Advanced Robotics

Lecture 4

Kinematics of serial manipulators

Serial manipulator kinematics

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
A_{i}^{i-1}=A_{i n t}^{i-1} A_{i}^{i n t}
$$

$$
\mathbf{A}_{i n t}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{A}_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, pp. 215-221, June 1955.

Jednoznačný a efektivní popis jednotlivých transformací műžeme nalézt metodou DenavitovouHartenbergovou (Denavitova-Hartenbergova notace). Viz Obr. 9. Popisujeme kloub i.

1. Nalezneme osy otáčení kloubủ $i-1, i, i+1$.
2. Nalezneme přičku (společnou normálu) os kloubủ $i-1$ a i a os kloubủ i a $i+1$.
3. Nalezneme body O_{i-1}, H_{i}, O_{i}
4. Osu z_{i} položme do osy kloubu $i+1$.
5. Osu x_{i} položme do prodloužení příčky $H_{i} O_{i}$
6. Osa y_{i} tvoří s ostatními pravotočivou soustavu.
7. Označme vzdálenost bodủ $\left|O_{i-1}, H_{i}\right|=d_{i}$
8. Označme vzdálenost bodủ $\left|H_{i}, O_{i}\right|=a_{i}$.
9. Označme úhel mezi příčkami θ_{i}.
10. Označme úhel mezi osami kloubủ $i, i+1 \alpha_{i}$.
11. Pro rám je možné zvolit polohu bodu O_{0} kdekoliv na ose kloubu a osu x_{0} orientovat libovolně, Napřiklad tak, aby $d_{1}=0$.
12. Pro chapadlo je možné opět zvolit bod O_{n} a orientaci osy z_{n} při dodržení ostatních pravidel.
13. Jsou-li osy dvou po sobě jdoucích kloubủ rovnobĕ̌̌né, je možné polohu příčky zvolit, například tak, že $d_{i}=0$.
14. Pro posuvné klouby lze polohu osy kloubu zvolit.

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
\mathbf{A}_{i}^{i-1}=\mathbf{A}_{i n t}^{i-1} \mathbf{A}_{i}^{i n t}
$$

$$
\begin{aligned}
& \mathbf{A}_{i n t}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right], \\
& \mathbf{A}_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, pp. 215-221, June 1955.

Jednoznačný a efektivní popis jednotlivých transformací mủžeme nalézt metodou DenavitovouHartenbergovou (Denavitova-Hartenbergova notace). Viz Obr. 9. Popisujeme kloub i.

1. Nalezneme osy otáčení kloubủ $i-1, i, i+1$.
2. Nalezneme přicčku (společnou normálu) os kloubủ $i-1$ a i a os kloubủ i a $i+1$.
3. Nalezneme body O_{i-1}, H_{i}, O_{i}.
4. Osu z_{i} položme do osy kloubu $i+1$.
5. Osu x_{i} položme do prodloužení přičky $H_{i} O_{i}$
6. Osa y_{i} tvoří s ostatními pravotočivou soustavu.
7. Označme vzdálenost bodủ $\left|O_{i-1}, H_{i}\right|=d_{i}$
8. Označme vzdálenost bodủ $\left|H_{i}, O_{i}\right|=a_{i}$.
9. Označme úhel mezi příčkami θ_{i}.
10. Označme úhel mezi osami kloubủ $i, i+1 \alpha_{i}$.
11. Pro rám je možné zvolit polohu bodu O_{0} kdekoliv na ose kloubu a osu x_{0} orientovat libovolně. Například tak, aby $d_{1}=0$.
12. Pro chapadlo je možné opět zvolit bod O_{n} a orientaci osy z_{n} při dodržení ostatních pravidel.
13. Jsou-li osy dvou po sobě jdoucích kloubủ rovnoběžné, je možné polohu příčky zvolit, například tak, že $d_{i}=0$.
14. Pro posuvné klouby lze polohu osy kloubu zvolit.

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
A_{i}^{i-1}=A_{i n t}^{i-1} A_{i}^{i n t}
$$

$$
\mathbf{A}_{\text {int }}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, pp. 215-221, June 1955.

Jednoznačný a efektivní popis jednotlivých transformací můžěeme nalézt metodou DenavitovouHartenbergovou (Denavitova-Hartenbergova notace). Viz Obr. 9. Popisujeme kloub i.

