Image preprocessing in spatial domain

convolution, convolution theorem, cross-correlation

Revision: 1.6, dated: May 5, 2008

Tomáš Svoboda

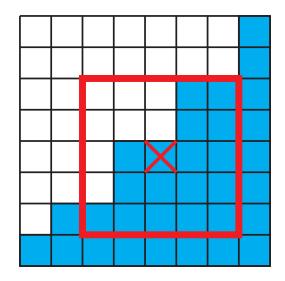
Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

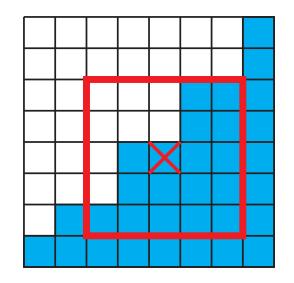
Spatial processing—idea

Replace a value of the image function (pixel) by a new one computed from the immediate neighbourhood.



Spatial processing—idea

Replace a value of the image function (pixel) by a new one computed from the immediate neighbourhood.



What is it good for?

- spatial relationships are important in images
- may be faster than a frequency filter
- more natural formulation in some problems
- robust statistics may be applied

Noise in images

m p

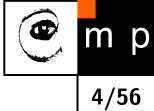
- deterioration of analog signal
- CCD/CMOS chips are not perfect
- typically, the smaller active surface, the more noise

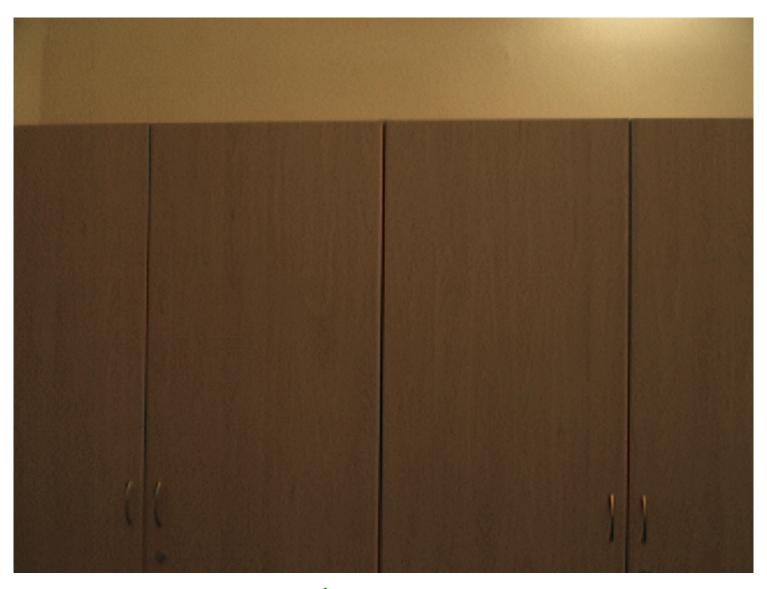
- deterioration of analog signal
- CCD/CMOS chips are not perfect
- typically, the smaller active surface, the more noise

How to suppress noise?

- lacktriangle digital only, ie. no A/D and D/A conversion. \rightarrow OK
- lacktriangle larger chips ightarrow EXPENSIVE, EXPENSIVE LENSES
- lacktriangle cooled cameras (astronomy) \rightarrow SLOW, EXPENSIVE
- (local) image preprocessing

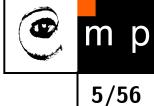
Example scene





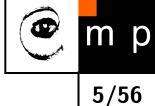
Sample video¹ from a static camera

¹http://cmp.felk.cvut.cz/cmp/courses/EZS/Demos/noise_in_camera.avi



Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\mathrm{var}\{x_i\} = \sigma^2$



Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\mathrm{var}\{x_i\} = \sigma^2$

Properties of the average value $s_N = \frac{1}{N} \sum_{1}^{N} x_i$

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\mathrm{var}\{x_i\} = \sigma^2$

Properties of the average value $s_N = \frac{1}{N} \sum_{1}^{N} x_i$

• Expectation: $\mathsf{E}\{s_N\} = \frac{1}{N} \sum_{1}^{N} \mathsf{E}\{x_i\} = \mu$

Suppose we can acquire N images of the same scene. For each pixels we obtain N results $x_i, i = 1 \dots N$. Assume:

- observations independent
- each x_i has $\mathsf{E}\{x_i\} = \mu$ and $\mathrm{var}\{x_i\} = \sigma^2$

Properties of the average value $s_N = \frac{1}{N} \sum_{1}^{N} x_i$

- Expectation: $\mathsf{E}\{s_N\} = \frac{1}{N} \sum_{1}^{N} \mathsf{E}\{x_i\} = \mu$
- Variance: We know that $var\{x_i/N\} = var\{x_i\}/N^2$, thus

$$\operatorname{var}\{s_N\} = \frac{\operatorname{var}\{x_1\}}{N^2} + \frac{\operatorname{var}\{x_2\}}{N^2} + \dots + \frac{\operatorname{var}\{x_N\}}{N^2} = \frac{\sigma^2}{N}.$$

which means that standard deviation of s_N decreases as $\frac{1}{\sqrt{N}}$.

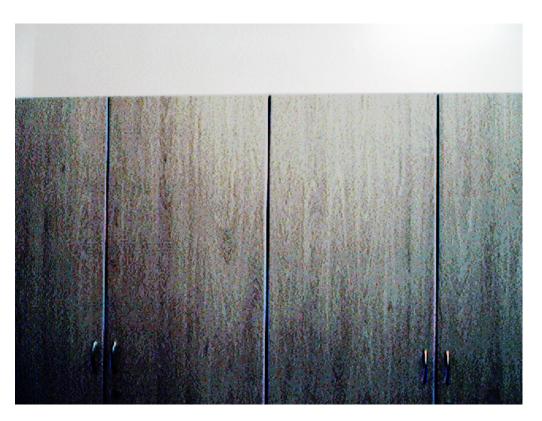
Example



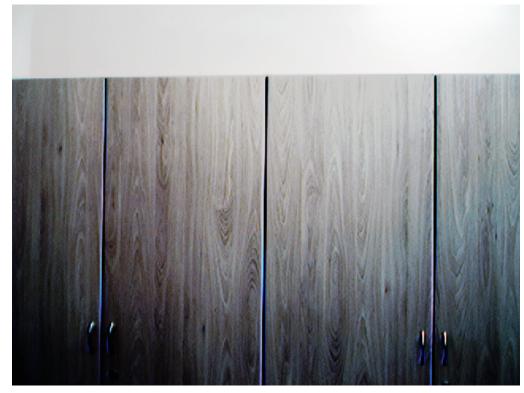
a noisy image

average from \approx 60 observations.

Example — equalized

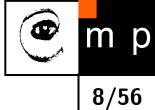


a noisy image

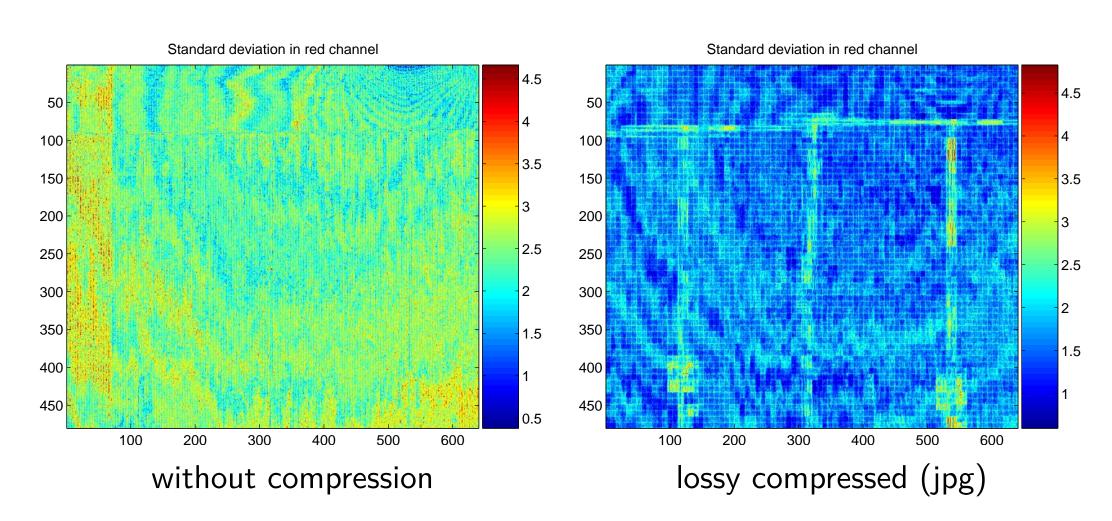


average from \approx 60 observations.

