Harris Corner Detector

Tomáš Werner

Center for Machine Perception
Czech Technical University
Prague
Design a detector that finds points in an image such that:

- There is only a small number of isolated points detected.
- The points are reasonably invariant to
 - rotation,
 - different sampling and quantization,
 - to small changes of scale and small affine transformations.

Usage:

- Matching, finding correspondence
- Tracking

The standard detector satisfying these requirements is **Harris corner detector** (it was proposed by other people earlier, Harris became most known for some reason).
How similar is the image function $I(x, y)$ at point (x, y) similar to itself, when shifted by $(\Delta x, \Delta y)$?

This is given by autocorrelation function

$$c(x, y; \Delta x, \Delta y) = \sum_{(u,v) \in W(x,y)} w(u,v) \left(I(u,v) - I(u + \Delta x, v + \Delta y) \right)^2$$

where

- $W(x, y)$ is a window centered at point (x, y)
- $w(u, v)$ is either constant or (better) Gaussian $\exp \frac{-(u - x)^2 - (v - y)^2}{2\sigma^2}$.

(Further on, we will replace $\sum_{(u,v) \in W(x,y)} w(u,v)$ with $\sum W$ for simplicity)
Approximate the shifted function by the first-order Taylor expansion:

\[I(u + \Delta x, v + \Delta y) \approx I(u, v) + I_x(u, v)\Delta x + I_y(u, v)\Delta y \]

\[= I(u, v) + [I_x(u, v), I_y(u, v)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \]

where \(I_x, I_y \) are partial derivatives of \(I(x, y) \).

\[
c(x, y; \Delta x, \Delta y) = \sum_W \left(I(u, v) - I(u + \Delta x, v + \Delta y) \right)^2
\]

\[\approx \sum_W \left([I_x(u, v), I_y(u, v)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^2 \]

\[= [\Delta x, \Delta y]Q(x, y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \]

\[
Q(x, y) = \sum_W \begin{bmatrix} I_x(x, y)^2 & I_x(x, y)I_y(x, y) \\ I_x(x, y)I_y(x, y) & I_y(x, y)^2 \end{bmatrix}
\]

\[= \begin{bmatrix} \sum_W I_x(x, y)^2 & \sum_W I_x(x, y)I_y(x, y) \\ \sum_W I_x(x, y)I_y(x, y) & \sum_W I_y(x, y)^2 \end{bmatrix} \]
The autocorrelation function has been approximated by quadratic function

$$c(x, y; \Delta x, \Delta y) \approx [\Delta x, \Delta y]Q(x, y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = [\Delta x, \Delta y] \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Elongation and size of the ellipse is given by eigenvalues λ_1, λ_2 of $Q(x, y)$.

The rotation angle of the ellipse is given by eigenvectors of $Q(x, y)$. We don't need it.

Ellipses with equation $[\Delta x, \Delta y]Q(x, y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = 1$:

- flat region
 - both eigenvalues small
- edge
 - one small, one large
- corner
 - both eigenvalues large
How to find isolated feature points?

- Characterize ‘cornerness’ \(H(x, y) \) by eigenvalues of \(Q(x, y) \):
 - \(Q(x, y) \) is symmetric and positive definite \(\Rightarrow \lambda_1, \lambda_2 > 0 \)
 - \(\lambda_1 \lambda_2 = \det Q(x, y) = AC - B^2, \quad \lambda_1 + \lambda_2 = \text{trace } Q(x, y) = A + C \)
 - Harris suggested: Cornerness \(H = \lambda_1 \lambda_2 - 0.04(\lambda_1 + \lambda_2)^2 \)
 - Image \(I(x, y) \) and its cornerness \(H(x, y) \):

- Find corner points as **local maxima** of the cornerness \(H(x, y) \):
 - Local maximum in image defined as a point greater than its neighbors (in \(3 \times 3 \) or even \(5 \times 5 \) neighborhood)
Compute partial derivatives $I_x(x, y), I_y(x, y)$ by finite differences:

$$I_x(x, y) \approx I(x + 1, y) - I(x, y), \quad I_y(x, y) \approx I(x, y + 1) - I(x, y)$$

Before this, it is good (but not necessary) to smooth image with Gaussian with $\sigma \sim 1$, to eliminate noise.

Compute images

$$A(x, y) = \sum_W I_x(x, y)^2, \quad B(x, y) = \sum_W I_x(x, y)I_y(x, y), \quad C(x, y) = \sum_W I_y(x, y)^2$$

E.g., image $A(x, y)$ is just the convolution of image $I_x(x, y)^2$ with the Gaussian. Use MATLAB function conv2.

Compute cornerness $H(x, y)$

Find local maxima in $H(x, y)$. This can be parallelized in MATLAB by shifting the whole image $H(x, y)$ by one pixel left/right/up/down.