1. Nalezneme osy otáčení kloubů $i-1, i, i+1$.
2. Nalezneme přicčku (společnou normálu) os kloubủ $i-1$ a i a os kloubủ i a $i+1$.
3. Nalezneme body O_{i-1}, H_{i}, O_{i}.
4. Osu z_{i} položme do osy kloubu $i+1$.
5. Osu x_{i} položme do prodloužení příčky $H_{i} O_{i}$
6. Osa y_{i} tvoří s ostatními pravotočivou soustavu.
7. Označme vzdálenost bodủ $\left|O_{i-1}, H_{i}\right|=d_{i}$
8. Označme vzdálenost bodủ $\left|H_{i}, O_{i}\right|=a_{i}$.
9. Označme úhel mezi příčkami θ_{i}.
10. Označme úhel mezi osami kloubủ $i, i+1 \alpha_{i}$.
11. Pro rám je možné zvolit polohu bodu O_{0} kdekoliv na ose kloubu a osu x_{0} orientovat libovolně. Napřiklad tak, aby $d_{1}=0$.
12. Pro chapadlo je možné opět zvolit bod O_{n} a orientaci osy z_{n} při dodržení ostatních pravidel.
13. Jsou-li osy dvou po sobě jdoucích kloubủ rovnoběžné, je možné polohu příčky zvolit, například tak, že $d_{i}=0$.
14. Pro posuvné klouby lze polohu osy kloubu zvolit.

Serial manipulator kinematics in the Denavit-Hartenberg convention

Determining θ_{i}

$$
\begin{aligned}
\mathbf{X}^{i-1} & =\mathrm{A}_{i n t}^{i-1} \mathbf{X}_{\text {int }} \\
& =\left[\begin{array}{cccc}
\vec{e}_{i n t_{1}} & \vec{e}_{\text {int }_{2_{2 i-1}}} & \vec{e}_{\text {int }_{3_{\beta_{i-1}}}} \vec{d}_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{X}_{i n t} \\
& =\left[\begin{array}{crrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{X}_{i n t}
\end{aligned}
$$

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
\mathbf{A}_{i}^{i-1}=\mathbf{A}_{i n t}^{i-1} \mathbf{A}_{i}^{i n t}
$$

$$
\mathbf{A}_{\text {int }}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, pp. 215-221, June 1955.

Jednoznačný a efektivní popis jednotlivých transformací můžěeme nalézt metodou DenavitovouHartenbergovou (Denavitova-Hartenbergova notace). Viz Obr. 9. Popisujeme kloub i.

1. Nalezneme osy otáčení kloubů $i-1, i, i+1$.
2. Nalezneme přicčku (společnou normálu) os kloubủ $i-1$ a i a os kloubủ i a $i+1$.
3. Nalezneme body O_{i-1}, H_{i}, O_{i}.
4. Osu z_{i} položme do osy kloubu $i+1$.
5. Osu x_{i} položme do prodloužení příčky $H_{i} O_{i}$
6. Osa y_{i} tvoří s ostatními pravotočivou soustavu.
7. Označme vzdálenost bodủ $\left|O_{i-1}, H_{i}\right|=d_{i}$.
8. Označme vzdálenost bodủ $\left|H_{i}, O_{i}\right|=a_{i}$.
9. Označme úhel mezi přičkami θ_{i}.
10. Označme úhel mezi osami kloubủ $i, i+1 \alpha_{i}$.
11. Pro rám je možné zvolit polohu bodu O_{0} kdekoliv na ose kloubu a osu x_{0} orientovat libovolně. Například tak, aby $d_{1}=0$.
12. Pro chapadlo je možné opět zvolit bod O_{n} a orientaci osy z_{n} při dodržení ostatních pravidel.
13. Jsou-li osy dvou po sobĕ jdoucích kloubủ rovnoběžné, je možné polohu přičky zvolit, například tak, že $d_{i}=0$.
14. Pro posuvné klouby lze polohu osy kloubu zvolit.

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
A_{i}^{i-1}=A_{i n t}^{i-1} A_{i}^{i n t}
$$

$$
\begin{aligned}
& \mathbf{A}_{i n t}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right], \\
& \mathbf{A}_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, pp. 215-221, June 1955.

Jednoznačný a efektivní popis jednotlivých transformací mủžeme nalézt metodou DenavitovouHartenbergovou (Denavitova-Hartenbergova notace). Viz Obr. 9. Popisujeme kloub i.

1. Nalezneme osy otáčení kloubů $i-1, i, i+1$.
2. Nalezneme přicčku (společnou normálu) os kloubủ $i-1$ a i a os kloubủ i a $i+1$.
3. Nalezneme body O_{i-1}, H_{i}, O_{i}
4. Osu z_{i} položme do osy kloubu $i+1$
5. Osu x_{i} položme do prodloužení příčky $H_{i} O_{i}$
6. Osa y_{i} tvoří s ostatními pravotočivou soustavu.
7. Označme vzdálenost bodủ $\left|O_{i-1}, H_{i}\right|=d_{i}$
8. Označme vzdálenost bodủ $\left|H_{i}, O_{i}\right|=a_{i}$.
9. Označme úhel mezi příčkami θ_{i}.
10. Označme úhel mezi osami kloubủ $i, i+1 \alpha_{i}$.
11. Pro rám je možné zvolit polohu bodu O_{o} kdekoliv na ose kloubu a osu x_{0} orientovat libovolně. Napřiklad tak, aby $d_{1}=0$.
12. Pro chapadlo je možné opět zvolit bod O_{n} a orientaci osy z_{n} při dodržení ostatních pravidel.
13. Jsou-li osy dvou po sobě jdoucích kloubủ rovnobĕ̌̌né, je možné polohu příčky zvolit, například tak, že $d_{i}=0$.
14. Pro posuvné klouby lze polohu osy kloubu zvolit.