Standard deviations in pixels



for images:



Lossy compression is generally not a good choice for machine vision!

Problem: noise suppression from just one image

- redundancy in images
- neighbouring pixels have mostly the same or similar value
- correction of the pixel value based on an analysis of its neighbourhood
- leads to image blurring

Problem: noise suppression from just one image

- redundancy in images
- neighbouring pixels have mostly the same or similar value
- correction of the pixel value based on an analysis of its neighbourhood
- leads to image blurring

spatial filtering

m

Spatial filtering — informally

Idea: Output is a function of a pixel value and those of its neighbours.

Example for 8—connected region.

$$g(x,y) = \text{Op} \begin{bmatrix} f(x-1,y-1) & f(x,y-1) & f(x+1,y-1) \\ f(x-1,y) & f(x,y) & f(x+1,y) \\ f(x-1,y+1) & f(x,y+1) & f(x+1,y+1) \end{bmatrix}$$

Possible operations: sum, average, weighted sum, min, max, median . . .

Spatial filtering by masks

11/56

- Very common neighbour operation is per-element multiplication with a set of weights and sum together.
- Set of weights is often called mask or kernel.

Local neighbourhood

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

mask

w(-1,-1)	w(0,-1)	w(+1,-1)
w(-1,0)	w(0,0)	w(+1,0)
w(-1,+1)	w(0,+1)	w(+1,+1)

$$g(x,y) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k,l) f(x+k,y+l)$$

- Spatial filtering is often referred to as convolution.
- We say, we convolve the image by a kernel or mask.
- Though, it is not the same. Convolution uses a flipped kernel.

Local neighbourhood

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

mask

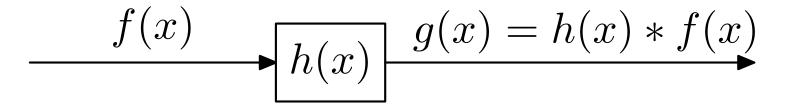
w(+1,+1)	w(0,+1)	w(-1,+1)
w(+1,0)	w(0,0)	w(-1,0)
w(+1,-1)	w(0,-1)	w(-1,-1)

$$g(x,y) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k,l) f(x-k,y-l)$$

-7

2D Convolution — Why is it important?

 Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.

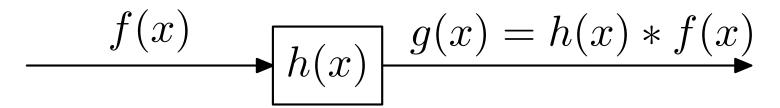


13/56

2D Convolution — Why is it important?

13/56

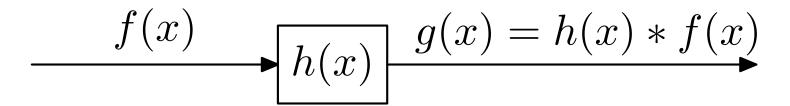
 Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.



2D convolution describes well the formation of images.

2D Convolution — Why is it important?

Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.



- 2D convolution describes well the formation of images.
- Many image distortions made by imperfect acquisition may be modelled by 2D convolution, too.

2D Convolution — Why is it important?

13/56

 Input and output signals need not to be related through convolution, but if they are (and only if) the system is linear and time invariant.

$$f(x) \qquad f(x) \qquad g(x) = h(x) * f(x)$$

- 2D convolution describes well the formation of images.
- Many image distortions made by imperfect acquisition may be modelled by 2D convolution, too.
- It is a powerful thinking tool.

2D convolution — definition

Convolution integral

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-k,y-l)h(k,l)dkdl$$

2D convolution — definition

Convolution integral

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-k,y-l)h(k,l)dkdl$$

Symbolic abbreviation

$$g(x,y) = f(x,y) * h(x,y)$$

m p

15/56

Discrete 2D convolution

$$g(x,y) = f(x,y) * h(x,y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(x-k,y-l)h(k,l)$$

What with missing values f(x - k, y - l)?

Zero-padding: add zeros where needed.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \quad * \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} =$$

15/56

Discrete 2D convolution

$$g(x,y) = f(x,y) * h(x,y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(x-k,y-l)h(k,l)$$

What with missing values f(x-k,y-l)?

Zero-padding: add zeros where needed.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 1 & 2 & 3 & 3 & 1 \\ 1 & 2 & 3 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 \end{bmatrix}$$

The result is zero elsewhere. The concept is somehow contra-intuitive, practice with a pencil and paper.

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

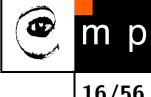
lacktriangle break the f into each discrete sample



$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

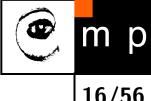
- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points



$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points
- sum up the blurred points

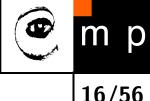


$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points
- sum up the blurred points

Shifting *h*:



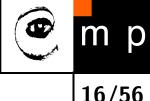
$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points
- sum up the blurred points

Shifting *h*:

lack shift a copy of h to each position k



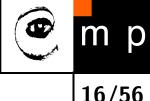
$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points
- sum up the blurred points

Shifting *h*:

- lack shift a copy of h to each position k
- lacktriangle multiply by the value at that position f(k)



$$g(x) = f(x) * h(x) = \sum_{k} f(k)h(x - k)$$

Blurring f:

- lacktriangle break the f into each discrete sample
- lacktriangle send each one individually through h to produce blurred points
- sum up the blurred points

Shifting *h*:

- lack shift a copy of h to each position k
- lacktriangle multiply by the value at that position f(k)
- lacktriangle add shifted, multiplied copies for all k

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

lacktriangle flip the function h around zero

Thinking about convolution II

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

- lacktriangle flip the function h around zero
- lack shift to output position x

Thinking about convolution II

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

Mask filtering:

- lacktriangle flip the function h around zero
- lack shift to output position x
- point-wise multiply for each position k value f(x k) and the shifted flipped copy of h.

