Advanced Robotics

Lecture 3

Motion induces a mapping of the associated linear space into itself

$$\begin{array}{ccc}
P & \xrightarrow{m} & P' \\
\varphi \downarrow & & \downarrow \varphi \\
\vec{x} & \xrightarrow{m} & \vec{x}'
\end{array}$$

With a fixed origin O and mapping φ ,

 $m:\mathcal{P}\to\mathcal{P}$ induces a mapping $m:\mathcal{V}\to\mathcal{V}$

$$P' = m(P)$$
 $\vec{x} = \varphi(O, P)$
 $\vec{x}' = m(\vec{x})$ $\vec{x}' = \varphi(O, m(P))$

Motion characterisation in ${\cal V}$

$$\vec{x} = \varphi(O, P)$$
 $m: \mathcal{E} \to \mathcal{E} \ motion \Rightarrow \forall P, Q \in \mathcal{P}:$ $\vec{x}' = \varphi(O, m(P))$ $d(m(P), m(Q)) = d(P, Q)$ $\vec{y} = \varphi(O, Q)$ $\vec{y}' = \varphi(O, m(Q))$

$$d(P,Q) = \sqrt{\varphi(P,Q) \cdot \varphi(P,Q)}$$

$$= \sqrt{(\varphi(O,Q) - \varphi(O,P)) \cdot (\varphi(O,Q) - \varphi(O,P))}$$

$$= \sqrt{(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x})}$$

$$d(m(P), m(Q)) = \sqrt{(\vec{y}' - \vec{x}') \cdot (\vec{y}' - \vec{x}')}$$

$$\forall \vec{x}, \vec{y} \in L$$
: $\sqrt{(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x})} = \sqrt{(\vec{y}' - \vec{x}') \cdot (\vec{y}' - \vec{x}')}$

Motion characterisation in ${\cal V}$

$$d(m(P), m(Q)) = d(P, Q)$$
 for every P, Q

$$\sqrt{(\vec{y}-\vec{x})\cdot(\vec{y}-\vec{x})} = \sqrt{(\vec{y}'-\vec{x}')\cdot(\vec{y}'-\vec{x}')}$$

$$\vec{x} \cdot \vec{x} \ge 0 \Rightarrow 1$$

$$(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x}) = (\vec{y}' - \vec{x}') \cdot (\vec{y}' - \vec{x}')$$

$$(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x}) = (m(\vec{y}) - m(\vec{x})) \cdot (m(\vec{y}) - m(\vec{x}))$$
 for every \vec{x}, \vec{y}

Motion is not linear in general

 $f: \mathcal{V} \to \mathcal{V}$ is linear iff $\forall \alpha, \beta \in \mathbb{R}$ and $\forall \vec{x}, \vec{y} \in \mathcal{V}$ holds

$$f(\alpha \vec{x} + \beta \vec{y}) = \alpha f(\vec{x}) + \beta f(\vec{y})$$

A general motion m is not linear since, e.g.,

Translation $m_{\vec{o}}(\vec{x}) = \vec{x} + \vec{o}$ is a motion since

$$(m_{\vec{o}}(\vec{y}) - m_{\vec{o}}(\vec{x})) \cdot (m_{\vec{o}}(\vec{y}) - m_{\vec{o}}(\vec{x})) = (\vec{y} + \vec{o} - \vec{x} - \vec{o}) \cdot (\vec{y} + \vec{o} - \vec{x} - \vec{o})$$

$$= (\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x})$$

but

$$m_{\vec{o}}(\alpha \vec{x}) = \alpha \vec{x} + \vec{o} \neq \alpha \vec{x} + \alpha \vec{o} = \alpha m_{\vec{o}}(\vec{x})$$

for $\vec{o} \neq \vec{0}$ and $\alpha \neq 1$... translations are not linear

But there are motions that are linear as we will show ...

Motion that fixes origin preserves the scalar product

For every motion holds

$$(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x}) = (m(\vec{y}) - m(\vec{x})) \cdot (m(\vec{y}) - m(\vec{x}))$$
 for every \vec{x} , \vec{y} $(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x}) = (\vec{y}' - \vec{x}') \cdot (\vec{y}' - \vec{x}')$

moreover, if m(O) = O, i.e. $m(\vec{0}) = \vec{0}$, then for $\vec{x} = \vec{0}$, we get

$$\vec{y}' \cdot \vec{y}' = \vec{y} \cdot \vec{y}$$
 for every \vec{y} and $\vec{y}' = m(\vec{y})$

and thus

$$(\vec{y} - \vec{x}) \cdot (\vec{y} - \vec{x}) = (\vec{y}' - \vec{x}') \cdot (\vec{y}' - \vec{x}')$$