Denavit-Hartenberg convention - step by step

R. S. Hartenberg and J. Denavit, A kinematic notation for lower pair mechanisms based on matrices, Journal of Applied Mechanics, vol. 77, pp. 215221, June 1955.

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
\begin{gathered}
\mathbf{A}_{i}^{i-1}=\mathbf{A}_{i n t}^{i-1} \mathbf{A}_{i}^{i n t}, \\
\mathbf{A}_{i n t}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right], \\
\mathbf{A}_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Transformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr|}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

1. Find all motion axes $m_{1}, \ldots, m_{i-1}, m_{i}$, m_{i+1}, \ldots
2.1 Find the shortest transversals t_{i} between m_{i} and m_{i+1}.
2.2 If m_{i} is parallel to m_{i+1}, then t_{i} can be chosen arbitrarily, but the simplest is to make t_{i} intersect t_{i-1}.
2.3 If m_{i} intersects m_{i+1}, the t_{i} becomes the intersection point and the direction perpendicular to m_{i}, m_{i+1}.
3.2 O_{0} can, in principle, be placed anywhere on m_{1}, but the simplest choice is $O_{0}=H_{1}$.
3.3 Find origins $O_{i}=t_{i} \wedge m_{i+1}$ and points $H_{i}=$ $m_{i} \wedge t_{i}$.
3.4 If m_{i} intersects m_{i+1}, then $O_{i}=H_{i}$
$3.5 O_{N}$ can, in principle, be placed anywhere, but the simplest choice is $O_{N}=H_{N}=O_{N-1}$.
4.1 Choose axis \vec{z}_{0} along the motion axis m_{1}. There are two choices of the orientation, which are equivalent and can be chosen at urill
4.2 Choose axis \vec{x}_{0} along t_{1} in the direction from O_{0} to O_{1}. at will.
4.3 Choose axis \vec{y}_{0} to form a right-handed coordinate system.
4.4 Place \vec{z}_{i} axis alongh the m_{i+1} axis, preferably to contain a sharp angle with the \vec{z}_{i-1}.
4.5 Place \vec{x}_{i} axis along t_{i} in the direction from H_{i} to O_{i}.
4.6 If m_{i} intersects m_{i+1}, then place \vec{x}_{i} in the direction perpendicular to m_{i}, m_{i+1}, preferably to contain a sharp angle with \vec{x}_{i-1}.
4.7 Choose axis \vec{y}_{i} to form a right-handed coordinate system.
4.8 Construct the intermediate coordinate system $\left(H_{i}, \vec{x}_{i n t}=\vec{x}_{i}, \vec{y}_{i n t}=\vec{z}_{i-1} \times \vec{x}_{i}, \vec{z}_{i n t}=\right.$ \vec{z}_{i-1}) and define α_{i} such that $\vec{y}_{i}=\cos \left(\alpha_{i}\right) \vec{y}_{i n t}+\sin \left(\alpha_{i}\right) \vec{z}_{i n t}$.
4.9 Define θ_{i} such that $\vec{x}_{\text {int }}=\cos \left(\theta_{i}\right) \vec{x}_{i-1}+$ $\sin \left(\theta_{i}\right) \vec{y}_{i-1}$
5.1 Define a_{i} such that $O_{i}=H_{i}+a_{i} \vec{x}_{\text {int }}$
5.2 Define d_{i} such that $H_{i}=O_{i-1}+d_{i} \vec{z}_{i-1}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

1. Find all motion axes $m_{1}, \ldots, m_{i-1}, m_{i}, m_{i+1}, \ldots$

Serial manipulator kinematics in the Denavit-Hartenberg convention

2.1 Find the shortest transversals t_{i} between m_{i} and m_{i+1}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

2.2 If m_{i} is parallel to m_{i+1}, then t_{i} can be chosen arbitrarily, but...

Serial manipulator kinematics in the Denavit-Hartenberg convention

... the simplest is to make t_{i} intersect t_{i-1}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

2.3 If m_{i} intersects m_{i+1}, the t_{i} becomes the intersection point and the direction perpendicular to m_{i}, m_{i+1}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

Joint 2

3.2 O_{0} can, in principle, be placed anywhere on m_{1}, but...

Serial manipulator kinematics in the Denavit-Hartenberg convention

Joint 2

. . . the simplest choice is $O_{0}=H_{1}$.