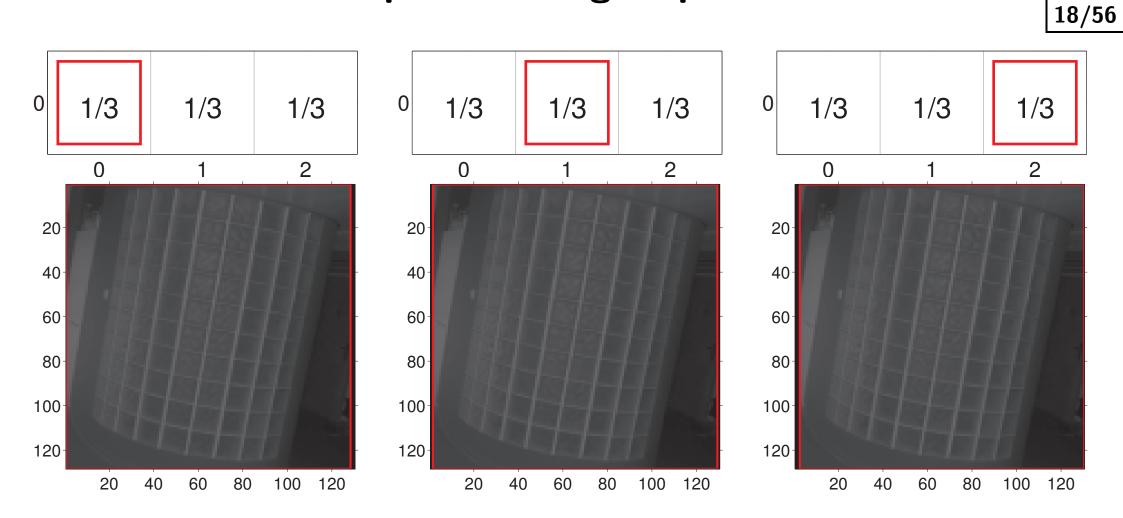
Thinking about convolution II

$$g(x) = f(x) * h(x) = \sum_{k} f(x - k)h(k)$$

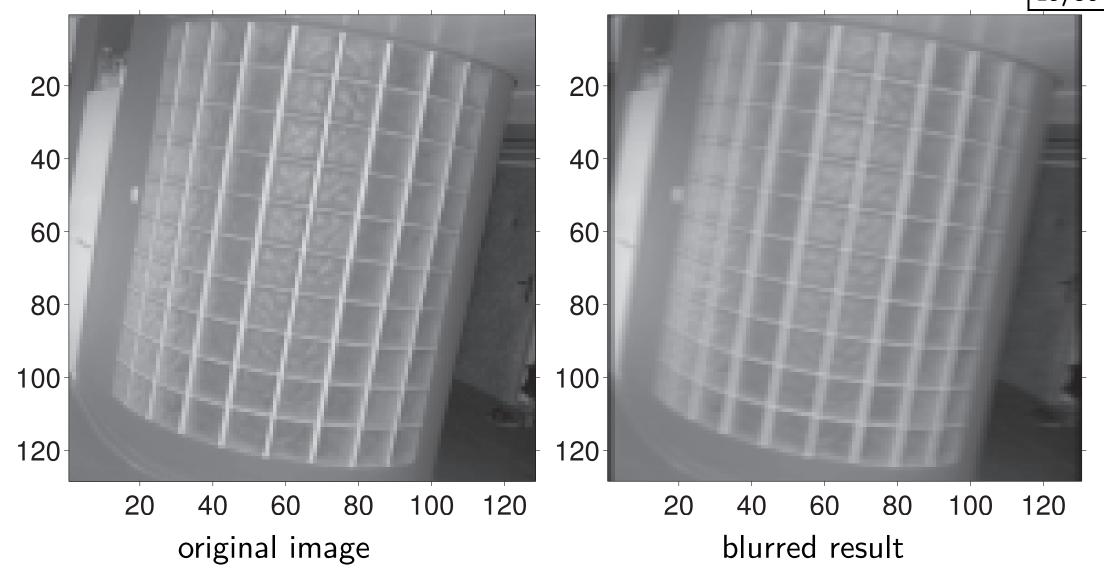
Mask filtering:

- lacktriangle flip the function h around zero
- lack shift to output position x
- point-wise multiply for each position k value f(x-k) and the shifted flipped copy of h.
- lacktriangle sum for all k and write that value at position x

Camera moves 3 pixels during acquisition . . .



. . . produces blurred result



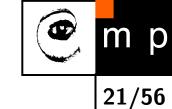
Motion blur modelled by convolution II

Camera moves along x axis during acquisition.

$$g(x) = \sum_{k} f(x - k)h(k)$$

- f(x) say to be the (true) 2D function
- lack g does not depend only on f(x) but also on all k previous values of f
- \bullet #k measures the amount of the motion
- if the motion is steady then h(k) = 1/(# k)

h is impulse response of the system (camera), we will come to that later



Why not
$$g(x) = \sum_k f(x+k)h(k)$$
 as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

21/56

Why not
$$g(x) = \sum_k f(x+k)h(k)$$
 as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

Why not
$$g(x) = \sum_k f(x+k)h(k)$$
 as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

In $g(x) = \sum_k f(x+k)h(k)$ we are asking for values of input function f that are yet to come!

Why not
$$g(x) = \sum_k f(x+k)h(k)$$
 as in spatial filtering but $g(x) = \sum_k f(x-k)h(-k)$?

Causality!

In $g(x) = \sum_k f(x+k)h(k)$ we are asking for values of input function f that are yet to come!

Solution: h(-k)

Convolution theorem

22/56

The Fourier transform of a convolution is the product of the Fourier transforms.

$$\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$$

Convolution theorem

The Fourier transform of a convolution is the product of the Fourier transforms.

$$\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$$

The Fourier transform of a product is the convolution of the Fourier transforms.

$$\mathcal{F}\{f(x,y)h(x,y)\} = F(u,v) * H(u,v)$$

23/56

Convolution theorem — proof

$$\mathcal{F}\{f(x,y) * h(x,y)\} = F(u,v)H(u,v)$$

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp(-i2\pi ux/M) \text{ and } g(x) = \sum_{k=0}^{M-1} f(k)h(x-k)$$
$$\mathcal{F}\{g(x)\} = \dots$$

- $\frac{1}{M} \sum_{x=0}^{M-1} \sum_{k=0}^{M-1} f(k)h(x-k)e^{(-i2\pi ux/M)}$
- introduce new (dummy) variable w = x k
- $\bullet \frac{1}{M} \sum_{k=0}^{M-1} f(k) \sum_{w=-k}^{(M-1)-k} h(w) e^{(-i2\pi u(w+k)/M)}$
- lack
 ightharpoonup remember that all functions g,h,f are assumed to be periodic with period M
- $\frac{1}{M} \sum_{k=0}^{M-1} f(k) e^{(-i2\pi uk/M)} \sum_{w=0}^{M-1} h(w) e^{(-i2\pi uw/M)}$
- lack which is indeed F(u)H(u)

Convolution theorem — what is it good for?

Direct relationship between filtering in spatial and frequency domain.
 See few slides later.

Convolution theorem — what is it good for?

- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution

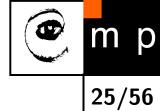
- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution
- Speed of computation. Convolution has $\mathcal{O}(M^2)$, Fast Fourier Transform (FFT) has $\mathcal{O}(M\log_2 M)$

- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution
- Speed of computation. Convolution has $\mathcal{O}(M^2)$, Fast Fourier Transform (FFT) has $\mathcal{O}(M\log_2 M)$
- . . . but, some frequency filtres may be well aproximated by a small spatial mask.

Convolution theorem — what is it good for?

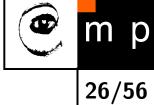
- 24/56
- Direct relationship between filtering in spatial and frequency domain.
 See few slides later.
- Image restoration, sometimes called deconvolution
- Speed of computation. Convolution has $\mathcal{O}(M^2)$, Fast Fourier Transform (FFT) has $\mathcal{O}(M\log_2 M)$
- . . . but, some frequency filtres may be well aproximated by a small spatial mask.

Spatial filtering



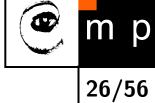
What is it good for?

- smoothing
- sharpening
- noise removal
- edge detection
- pattern matching
- **•** ...



Output value is computed as an average of the input value and its neighbourhood.

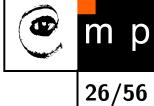
Advantage: less noise



Output value is computed as an average of the input value and its neighbourhood.

Advantage: less noise

Disadvantage: blurring



Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring



Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring
- They are called low-pass filters (We know them already!)

Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring
- They are called low-pass filters (We know them already!)

Averaging:

$$g(x,y) = \frac{\sum_{k} \sum_{l} w(k,l) f(x+k,y+l)}{\sum_{k} \sum_{l} w(k,l)}$$

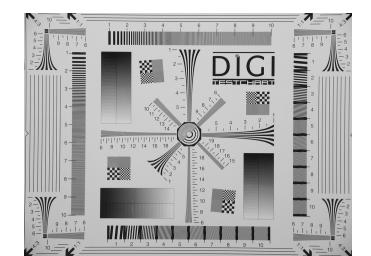
Smoothing kernels

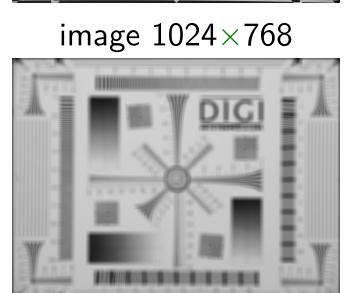
27/56

Can be of any size, any shape

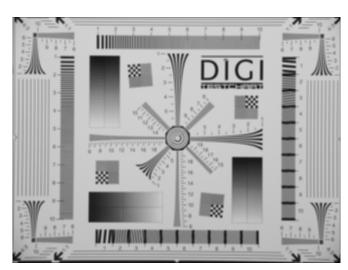
$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad h = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix},$$

