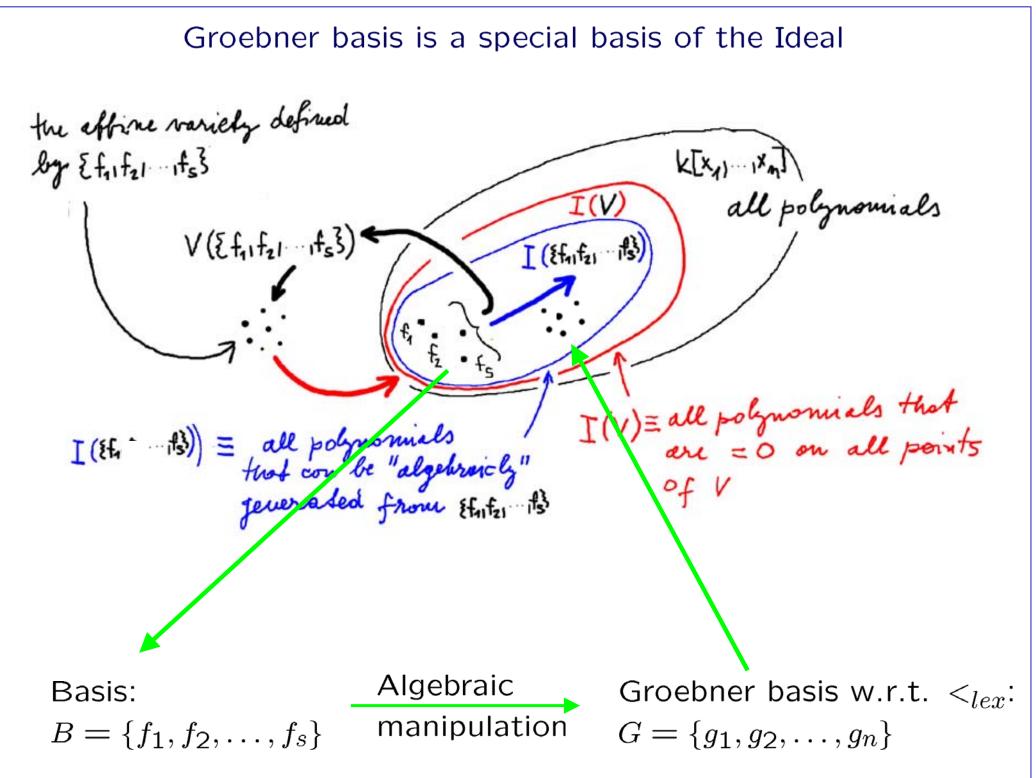
Advanced Robotics

Lecture 12



-pajdla@cmp.felk.cvut.cz^j

Reading the solution out from a Groebner basis

Theorem 3: Let 6 be a Groebner basis constructed by the Buch -
berger algorithm with
$$x_1 \in \mathbb{R}$$
 from polynomials
 $\{f_1, \dots, f_5\} \in \mathbb{C}[x_1, \dots, x_m]$ for which equations $\{f_1=0\}$.
hove a finite number of solutions. Then 6 contains
a polynomial $g \in \mathbb{C}[\times m]$.

There is often even more:

G often consists of a set of polynomials $g_n(x_n)$ $g_{n-1}(x_n, x_{n-1})$ $g_{n-2}(x_n, x_{n-1}, x_{n-2})$: $g_1(x_n, x_{n-1}, x_{n-2}, \dots, x_1)$

A working definition of a
Groebner basis (of an ideal)
(Aboris)
$$G_I = (g_{1_1} \dots g_t)$$
 (of an ideal I) is a Groebner basis
if the remainder on division of $f \in k[x_{1_1} \dots x_m]$
by G_I does not depend on the ordering of g_{ii} in G_I .
Bewere \overline{f} only r is unique - a_i 's need not be anique

Leors common multiple of monomials

Let
$$x_{i}^{a} x_{i}^{B} \in k[x_{1},...,x_{m}]$$
 be monomials, then x^{T} with
 $\gamma_{i} = \max(\alpha_{i}, \beta_{i}), i = 1,...,m$ is
the least comon multiple $- LCM(x^{a}, x^{B}) - of x^{a}, x^{B}$

Example:
$$x^{\alpha} = x y^{3} z^{2}$$
, $x^{\beta} = y z^{6}$
 $d = (1_{1} z_{1} z)$, $\beta = (0_{1} 1_{1} 6)$
 $y = Max ((1_{1} z_{1} z), (0_{1} 1_{1} 6)) = (1_{1} z_{1} 6)$
 $x^{\gamma} = x y^{3} z^{6}$

