Robotics

Intersection of Two Circles

Vladimír Smutný

Center for Machine Perception
Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University in Prague

- Given coordinates of centers of two circles and their radii

$$
A=\left[A_{x}, A_{y}\right]^{T}, r_{a}, B=\left[B_{x}, B_{y}\right]^{T}, r_{b} .
$$

- Calculate intersection of the two circles $C=\left[C_{x}, C_{y}\right]^{T}$.

This document describes calculation of intersection of two circles in plane and explicit formulas to calculate their coordinates algebraically.

Good references are
http://mathworld.wolfram.com/Circle-CircleIntersection.html
http://paulbourke.net/geometry/2circle/
Let us label the distance of circle centers as

$$
r=\sqrt{\left(A_{x}-B_{x}\right)^{2}+\left(A_{y}-B_{y}\right)^{2}}
$$

The analysis of cases is based on triangular inequality http://mathworld.wolfram.com/TriangleInequality.html which

- Identical circles

$$
r=0 \wedge r_{a}=r_{b},
$$

- Nonintersecting circles

$$
\left|r_{a}-r_{b}\right|>r \vee r>r_{a}+r_{b},
$$

- One point intersection which in digital representation could happen only under rare circumstances

$$
\left|r_{a}-r_{b}\right|=r \vee r=r_{a}+r_{b},
$$

In this case we often could neglect this case and handle it as regular case where two intersections are identical.

- Two point intersection happens when following condition is satisfied

$$
\left|r_{a}-r_{b}\right|<r \wedge r<r_{a}+r_{b}
$$

Let us solve two point intersection. The intersection points have coordinates:

$$
\begin{gathered}
C_{1,2}= \\
{\left[\begin{array}{c}
\frac{\left(A_{x}+B_{x}\right) r^{2}+\left(A_{x}-B_{x}\right)\left(r b^{2}-r a^{2}\right) \pm\left(A_{y}-B_{y}\right) \sqrt{4 r a^{2} r b^{2}-\left(r^{2}-r a^{2}-r b^{2}\right)^{2}}}{2 r^{2}} \\
\frac{\left(A_{y}+B_{y}\right) r^{2}+\left(A_{y}-B_{y}\right)\left(r b^{2}-r a^{2}\right) \mp\left(A_{x}-B_{x}\right) \sqrt{4 r a^{2} r b^{2}-\left(r^{2}-r a^{2}-r b^{2}\right)^{2}}}{2 r^{2}}
\end{array}\right]} \\
{\left[\begin{array}{c}
\frac{A_{x}+B_{x}}{2}+\frac{\left(A_{x}-B_{x}\right)\left(r b^{2}-r a^{2}\right)}{2 r^{2}} \pm \frac{\left(A_{y}-B_{y}\right) \sqrt{4 r a^{2} r b^{2}-\left(r^{2}-r a^{2}-r b^{2}\right)^{2}}}{2 r^{2}} \\
\frac{A_{y}+B_{y}}{2}+\frac{\left(A_{y}-B_{y}\right)\left(r b^{2}-r a^{2}\right)}{2 r^{2}} \mp \frac{\left(A_{x}-B_{x}\right) \sqrt{4 r a^{2} r b^{2}-\left(r^{2}-r a^{2}-r b^{2}\right)^{2}}}{2 r^{2}}
\end{array}\right]} \\
=P \pm \overrightarrow{P C_{1}}
\end{gathered}
$$