Averaging ones $(n \times n)$ — increasing mask size

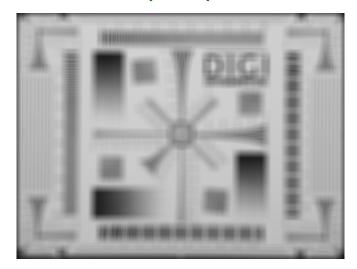




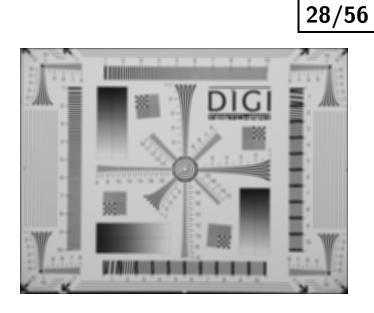
 15×15



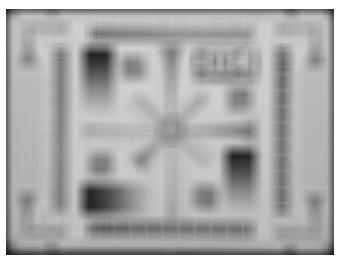
 7×7



 29×29



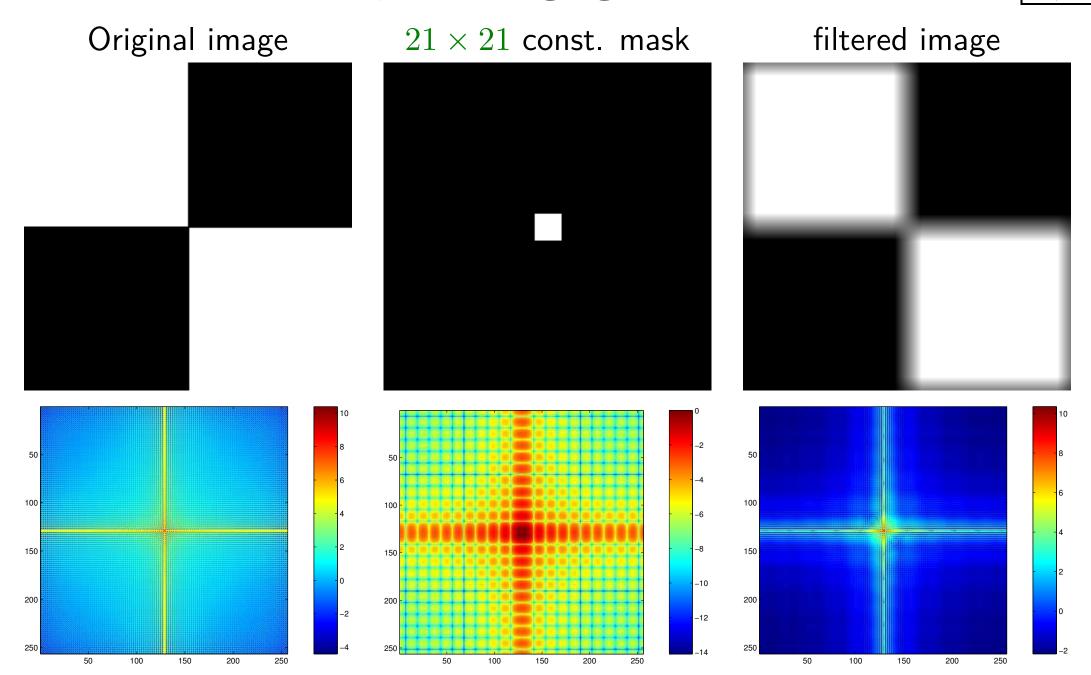
 11×11



 43×43

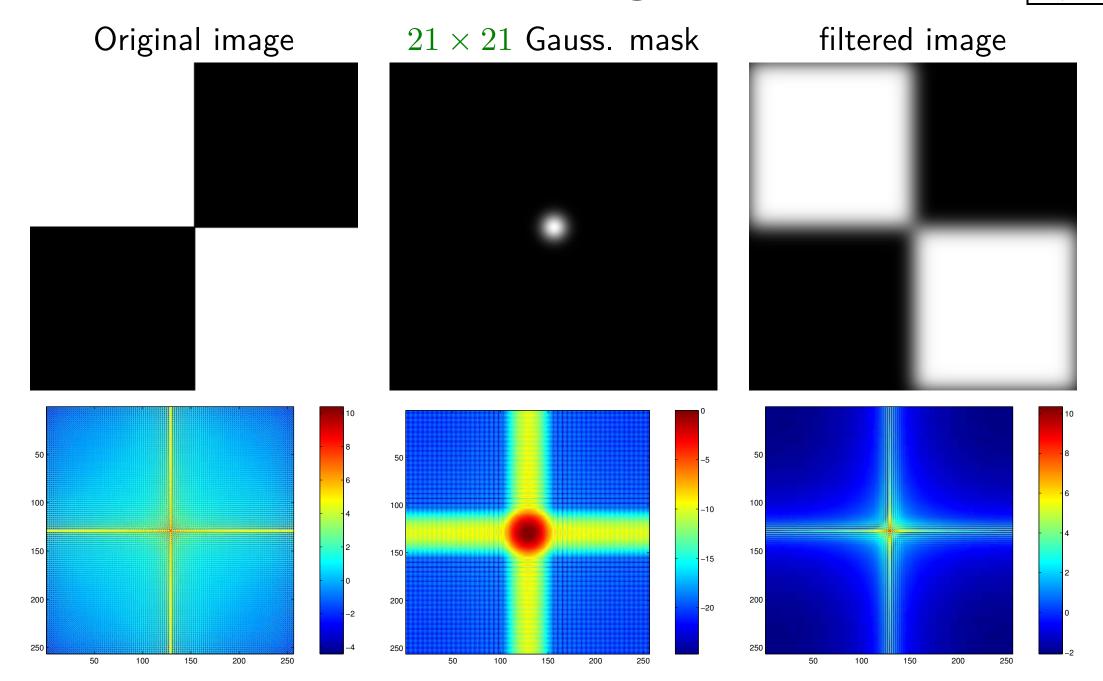
Frequency analysis of the spatial convolution — Simple averaging

29/56

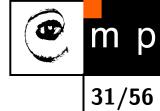


Frequency analysis of the spatial convolution — Gaussian smoothing

30/56



Simple averaging vs. Gaussian smoothing



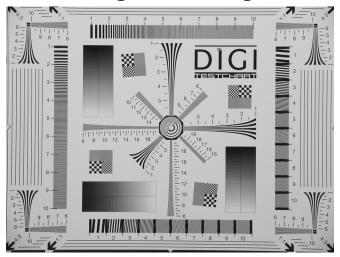
Gaussian smoothing simple averaging

Both images blurred but filtering by a constant mask still shows up some high frequencies!

Frequency analysis of the spatial convolution — Simple averaging

32/56

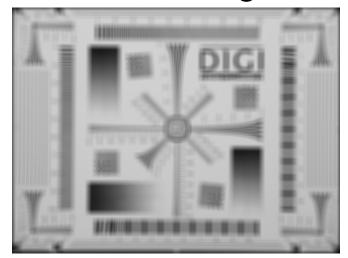
Original image

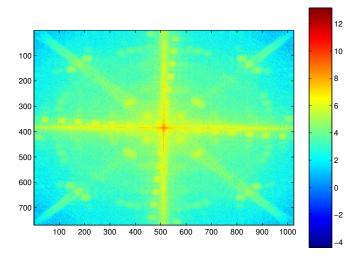


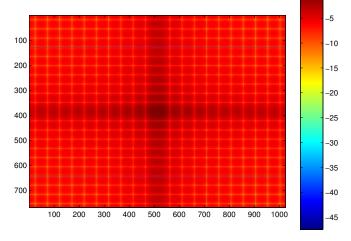
 21×21 const. mask

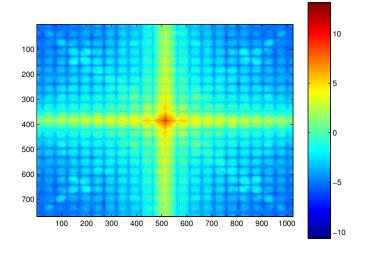


filtered image





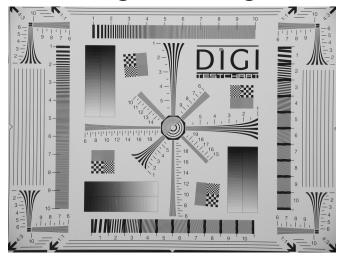




Frequency analysis of the spatial convolution — Gaussian smoothing

33/56

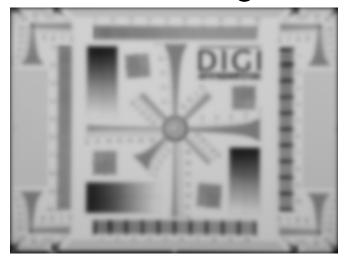
Original image



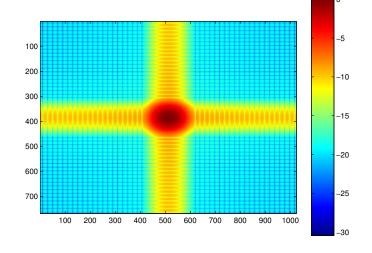
 21×21 Gauss. mask

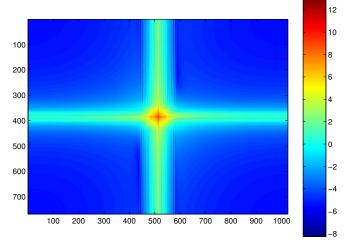


filtered image

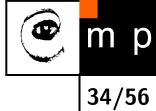


100 200 300 400 500 600 700 100 200 300 400 500 600 700 800 900 1000



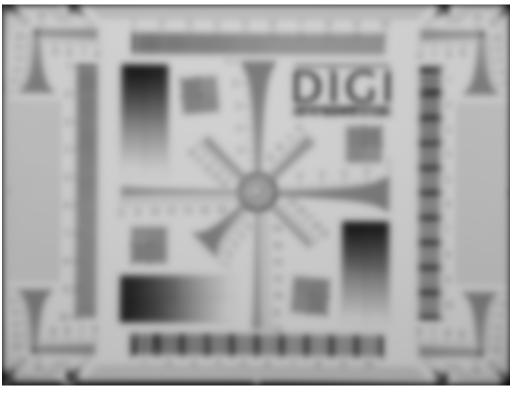


Simple averaging vs. Gaussian smoothing



simple averaging

Gaussian smoothing

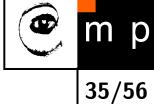


Both images blurred but filtering by a constant mask still shows up some high frequencies!