-pajdla@cmp.felk.cvut.cz

The 5-polynomial (designed to concel the leading terms)
The 5-polynomial of
$$f_1g \in k[x_{11}...,x_m]$$
 is the
(algebraic) combination
 $S(f_1g) = \frac{LCH(LH(f), Lh(g))}{LT(f)} \cdot f - \frac{LCH(LT(f), Lh(g))}{LT(g)} \cdot g$
Example: $f = x^3 y^2 - x^2 y^3 + x$, $g = 3x^4y + y^2 \in R[x_1y]$
moth $x \ge y$
 $S(f_1g) = \frac{LCH(x^3y_{1,x}y_{1,x})}{x^3y_{2}^2} \cdot f - \frac{LCh(x^3y_{2,1}xy_{1,x})}{3x^4y} \cdot g = \frac{x^4y^2}{x^3y_{2}^2} \cdot f - \frac{x^4y_{2}}{3x^4y} g$
 $= x \cdot f - \frac{4}{3}y \cdot g = \frac{x^4y_{2} - x^3y_{3}^3 + x^2 - x^4y_{2}^2 - \frac{4}{3}y^3}{x^3y_{1,x}^2} - \frac{x^4y_{2}^2}{3x^4y_{1,x}^2} - \frac{x^4y_{2}^2}{3y_{1,x}^2} + \frac{x^4y_{2}^2}{3y_$

-pajdla@cmp.felk.cvut.cz

Characterization of Graebner bases in terms of S-polynomials
A set
$$G = g_{11} \dots g_{t} g_{t} g_{t}$$
 of polynomials in $k[x_{11} \dots x_{n}]$
is a Graebner basis if for all $i_{1j} \in i_{1} \dots i_{t} i_{t} g_{j}$
the remainder on division of $S(g_{i1}g_{j})$ by G-
(with arbitrary but fixed order of $g_{k} g_{k}$ is zero
Algorithm:
 $g_{i_{1}} \dots f_{s} g_{s}$ polynomials in $k[x_{11} \dots x_{n}]$
Imput: $F = (f_{11} \dots f_{s})$ Output: a Graebner basis $G_{1} = (g_{11} \dots g_{t})$
 $G_{1} := F$
REPEAT
 $g_{i} \in G_{1}$
For each pair $(p_{1}q_{1}) \in g_{1} \dots g_{s}^{2}$, $p \neq q$ Do
 $g_{i} = G(p_{1}q_{1}) = g_{i}^{2}$
 $g_{i} = G$
 $f = f = f = G = G \cup g_{s} = g_{s}$
 $g_{i} = G$

-pajdla@cmp.felk.cvut.cz

$$\begin{aligned} & \left\{ \begin{array}{l} \text{Example} \quad \left| \left\{ \begin{bmatrix} x_{1} \\ y \end{bmatrix} \right\} \right| + \left\{ \begin{array}{l} x_{2} \\ x_{2} \\ y \end{array} \right\} \quad F = \left(\int_{1} \int_{2} \right) = \left(\left\{ \begin{array}{l} x^{3} \\ y \\ y \end{array} \right\} \quad F = \left(\int_{1} \int_{2} \right) = \left(\left\{ \begin{array}{l} x^{3} \\ y \\ x^{3} \\ y \end{array} \right\} \quad f_{1} - \left(\left\{ \begin{array}{l} x^{3} \\ y \\ z^{3} \\ y \end{array} \right\} \right\} \quad f_{2} = \left(\left\{ \left\{ \begin{array}{l} x^{3} \\ y \\ z^{2} \\ z$$

$$G_{3} = (x^{3} - 2xy_{1}x^{3}y_{2} - 2y^{2} + x_{1} - x^{2}_{1} - 2xy_{1} + x - 2y^{2}_{1} + 3y^{3})$$

$$f_{4} \qquad f_{2} \qquad f_{3} \qquad f_{4} \qquad f_{5} \qquad f_{6}$$

$$f_{4} = -x + f_{3} + f_{4}$$

$$f_{2} = -y + f_{3} + f_{5}$$

$$f_{3} = -x + f_{5} + y + f_{4}$$

$$f_{4} = -2y + f_{5} - \frac{t_{4}}{3} + f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{5} \qquad f_{6}$$

$$= (x - 2y^{2}_{1} + 3y^{3})$$

$$f_{7} = -2y^{5}$$

$$= 2y^{5}$$

Therefore G_3 is a Graebner basis. It containes $f_{11}f_2$ G_4 is also a Graebner basis. It generates the same ideal as G_3 .