$$\vec{y} \cdot \vec{y} - 2 \vec{y} \cdot \vec{x} + \vec{x} \cdot \vec{x} = \vec{y}' \cdot \vec{y}' - 2 \vec{y}' \cdot \vec{x}' + \vec{x}' \cdot \vec{x}'$$

$$\vec{y} \cdot \vec{y} - 2 \vec{y} \cdot \vec{x} + \vec{x} \cdot \vec{x} = \vec{y} \cdot \vec{y} - 2 \vec{y}' \cdot \vec{x}' + \vec{x} \cdot \vec{x}$$

$$-2 \vec{y} \cdot \vec{x} = -2 \vec{y}' \cdot \vec{x}'$$

$$\vec{y} \cdot \vec{x} = \vec{y}' \cdot \vec{x}'$$

$$\vec{y} \cdot \vec{x} = \vec{y}' \cdot \vec{x}'$$

$$\vec{y} \cdot \vec{x} = \vec{y}' \cdot \vec{x}'$$

There exists an orthonormal basis $\beta = (\vec{e}_1, \dots, \vec{e}_n)$ in \mathcal{V}

It is mapped by m to vectors $\beta' = (\vec{e}_1', \dots, \vec{e}_n')$ as

$$\vec{e_i}' = m(\vec{e_i}), \quad i = 1, \dots, n$$

which are also an orthonormal basis

$$\vec{e}_i' \cdot \vec{e}_j' = m(\vec{e}_i) \cdot m(\vec{e}_j) = \vec{e}_i \cdot \vec{e}_j$$

Take a general vector \vec{x} and its image $m(\vec{x})$

$$\vec{x} = x_1 \vec{e}_1 + \ldots + x_n \vec{e}_n \quad m(\vec{x}) = x'_1 \vec{e}_1' + \ldots + x'_n \vec{e}_n'$$

Use the scalar product to compute the coordinates

$$\vec{e}_i \cdot \vec{x} = \sum_{j=1}^n x_j (\vec{e}_i \cdot \vec{e}_j) = x_i (\vec{e}_i \cdot \vec{e}_i) + \sum_{j \neq i}^n x_j (\vec{e}_i \cdot \vec{e}_j) = x_i \mathbf{1} + \sum_{j \neq i}^n x_j \mathbf{0} = x_i$$

$$x_{i\beta} = \vec{e}_i \cdot \vec{x} = m(\vec{e}_i) \cdot m(\vec{x}) = \vec{e}_i' \cdot \vec{x}' = x'_{i\beta'}$$

For every \vec{x} , $m(\vec{x})$ can be obtained in the following way

- 1. choose an orthonormal basis $\beta = (\vec{e}_1, \dots, \vec{e}_n)$ in \mathcal{V}
- 2. find coordinates of \vec{x} w.r.t. β : $x_{i\beta} = \vec{e}_i \cdot \vec{x}$
- 3. construct $m(\vec{x}) = x_{1\beta} m(\vec{e}_1) + ... + x_{n\beta} m(\vec{e}_n)$

Linearity:

$$(a\vec{x} + b\vec{y})_{i\beta} = \vec{e}_i \cdot (a\vec{x} + b\vec{y}) = a(\vec{e}_i \cdot \vec{x}) + b(\vec{e}_i \cdot \vec{y}) = ax_{i\beta} + by_{i\beta}$$

$$m(a\vec{x} + b\vec{y}) = (ax_{1\beta} + by_{1\beta}) m(\vec{e}_1) + \dots + (ax_{n\beta} + by_{n\beta}) m(\vec{e}_n)$$

$$= (ax_{1\beta} m(\vec{e}_1) + \dots + ax_{n\beta} m(\vec{e}_n))$$

$$+ (by_{1\beta} m(\vec{e}_1) + \dots + by_{n\beta} m(\vec{e}_n))$$

$$= a(x_{1\beta} m(\vec{e}_1) + \dots + x_{n\beta} m(\vec{e}_n))$$

$$+ b(y_{1\beta} m(\vec{e}_1) + \dots + y_{n\beta} m(\vec{e}_n))$$

$$= am(\vec{x}) + bm(\vec{y})$$

Express vectors of the the basis $\beta' = m(\beta)$ in the basis β :

$$\vec{e}_i' = \sum_{j=1}^n a_{ji}\vec{e}_j, \quad \vec{x} = \sum_{i=1}^n x_i\vec{e}_i$$