Non-linear smoothing

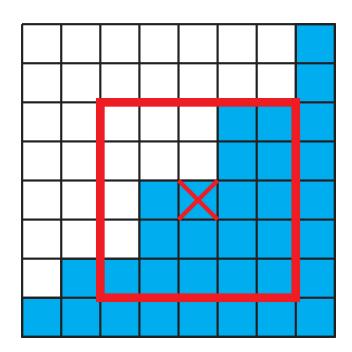
Goal: reduce blurring of image edges during smoothing

Non-linear smoothing

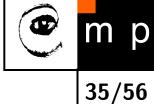


Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the values have minimal variance.

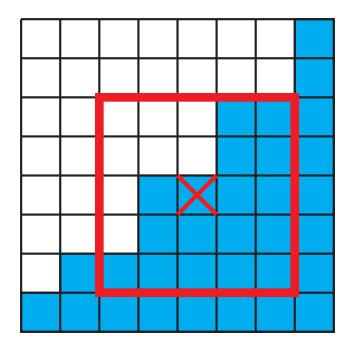


Non-linear smoothing



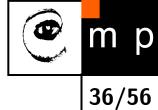
Goal: reduce blurring of image edges during smoothing

Homogeneous neighbourhood: find a proper neighbourhood where the values have minimal variance.



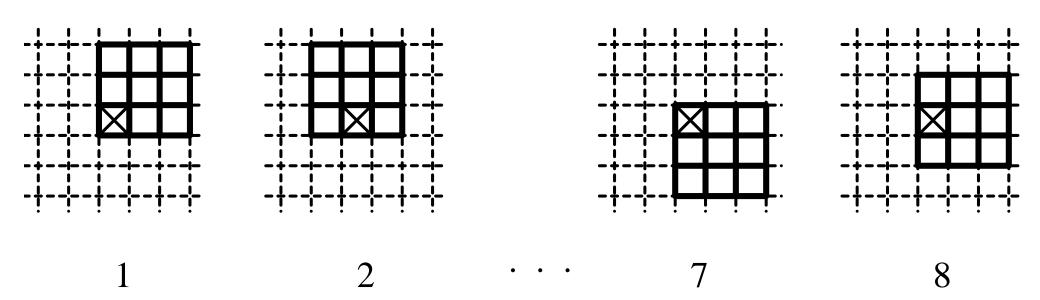
Robust statistics: something better than the mean.

Rotation mask



Rotation mask 3×3 seeks a homogeneous part at 5×5 neighbourhood.

Together 9 positions, 1 in the middle + 8 on the image



The mask with the lowest variance is selected as the proper neighbourhood.

Rotation mask—original image

Rotation mask—first filtration

e m p

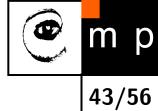
Rotation mask—second filtration

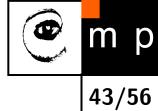
Rotation mask—third filtration

Rotation mask—fourth filtration

Rotation mask—fifth filtration

42/56

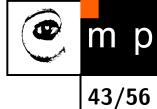




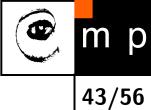
Order-statistic filters

median

- median
 - Sort values and select the middle one.



- median
 - Sort values and select the middle one.
 - A method of edge-preserving smoothing.
 - Particularly useful for removing salt-and-pepper, or impulse noise.



- median
 - Sort values and select the middle one.
 - A method of edge-preserving smoothing.
 - Particularly useful for removing salt-and-pepper, or impulse noise.
- trimmed mean
 - Throw away outliers and average the rest.
 - More robust to a non-Gaussian noise than a standard averaging.

Median filtering

100	98	102
99	105	101
95	100	255

Median filtering

100	98	102
99	105	101
95	100	255

 $\mathsf{Mean} = 117.2$

Median filtering

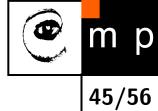
100	98	102
99	105	101
95	100	255

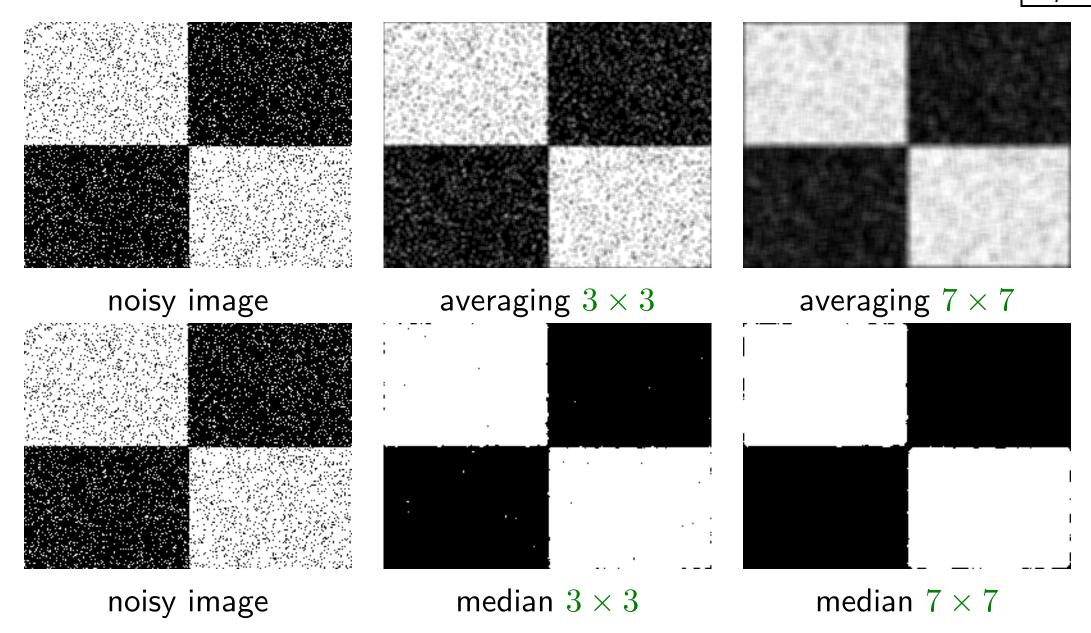
Mean = 117.2

median: 95 98 99 100 100 101 102 105 255

Very robust, up to 50% of values may be outliers.

Nonlinear smoothing examples





The median filtering damage corners and thin edges.

Cross-correlation

$$g(x,y) = \sum_{k} \sum_{l} h(k,l) f(x+k,y+l) = h(x,y) \star f(x,y)$$

Cross-correlation is not, unlike convolution, commutative

$$h(x,y) \star f(x,y) \neq f(x,y) \star h(x,y)$$

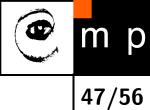
When $h(x,y) \star f(x,y)$ we often say that h scans f.

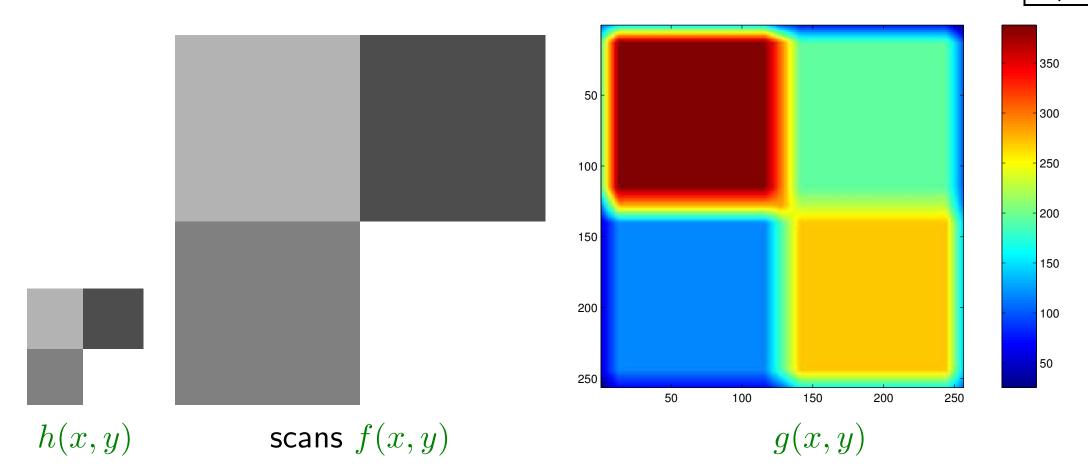
Cross-correlation is related to convolution through

