Advanced Robotics

Lecture 4
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Motion and Screws
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A rigid motion

Motion and Screws

T
of a set of points X = <ac Yy z 1) into the set of points Y can be

expressed by a Euclidean transform

E = ’r_|_ ¢ ,TER3X3,t€R3, ?"Tfr‘zfr'rTZI, detr =1
03z 1
Y = EX

We will show that

Theorem 1 For all motions E, there exists such a fixed line o, called the axis of
motion, that E can be written as a composition of two one-parametric motions
E = E(s,9o) = E>(s) E1(p), where E1(p) is a rotation around o by angle o and
E~>(s) is a translation along o by length s. Two-parametric motions E(s, ) are called

SCrews.
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Motion and Screws

Assume motion

t
E = (gT 1),TER3X3,75€R3, rTrzrrTZI, detr =1
3
Y = EX

The existence of the axis does not depend on the choice of the coordinate system. Thus,
we will choose a particular coordinate system with respect to which the E will take so
simple form that the above statement will become evident. FE will become a rotation
around the z axis followed by a translation along the z axis.

Let the change of the coordinate system be represented by

—1
P = (gT 1) , RER3>3, TecR3 R'R=RR' =1, detR=1
3
X' = PX
Y = PY

Y = PEP X' =P'X
Thus
E = ppp1
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An elementary proof
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Motion and Screws

Let us look at

E'=PEP!
Expand elements of E’
1 _ R T
Po= 05 1
Rl —R7IT
P =
Ca
E' = PEp!
I R —_p-1i7][» ¢||R T
04 1 04 1|0 1
[ R RUW—RIT||R T
|04 1 05 1
[ R 1rR R-Ir74+ R 1t—RIT
| od 1
, _ [R"YrR R I((r—DT 4+t
E=11 o1 1
3

and choose P to make E’ as simple as possible.

It is not possible to make E’ exacly diagonal but it is possible to make it almost diagonal.
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Observation 1 1 is an eigenvalue of r.

To proof the statement, consider that
lrz||? = (rz) " (rz) =2z r're=2"(r"r)z=2"Iz =2 2z = ||z
If there is a A € C such that
rT = AT
then |\| = 1 since
AP N|z]? = [[Az]|® = |Irz||® = |||

There is a real unit eigenvalue since r is a real matrix with the characteristic polynomial

A—T11 —7T12 —713
p(A\) = det(\l —r) =det —ro1 A — 1922 —7r923
—731 —732 A —T33
= X4 (=711 —rop — 733N
+ (r11702 — 121712 + 711733 — 31713 + 722733 — T23732) A
+ 711(r237r32 — 122733) — r21(r32r13 — r127133) + r31(r13r22 — T12723)
= A3 —trace(r)A2 4 b\ — det (r) = A3 — trace(r)X\2 + b\ — 1
which has always a real solution. Since p(0) = —1, limy_,p(A\) = 400, and p(\) is a

continuous function, it must cross the zero value at a positive real number. We conclude
that 1 is an eigenvalue.
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Alternatively, we can replace the analytic part of the previous proof by the following, purely
algebraic, argument to further characterize the eigenvalues.

Algebraic equation

0=p(\) = X34+ar2+br-1

has three roots in C, which can be written as A\, \p = x+iy, A3 = z—iy with all A\q,z,y € R,
since the complex roots appear in complex conjugate pairs. Thus

p(A)

A=A =z —dy)(\ -z +iy)

(A= A1) (N2 = 22\ + 22 + y2)

A3 — 2z 4+ AN+ 222 + P + 2201) — M (22 + y2)
A2 — (22 + M)A+ A(A2)l® 4 22A1) — Arlazll?

A3 — 2z 4+ AN+ A1+ 2201) + A1

We see that there holds for the absolute term

and therefore

Finally we get

1 = )\l

1 = A\

p(A) = N —Qr+ DN+ @z +1)A-1
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Observation 2 There is a rotation matrix R reducing r to a rotation around the z axis.

