Advanced Robotics

Lecture 5

Inverse kinematic task

Inverse kinematic task

Two consecutive bodies are related by a transform

Serial manipulator with 6 motions

$$
M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \quad M_{i}^{i n t}=\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Given the position of the flange, i.e. the matrix M and parameters of the mechanism, e.g. α_{i}, a_{i}, d_{i} compute the control variables $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}$

Matrix motion equation

function of

$$
\alpha_{i}, a_{i}, d_{i}
$$

and
$\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}$

Change of variables - from trigonometry to algebra

$$
\begin{aligned}
M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] & M_{i}^{i n t}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\cos \theta_{i} & \longrightarrow c_{i} \\
\sin \theta_{i} & \longrightarrow s_{i} \\
\cos \alpha_{i} & \longrightarrow p_{i} \\
\sin \alpha_{i} & \longrightarrow q_{i} \\
M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
c_{i} & -s_{i} & 0 & 0 \\
s_{i} & c_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] & \longrightarrow M_{i}^{i n t}=\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & p_{i} & -q_{i} & 0 \\
0 & q_{i} & p_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Algebraic identity

1 unknown $\theta_{i} \longrightarrow 2$ unknowns $c_{i}, s_{i}+1$ algebraic identity

Change of variables - from trigonometry to algebra

$$
\longrightarrow M_{i}^{i n t}=\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & p_{i} & -q_{i} & 0 \\
0 & q_{i} & p_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Given the position of the arm, i.e. the matrix M and parameters of the mechanisn, e.g. α_{i}, a_{i}, d_{i}
compute the control variables
$s_{1}, c_{1} ; s_{2}, c_{2} ; s_{3}, c_{3} ; s_{4}, c_{4} ; s_{5}, c_{5} ; s_{6}, c_{6}$
subject to the constraint

$$
M=M_{1}^{0}\left(c_{1}, s_{1}\right) M_{2}^{1}\left(c_{2}, s_{2}\right) M_{3}^{2}\left(c_{3}, s_{3}\right) M_{4}^{3}\left(c_{4}, s_{4}\right) M_{5}^{4}\left(c_{5}, s_{5}\right) M_{6}^{5}\left(c_{6}, s_{6}\right)
$$

and

$$
\begin{array}{ll}
c_{1}^{2}+s_{1}^{2}=1 & c_{4}^{2}+s_{4}^{2}=1 \\
c_{2}^{2}+s_{2}^{2}=1 & c_{5}^{2}+s_{5}^{2}=1 \\
c_{3}^{2}+s_{3}^{2}=1 & c_{6}^{2}+s_{6}^{2}=1
\end{array}
$$

Counting unknowns and equations

12 unknowns

$s_{1}, c_{1} ; s_{2}, c_{2} ; s_{3}, c_{3} ; s_{4}, c_{4} ; s_{5}, c_{5} ; s_{6}, c_{6}$
12 equations (3×4 matrix) but only 6 independent ($м$ constains ortation)

$$
M=M_{1}^{0}\left(c_{1}, s_{1}\right) M_{2}^{1}\left(c_{2}, s_{2}\right) M_{3}^{2}\left(c_{3}, s_{3}\right) M_{4}^{3}\left(c_{4}, s_{4}\right) M_{5}^{4}\left(c_{5}, s_{5}\right) M_{6}^{5}\left(c_{6}, s_{6}\right)
$$

6 equations

$$
\begin{array}{ll}
c_{1}^{2}+s_{1}^{2}=1 & c_{4}^{2}+s_{4}^{2}=1 \\
c_{2}^{2}+s_{2}^{2}=1 & c_{5}^{2}+s_{5}^{2}=1 \\
c_{3}^{2}+s_{3}^{2}=1 & c_{6}^{2}+s_{6}^{2}=1
\end{array}
$$

There is 12 unknowns and 12 equations \longrightarrow can be solved

Decomposition to elemantary motions

Decomposition to elementary motions

$$
M=\overbrace{M_{i n t}^{0} M_{1}^{i n t}}^{\overbrace{i n t}^{1} M_{2}^{i n t} M_{i n t}^{2} M_{3}^{i n t} M_{i n t}^{3} M_{4}^{1} M_{3}^{2} M_{4}^{3} M_{i n t}^{4} M_{6}^{5}} M_{5}^{i n t} M_{i n t}^{5} M_{6}^{i n t}
$$

and rename matrices to make it shorter

$$
\begin{aligned}
& M_{i}^{i-1} \longrightarrow M_{i} \\
& M=M_{1}^{0} M_{2}^{1} M_{3}^{2} M_{4}^{3} M_{5}^{4} M_{6}^{5} \longrightarrow M=M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} \\
& M_{i n t}^{i-1} M_{i}^{i n t} \longrightarrow M_{i 1} M_{i 2} \\
& M=M_{i n t}^{0} M_{1}^{i n t} M_{i n t}^{1} M_{2}^{i n t} M_{i n t}^{2} M_{3}^{i n t} M_{i n t}^{3} M_{4}^{i n t} M_{i n t}^{4} M_{5}^{i n t} M_{i n t}^{5} M_{6}^{i n t} \\
& \quad \downarrow \\
& M=M_{11} M_{12} M_{21} M_{22} M_{31} M_{32} M_{41} M_{42} M_{51} M_{52} M_{61} M_{62}
\end{aligned}
$$