$$h(x,y) \star f(x,y) = h(x,y) * f(-x,-y)$$

Cross-correlation is useful for pattern matching

Cross-correlation





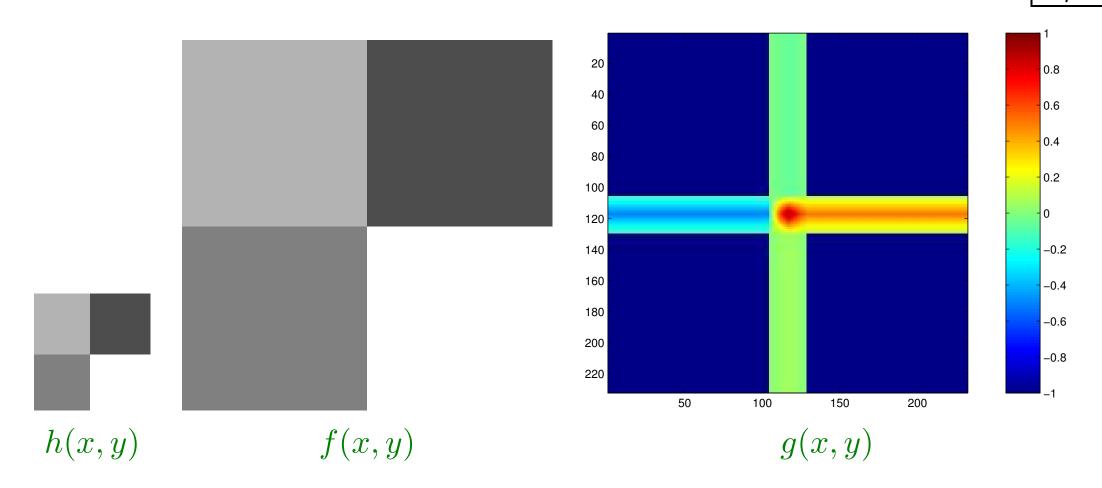
This is perhaps not exactly what we expected and what we want. The result depend on the amplitudes. Do we have some normalisation?

Sometimes called correlation coefficient

$$c(x,y) = \frac{\sum_{k} \sum_{l} \left(h(k,l) - \overline{h} \right) \left(f(x+k,y+l) - \overline{f(x,y)} \right)}{\sqrt{\sum_{k} \sum_{l} \left(h(k,l) - \overline{h} \right)^{2} \sum_{k} \sum_{l} \left(f(x+k,y+l) - \overline{f(x,y)} \right)^{2}}}$$

- \bullet \overline{h} is the mean of h
- $lacktriangledown \overline{f(x,y)}$ is the mean of the k,l neighbourhood around (x,y)
- $\sum_k \sum_l \left(h(k,l) \overline{h}\right)^2$ and $\sum_k \sum_l \left(f(x+k,y+l) \overline{f(x,y)}\right)^2$ are indeed the variances.
- $-1 \le c(x,y) \le 1$

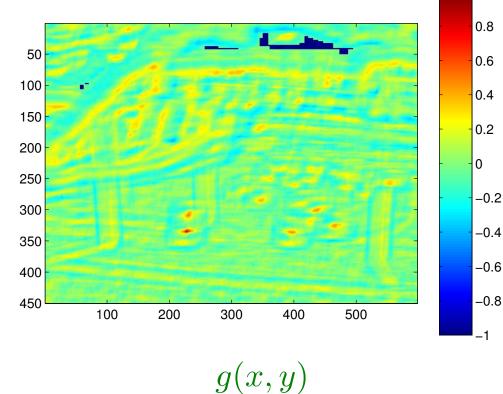
Normalised cross-correlation



The -1s are in fact undefined, NaN. The maximum response is indeed where we expected.

Normalised cross-correlation — real images

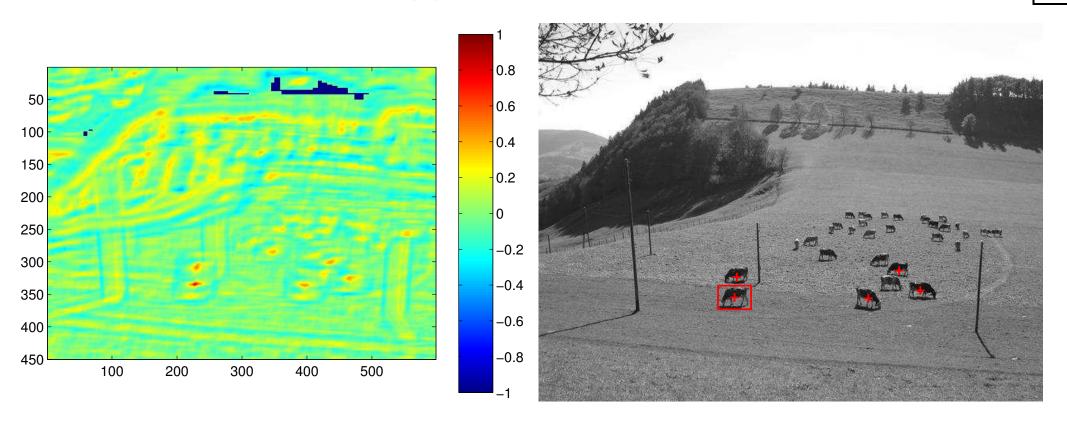
50/56



h(x,y)

f(x,y)

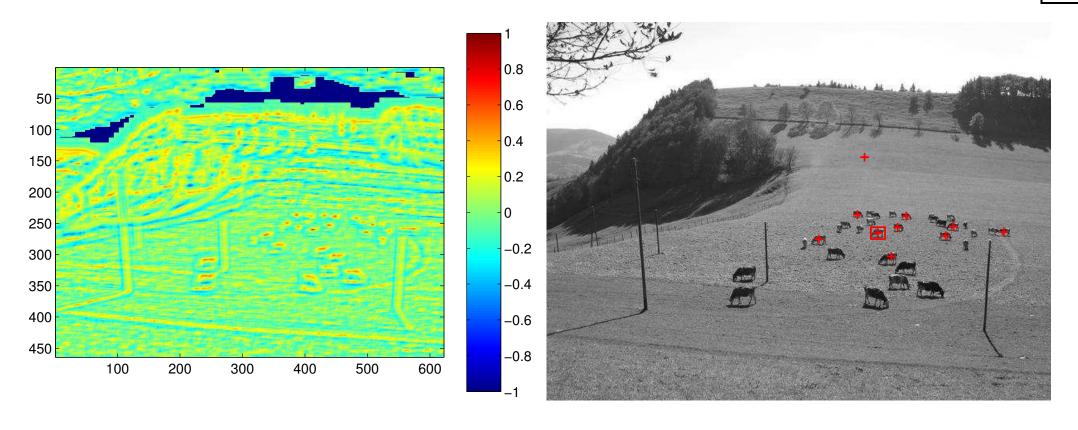
Normalised cross-correlation — non-maxima suppression



Red rectangle denotes the pattern. The crosses are the 5 highest values of ncc after non-maxima suppression.

Normalised cross-correlation — non-maxima suppression

52/56

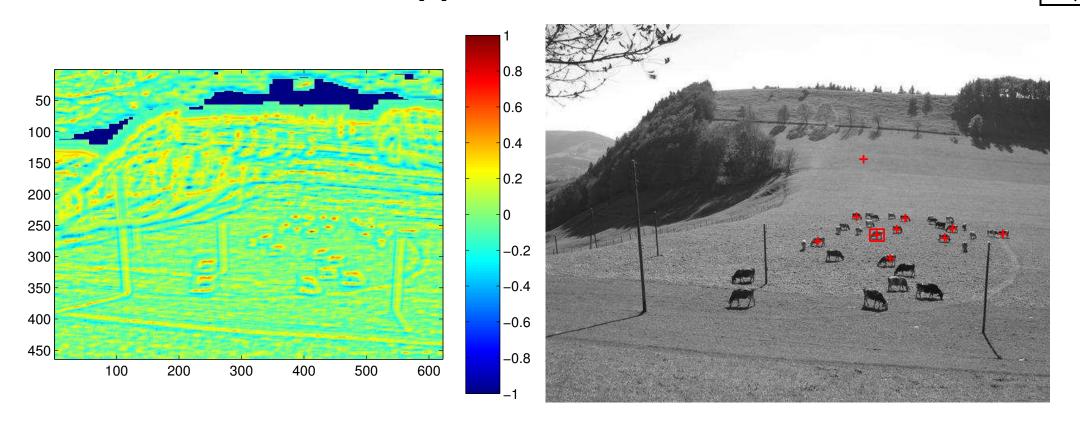


Red rectangle denotes the pattern. The crosses are the 10 highest values of ncc after non-maxima suppression.