Find the coordinates y_j of $m(\vec{x})$ w.r.t. the basis β :

$$m(\vec{x}) = \sum_{j=1}^{n} y_{j} \vec{e}_{j} = \sum_{i=1}^{n} x_{i} m(\vec{e}_{i}) = \sum_{i=1}^{n} x'_{i} \vec{e}_{i}'$$

$$= \sum_{i=1}^{n} x_{i} \left(\sum_{j=1}^{n} a_{ji} \vec{e}_{j}\right)$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ji} x_{i}\right) \vec{e}_{j}$$

$$\vec{e}_{1}'_{\beta} = \sum_{j=1}^{n} a_{j1} \vec{e}_{j},$$

$$y_{j} = \sum_{i=1}^{n} a_{ji} x_{i} \Rightarrow \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

pajdla@cmp.felk.cvut.cz

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$m(\vec{x}) = A\vec{x}$$

It holds $\forall \vec{x}, \vec{y} \in \mathcal{V}$: $m(\vec{x}) \cdot m(\vec{y}) = \vec{x} \cdot \vec{y}$

Writing $\vec{x} \cdot \vec{y} = \vec{x}^{\top} \vec{y}$ we get

$$\vec{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \, \vec{y} = \vec{x}^{\top} \vec{y}$$
 for all $\vec{x}, \vec{y} \in \mathcal{V}$

In particular, for the standard basis $\vec{x} = \vec{e}_i, \vec{y} = \vec{e}_j$ we get

$$\vec{e}_i^\top \mathbf{A}^\top \mathbf{A} \, \vec{e}_j = \begin{pmatrix} a_{i1} & \dots & a_{in} \end{pmatrix} \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} = \vec{e}_i \cdot \vec{e}_j = \begin{pmatrix} 0 \text{ for } i = j \\ 1 \text{ for } i \neq j \end{pmatrix}$$

A is an orthogonal matrix

Motion that fixes origin is represented by an orhonormal matrix

Choose a Cartesian coordinate system (O; A, B, C), $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Motion m, which preserves the origin, maps it to the Cartesian coordinate system, (O; m(A), m(B), m(C)), $(\vec{e}_1', \vec{e}_2', \vec{e}_3')$

$$ec{e}_i{}'=$$
 A $ec{e}_i$

for some orthogonal matrix A.

Every motion m is orientation preserving:

$$\forall O, A, B, C \in \mathcal{P}: \ o(O; A, B, C) = o(m(O); m(A), m(B), m(C))$$

i.e. it maps right-handed bases to the right-handed bases.

$$\vec{e}_3 = \vec{e}_1 \times \vec{e}_2 \xrightarrow{m} \vec{e}_3' = \vec{e}_1' \times \vec{e}_2'$$

$$1 = \vec{e}_3' \cdot \vec{e}_3' = \vec{e}_3' \cdot (\vec{e}_1' \times \vec{e}_2') = \det \left(\vec{e}_1' \ \vec{e}_2' \ \vec{e}_3'\right)$$
$$= \det \left(A \left(\vec{e}_1' \ \vec{e}_2' \ \vec{e}_3'\right)\right) = \det A \det \left(\vec{e}_1' \ \vec{e}_2' \ \vec{e}_3'\right) = \det A 1$$
$$= \det A$$

A is othonormal

Every motion is a linear transformation followed by a translation

Be m motion. Motion m maps $\vec{0}$ somewhere. Introduce $\vec{b} = m(\vec{0})$ and the new motion $m'(\vec{x}) = (t_{-\vec{b}} \circ m)(\vec{x})$, where $t_{-\vec{b}}(\vec{x}) = \vec{x} - \vec{b}$ is a translation. Motion m' maps origin to origin:

$$m'(\vec{0}) = (t_{-\vec{b}} \circ m)(\vec{0}) = t_{-\vec{b}}(m(\vec{0})) = t_{-\vec{b}}(\vec{b}) = \vec{b} - \vec{b} = \vec{0}$$

and therefore there is an orthonormal matrix A such that

$$m'(\vec{x}) = A \vec{x}$$

 $m(\vec{x}) - \vec{b} = A \vec{x}$
 $m(\vec{x}) = A \vec{x} + \vec{b}$

Motion representation by a 4×4 matrix

For the motion in the three-dimensional Euclidean world

$$m(\vec{x}) = A \vec{x} + \vec{b}$$

 $\mathtt{A} \in \mathbb{R}^3$ and $ec{b} \in \mathbb{R}^3$

can be written in a concise way as

$$m(\vec{x}) = \mathbf{A} \, \vec{x} + \vec{b} = \begin{bmatrix} \mathbf{A} & \vec{b} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \vec{x} \\ \mathbf{1} \end{bmatrix}$$
non-linear mapping