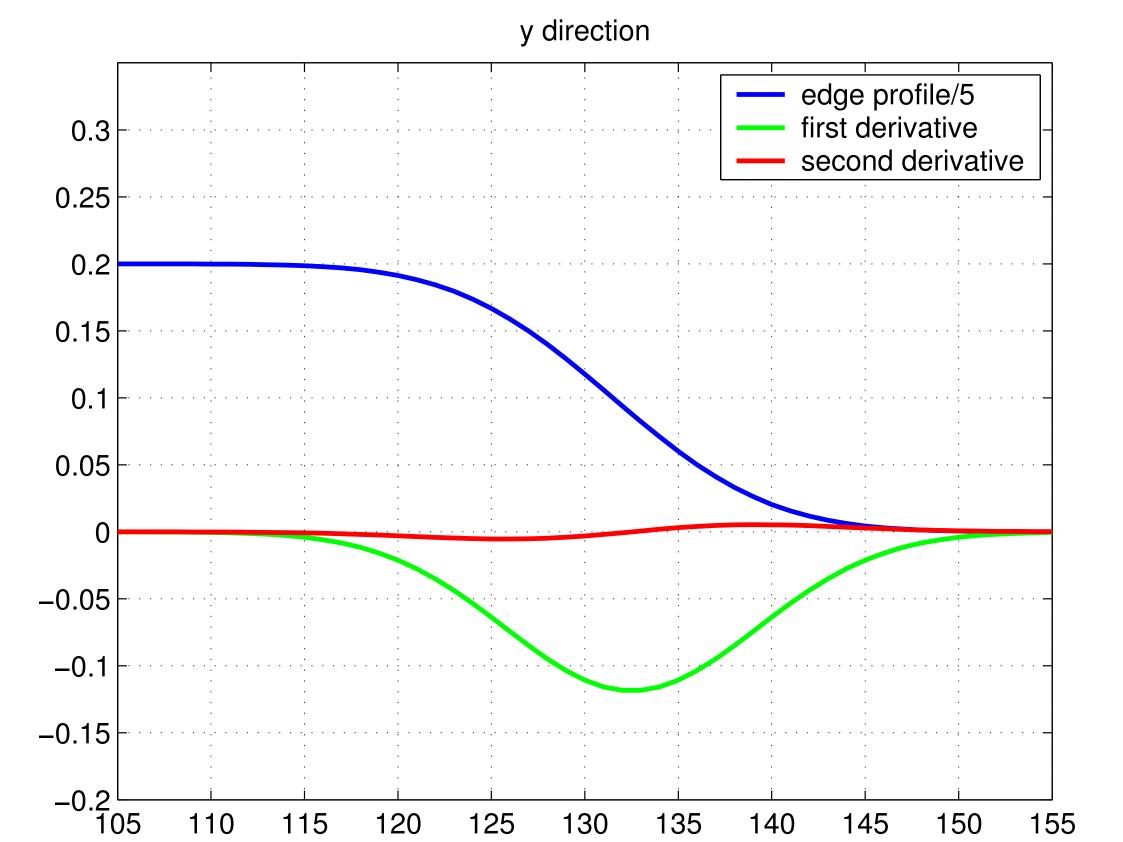




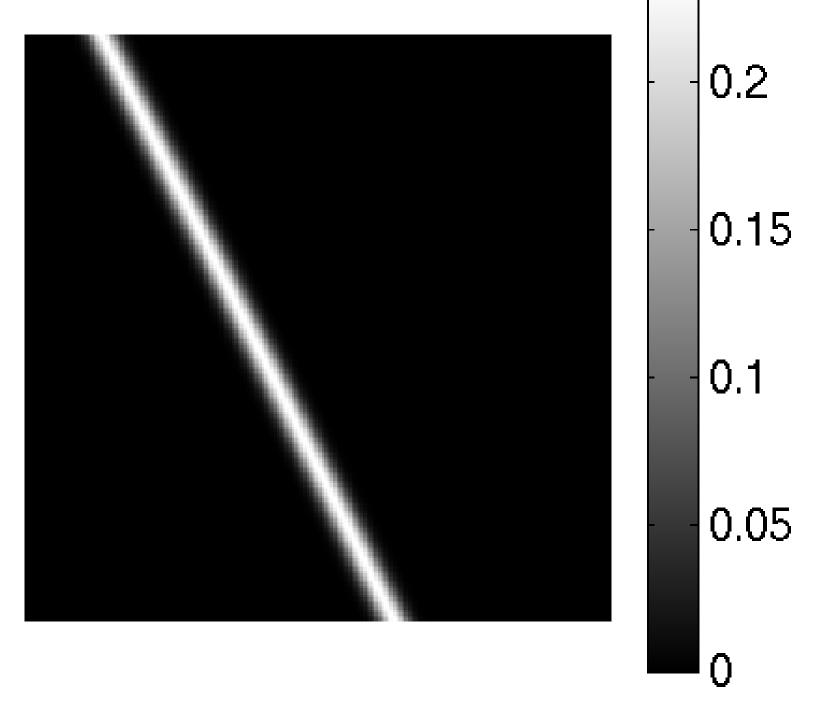


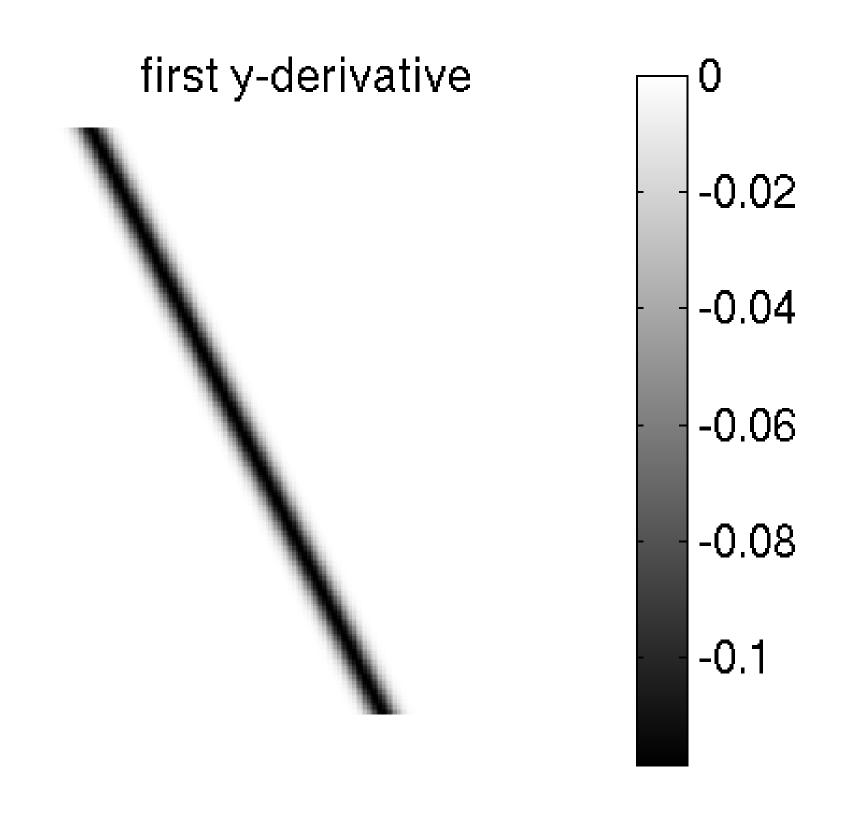


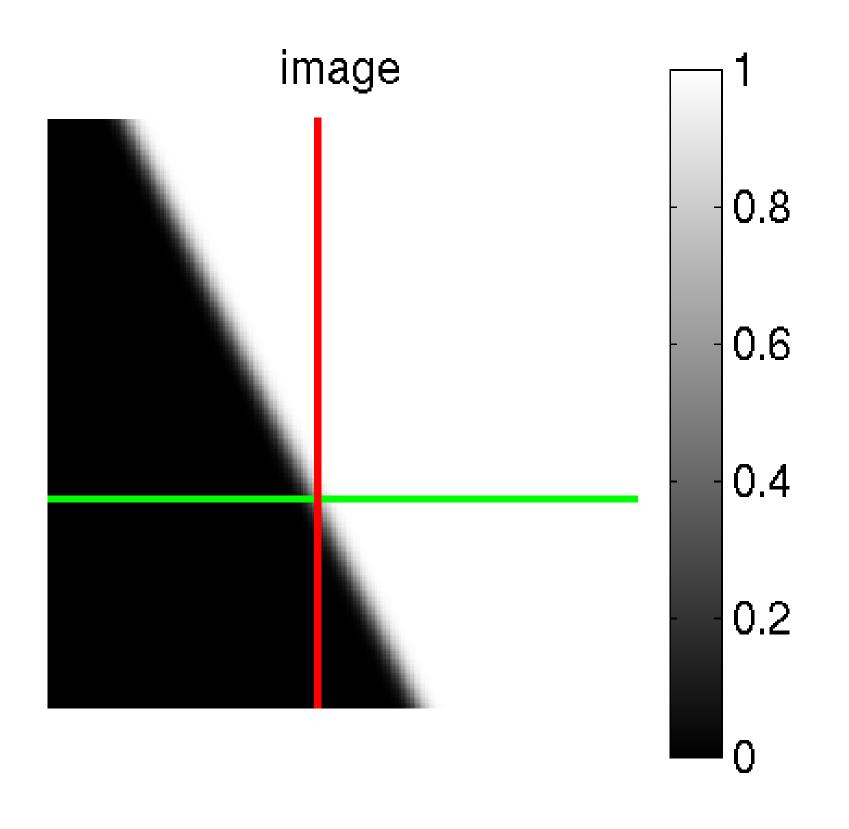
x direction edge profile/5 first derivative 0.3 second derivative 0.25 0.2 0.15 0.1 0.05 0 -0.05-0.1-0.1580 85 105 110 90 95 100



first x-derivative







laplace