We see the problem. The algorithm finds the cow in any position in the image. However, it does not scale.

Normalised cross-correlation — non-maxima suppression

52/56

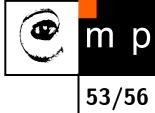


Red rectangle denotes the pattern. The crosses are the 10 highest values of ncc after non-maxima suppression.

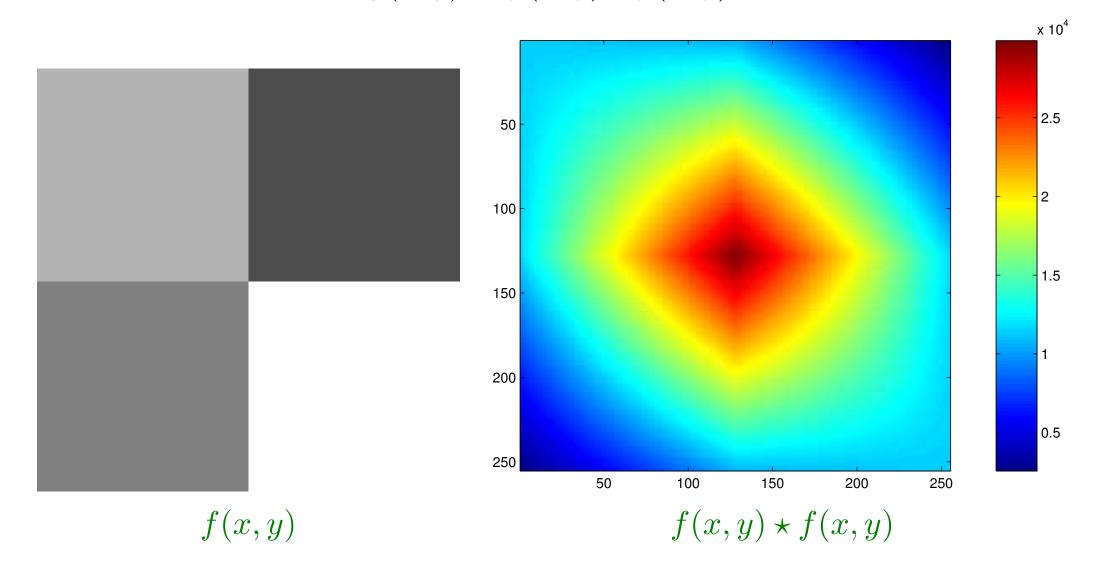
We see the problem. The algorithm finds the cow in any position in the image. However, it does not scale.

But we leave the problem for some advanced computer vision course.