Serial manipulator kinematics in the Denavit-Hartenberg convention

3.3 Find origins $O_{i}=t_{i} \wedge m_{i+1}$ and points $H_{i}=m_{i} \wedge t_{i}$.

Serial manipulator kinematics in the Denavit-Hartenberg convention

3.4 If m_{i} intersects m_{i+1}, then $O_{i}=H_{i}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

3.5 O_{N} can, in principle, be placed anywhere, but...

Serial manipulator kinematics in the Denavit-Hartenberg convention

\ldots. the simplest choice is $O_{N}=H_{N}=O_{N-1}$.

Serial manipulator kinematics in the Denavit-Hartenberg convention

Jount 2

4.1 Choose axis \vec{z}_{0} along the motion axis m_{1}. There are two choices of the orientation, which are equivalent and can be chosen at will.

Serial manipulator kinematics in the Denavit-Hartenberg convention

Joint 2

4.2 Choose axis \vec{x}_{0} along t_{1} in the direction from O_{0} to O_{1}. at will.

Serial manipulator kinematics in the Denavit-Hartenberg convention

Jount 2

4.3 Choose axis \vec{y}_{0} to form a right-handed coordinate system.

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.4 Place \vec{z}_{i} axis alongh the m_{i+1} axis, preferably to contain a sharp angle with the \vec{z}_{i-1}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.5 Place \vec{x}_{i} axis along t_{i} in the direction from H_{i} to O_{i}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.6 If m_{i} intersects m_{i+1}, then place \vec{x}_{i} in the direction perpendicular to m_{i}, m_{i+1}, preferably to contain a sharp angle with \vec{x}_{i-1}.

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.7 Choose axis \vec{y}_{i} to form a right-handed coordinate system.

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.8 Construct the intermediate coordinate system $\left(H_{i}, \vec{x}_{i n t}=\vec{x}_{i}, \vec{y}_{\text {int }}=\vec{z}_{i-1} \times \vec{x}_{i}, \vec{z}_{\text {int }}=\vec{z}_{i-1}\right)$ and define α_{i} such that $\vec{y}_{i}=\cos \left(\alpha_{i}\right) \vec{y}_{i n t}+\sin \left(\alpha_{i}\right) \vec{z}_{i n t}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

4.9 Define θ_{i} such that $\vec{x}_{i n t}=\cos \left(\theta_{i}\right) \vec{x}_{i-1}+\sin \left(\theta_{i}\right) \vec{y}_{i-1}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

5.1 Define a_{i} such that $O_{i}=H_{i}+a_{i} \vec{x}_{i n t}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

5.2 Define d_{i} such that $H_{i}=O_{i-1}+d_{i} \vec{z}_{i-1}$

Serial manipulator kinematics in the Denavit-Hartenberg convention

$$
\begin{gathered}
\mathbf{A}_{i}^{i-1}=\mathbf{A}_{i n t}^{i-1} \mathbf{A}_{i}^{i n t}, \\
\mathbf{A}_{i n t}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right], \\
\mathbf{A}_{i}^{i n t}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

ıausformation in a joint is described by 4 parameters

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr|}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Kinematics of Mitsubishi RV-6S/6SC Robot

RV-6S/6SC

$$
\alpha_{i}\left|a_{i}\right| \theta_{i} \mid d_{i}
$$

$$
A_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
X_{i-1}=A_{i}^{i-1} X_{i}
$$

$$
G=A_{1}^{0} A_{2}^{1} A_{3}^{2} A_{4}^{3} A_{5}^{4} A_{6}^{5}
$$

Robot Description - Matlab Robotic Toolbox

MATLAB simulation in ROBOT toolbox:
mRV6S =

RV-6S (6 axis, RRRRRR) [Mitsubishi] <home $=\left[\begin{array}{llllll}0.000000-1.047198-0.523599 ~ 0.000000 ~ 0.785398 ~ 0.000000]>~\end{array}\right.$ grav $=\left[\begin{array}{lll}0.00 & 0.00 & 9.81\end{array}\right]$

alpha_i	a_i	theta_i	d_i	R / P	standard D\&H parameters
-1.570796	85.000	parameter	350.000	R	(std)
0.000000	280.000	parameter	0.000	R	(std)
-1.570796	100.000	parameter	0.000	R	(std)
1.570796	0.000	parameter	315.000	R	(std)
-1.570796	0.000	parameter	0.000	R	(std)
0.000000	0.000	parameter	85.000	R	(std)

2 joints with intersecting rotation axes

Robot Description - Drawings