There is a real unit eigenvector X such that »r X = X. Construct a rotation matrix S with
columns R = {Rl R X} by the Gram-Schmidt othogonalization. Observe that

(R{ v (R{rRy R{rRp; R{rX]

x T, X'rRy X'rRy X'rX
‘R{rRy R{rRy R{X] [R{rRy R{rRy 0] [e f O
= |RjrR1 RJrRo Ry} X|=|RIrRy RJrRy 0| =|g h O
X'"Ry X'"Ry, X'Xx|] | O o 1] [0 0 1

which is a rotation matrix since r and R are both rotations. Clearly, it is a rotation around
the z axis. We used the fact that r X = X and thus X' = XTrT = XTp 1 = xXTpr=XxT,

pajdla@cmp.felk.cvut.cz-




Proof of the Theorem 1

In general

o R rrR RY(r-—DT+1)
—\ 04 1

O o
O T
— OO

We saw that we can choose R = (Rl Ry R3> to make rR=R

Let us choose T to reduce t to a translation along the z axis.
Either t e span(r —I) or t € span(r — I).

If t € span(r — I), then we can choose T such that (r —I)T +t¢t =0 to get

R 1rR O
E = 3) =
(o™ %)

OO0« o
O O %
O OO
= O OO

which coresponds to a rotation around the z axis.
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If t ¢ span(r —I), then we can distinguish two cases according to possible rank of (r —I),
which can be either O or 2.

First of all, rank (r —I) < 3 because r € R3*3 and 1 is an eigenvalue of r, and therefore
there is £ # 0 such that rZ = Z. We see that (r — I) has a non-trivial nullspace since
(r—NZ¥=rZ—7¥=27¥—2Z=0, and thus »r — I cannot be of full rank.

Secondly, assume rank (r — I') = 1. Consider unit eigenvectors Z, Z», 3 of r» corresponding
to 1,A2,A3. Then, 0, (x—1)+iy, (x—1)—iy are eigenvalues of r—1I since (r—I1)¥; = ¥1—71 =
0%y, (r—1)Zx = XoZo — T2 = ((x — 1) +iy)ZT2, and (r — I)¥3 = A\373 — 3 = ((z — 1) —iy)T3.

Notice that linearly dependent Z,,Z3 imply Ap = A3 since \p@3 = \oaZy = A(aZy) =
AT3 = A\3T3 With Z3 # 0 and « #= 0. We have used \»Tp = AZ> implies Mo (a®y) = A(aZs)
for all a.

Now, for ((x — 1) +iy)Z>, ((x — 1) —iy)T3 to be dependent, either one of the eigenvalues
must be zero, or the eigenvectors must be dependent and thus the eigenvalues must be
same. If one is zero, then y =0 and z — 1 = 0. If they are same, then again y = 0 and
thus x = 1 since ||z + iy|| = 1. In all cases, all eigenvalues of r are equal to 1.

That implies r = I since p(\) = (A—=1)3 =X3—-3)X243X—1 and so trace(r) =ri11 + oo+
rg33 = 3 but that means that ry; = rop = r3zz3 = 1 since 0 < rqyq1,7r90,7r33 < 1. Thus we
conclude that rank(r —I) =1 = rank(r —I) =rank (I —I) =rank0 = 0.
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Assuming t ¢ span (r — I) we can distinguish the two cases: rank (r —I) = 0 and
rank (r — I) = 2.

1. Let rank(r —I) = 0.

Then r=1 and

I R 1t
E =
o7 1)

If t = 0, then we are done since E’ is the indentity and it can be written as the rotation
by ¢ = 0 followed by the traslation by s = 0 around resp. along any line through the
origin. If t = 0, then we can construct a rotation by the Gram-Schmidt orthogonalization
as R=(Ry Rp t/|[t]) to make

Rl = (R[t RJt ¢Te/|ef) = (0 o [))’

1 00 O
; |01 0 O
E="1oo01
O 00 1
which coresponds to the rotation by ¢ = 0 followed by the traslation by s = ||t|| around

resp. along the line corresponding to the z axis.
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2. Let rank(r — 1) = 2.

Then, we can generate by (r — I)T + t any one-dimensional subspace of R3, which is not
in span(r — I), just by choosing T. Recall that rR3 = R3, i.e. (r — I)R3 = 0. T herefore,
Rz ¢ span (r —I) and we can make (r —I)T +t=sRz and R"Y((r — DT +t) = R 1sR3 =
s(R{Rs R} R3 R§R3)T: (00 S)T. Finally we obtain

[ R 1rR Rl((r—I)T—I—t)>
04 1
(e f OO
_|lg OO
— (001 s
\0 0 0 1

The matrix — R~ 1rR is a rotation since it is a composition of tree rotations.

o ®
O >
= OO

Therefore, E/ coresponds to a rotation around and a traslation along the z axis.

The teorem is proven.
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