Inversion of D-H motion matrix preserves "linearity"

$$
M_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{rrrr}
c_{i} & -s_{i} p_{i} & s_{i} q_{i} & a_{i} c_{i} \\
s_{i} & c_{i} p_{i} & -c_{i} q_{i} & a_{i} s_{i} \\
0 & q_{i} & p_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {linear in }}
$$

$$
c_{i}, s_{i}
$$

$$
=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inversion of D-H motion matrix preserves "linearity"

$$
\begin{aligned}
& \operatorname{inv}\left(M_{i}^{i-1}\right)=\operatorname{inv}\left(\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \operatorname{inv}\left(\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{rrrr}
1 & 0 & 0 & -a_{i} \\
0 & \cos \alpha_{i} & \sin \alpha_{i} & 0 \\
0 & -\sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
\cos \theta_{i} & \sin \theta_{i} & 0 & 0 \\
-\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & -d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
\cos \theta_{i} & \sin \theta_{i} & 0 & -a_{i} \\
-\sin \theta_{i} \cos \alpha_{i} & \cos \theta_{i} \cos \alpha_{i} & \sin \alpha_{i} & -d_{i} \sin \alpha_{i} \\
\sin \theta_{i} \sin \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & \cos \alpha_{i} & -d_{i} \cos \alpha_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
c_{i} & s_{i} & 0 & -a_{i} \\
-s_{i} p_{i} & c_{i} p_{i} & q_{i} & -d_{i} q_{i} \\
s_{i} q_{i} & -c_{i} q_{i} & p_{i} & -d_{i} p_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { linear in }
\end{aligned}
$$

$$
c_{i}, s_{i}
$$

Separate unknowns as much as possible

products of 6 unknowns

 algebraic equations of degree 3

Inverse Kinematics - General Mechanism with 6 Rotations

Click to open PDF presentation

T Pajdla: Inverse Kinematics of a 6-DOF Manipulator

[1] D.Manocha, J.F. Canny. Efficient Inverse Kinematics for General 6R Manipulators. IEEE Trans. on Robotics and Automation, 10(5). pp. 648-657, Oct. 2004
General Mechanism - Explanation

13 Nov 2006

4 Paclages \& settings

- 0 DH-Kinematics

\square 6-DOF Robot IK formulation

[Given ai, di, $i=1 \ldots 6$, and Mh , find parameters ci, si, pi, ri subject to
(1) M1 * M2 * M3 * M4 * M5 * M6 = Mh
(2) $\left(\mathrm{M}_{11}{ }^{*} \mathrm{M} 12\right)^{*}\left(\mathrm{M} 21^{*} \mathrm{M} 22\right)^{*}\left(\mathrm{M} 31{ }^{*} \mathrm{M} 32\right)^{*}\left(\mathrm{M}_{41}{ }^{*} \mathrm{M} 42\right)^{*}\left(\mathrm{M}_{51}{ }^{*} \mathrm{M} 52\right)^{*}\left(\mathrm{M} 61^{*} \mathrm{M} 62\right)=\mathrm{Mh}$
(3) $\mathrm{ci}^{\prime} 2+\operatorname{si}^{\wedge} 2=1 \quad \mathrm{i}=1 . .6$
(4) $\operatorname{pi}^{\wedge} 2+\mathrm{ri}^{\wedge} 2=1 \mathrm{i}=1 . \ldots$
[2] M. Raghavan, B. Roth Kinematic Analysis of the 6R Manipulator of General Geometry
Int. Symposium on Robotic Research. pp. 264-269, Tokyo 1990.
Write (1) equivalentily as
(5) $\mathrm{MB}^{*} \mathrm{M}^{+}{ }^{*} \mathrm{M} 5=\mathrm{M}^{\wedge}\{-1\}^{*} \mathrm{Ml}^{\wedge}\{-1\}^{*} \mathrm{Mh}^{*} \mathrm{M}^{\wedge}\{-1\}$
(6) $\mathrm{M}_{1}{ }^{*} \mathrm{M} 32{ }^{*} \mathrm{M}_{4} 1^{*} \mathrm{M}_{4} 2^{*} \mathrm{M}_{5}{ }^{*} \mathrm{M} 52$
$=\mathrm{M} 22^{\wedge}\{-1\}^{*} \mathrm{M} 21^{\wedge}\{-1\}^{*} \mathrm{M} 12^{\wedge}\{-1\}^{*} \mathrm{M}_{11}^{\wedge}\{-1\}^{*} \mathrm{Ah}{ }^{*} \mathrm{M}_{6} 2^{\wedge}\{-1\}^{*} \mathrm{M} 61^{\wedge}\{-1\}$
\square Formulation \& Solution
[The manipulator matrices
$[>1431:=\mathrm{dh} T=(3)[1]$
$\mathrm{M} 32:=\mathrm{dhT}=$ (3) $[2]$
M41 $:=\mathrm{dh} T s$ (4) [1]
$142:=\mathrm{dhTs}$ (4) [2]
$\mathrm{H51}:=\mathrm{dhTs}$ (5) [1] M52 := dhTs (5) [2]