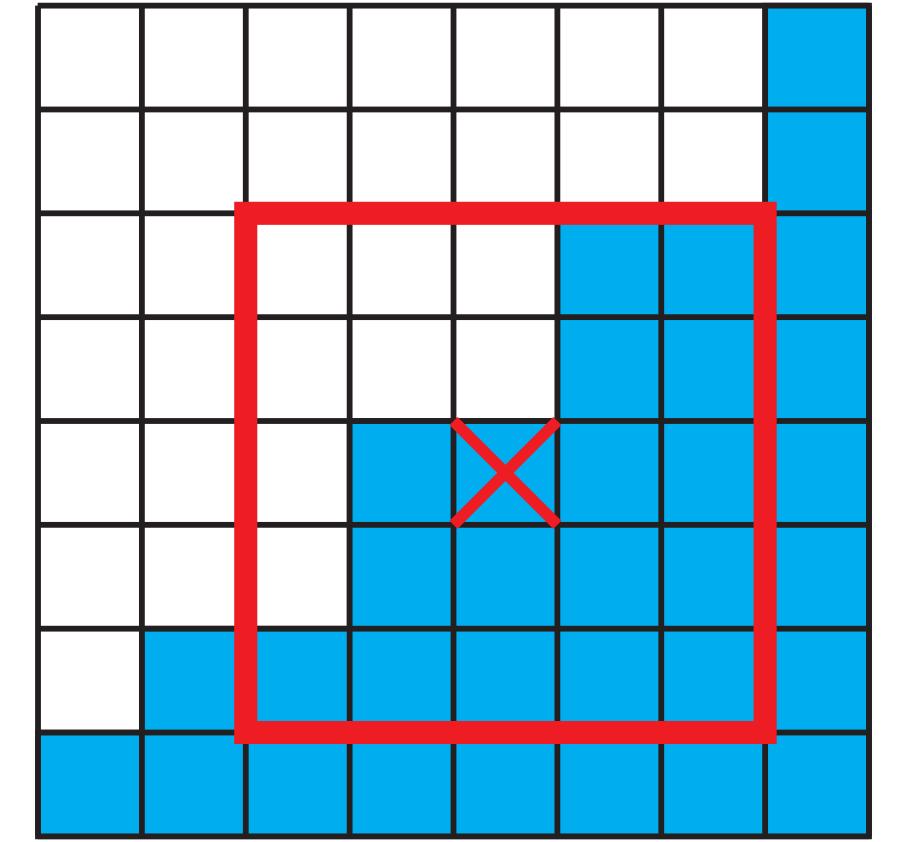
Autocorrelation

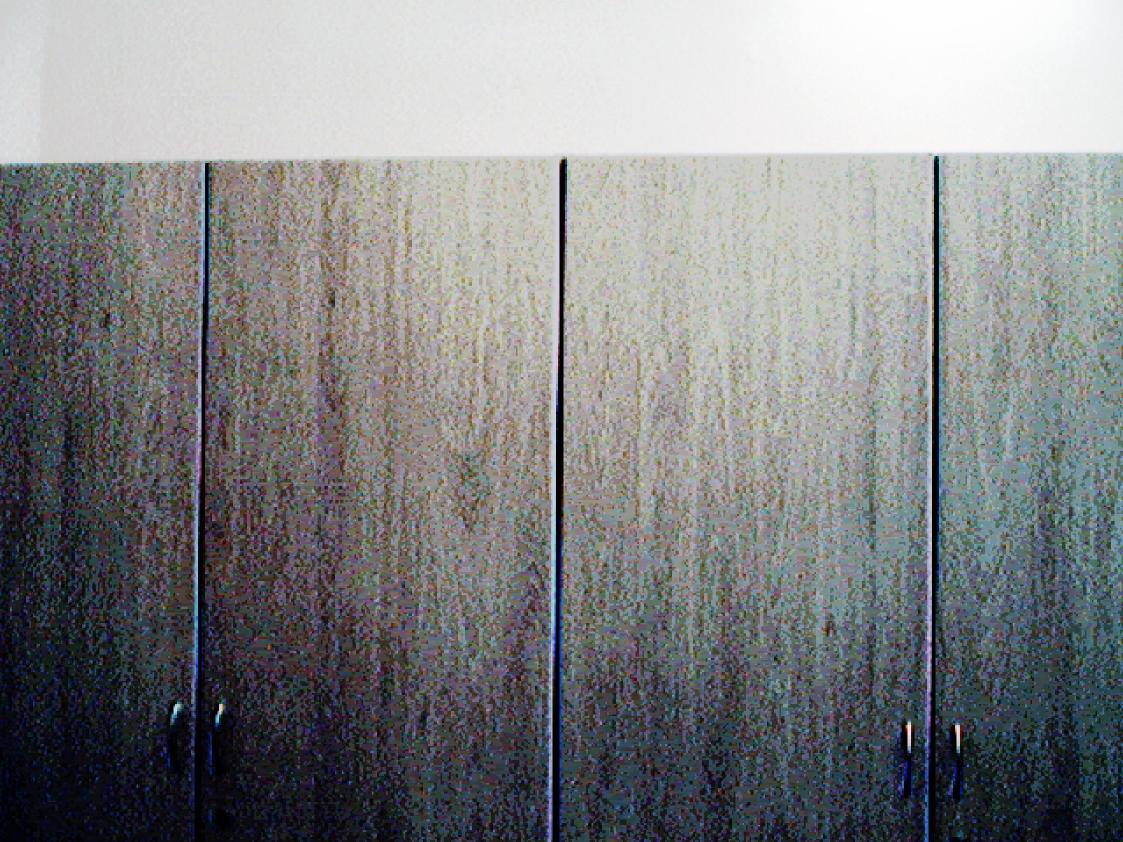


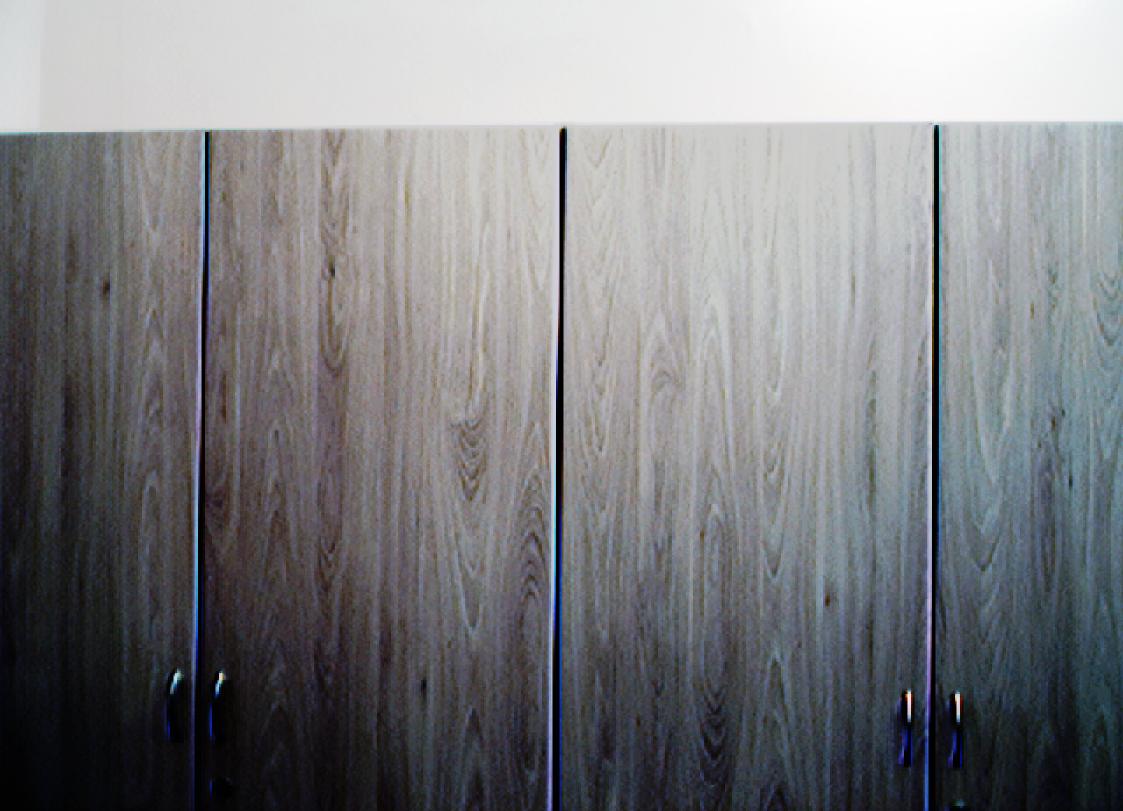
 $g(x,y) = f(x,y) \star f(x,y)$



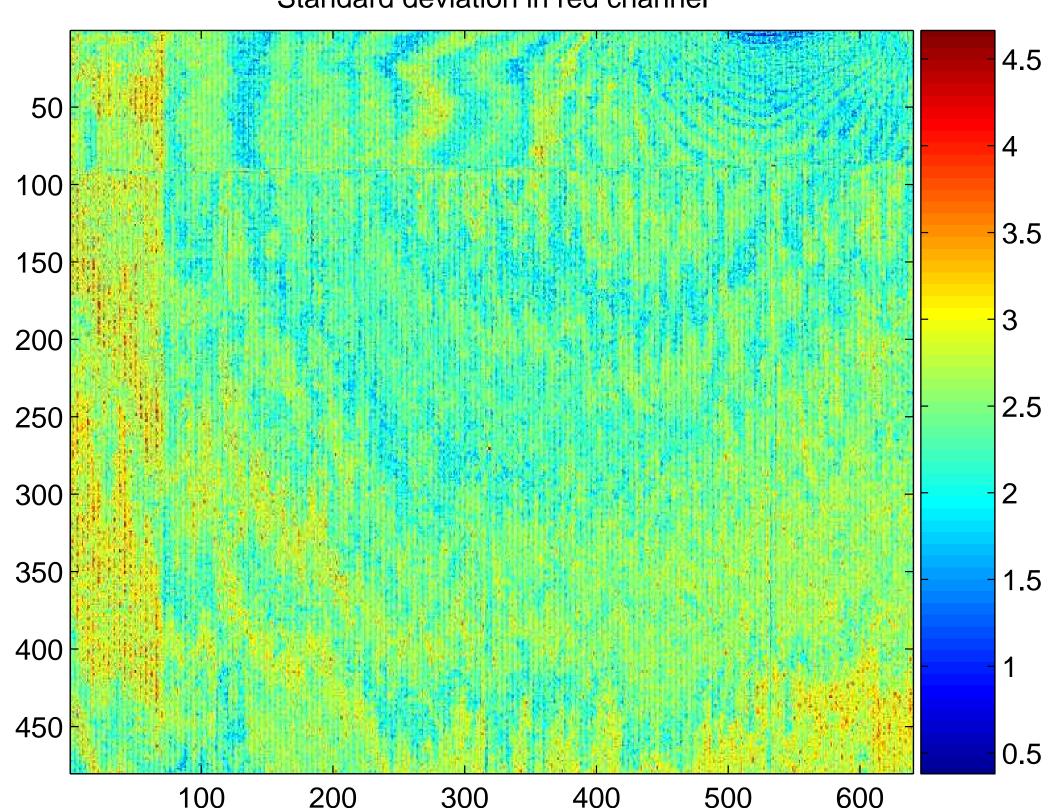
References



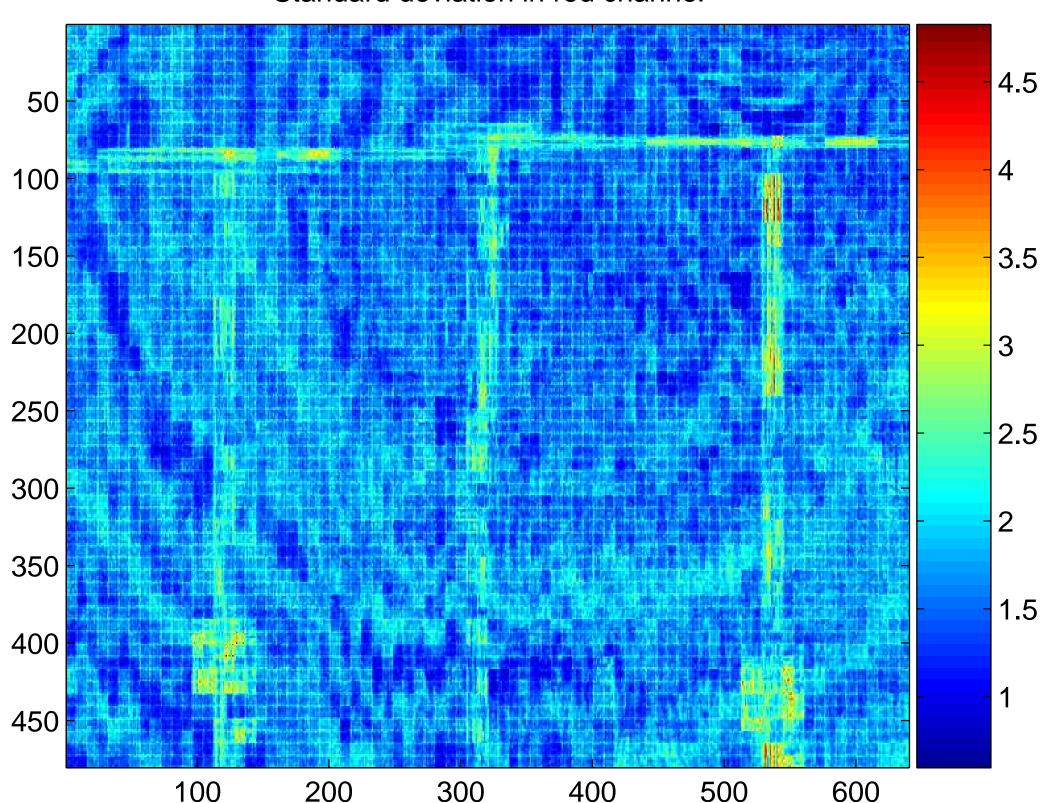




Standard deviation in red channel



Standard deviation in red channel



 $f(x) \qquad f(x) \qquad g(x) = h(x) * f(x)$

