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Forward and inverse kinematics

Robot usually directly measures its inner kinematic parameters - joint coordinates.
Those coordinates measure the position of joints. We denote them usually as ~q, joint
coordinate of the revolute joint is denoted as θ, joint coordinate of the prismatic joint
is denoted as d.

User is interested in the position of the end effector or the position of the
manipulated rigid body. It has 6 DOF and it could be described in number of ways,
e.g. by the transformation matrix describing position of the end effector coordinate
system in the world coordinate system.

We are interested in the mapping between those two descriptions of the robot
position.
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Students often confuse position of the end effector (6
DOF) with the position of the center of the gripper (point
- has 3 DOF). This is a crucial error as orientation of the

gripper is important for both manipulation or operation (e.g.
welding).
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Forward kinematics

Forward kinematics is a mapping from joint coordinate space to space of end-effector
positions. That is we know the position of all (or some) individual joints and we are
looking for the position of the end effector. Mathematically:

~q → T(~q)

Forward kinematics could be immediately used in coordinate measurement systems.
Sensors in the joints will inform us about the relative position of the links, joint
coordinates. The goal is to calculate the position of the reference point of the
measuring system.
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Let us emphasize, that forward kinematics is mapping, not
a mathematical function. It could have none, one, several, or

infinitely many solutions for particular ~q.
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Inverse kinematics

Inverse kinematics is a mapping from space of end-effector positions to joint
coordinate space . That is we know the position of the end effector and we are
looking for the coordinates of all individual joints. Mathematically:

T→ ~q(T)

Inverse kinematics is needed in robot control, one knows the required position of the
gripper, but for control the joint coordinates are needed.
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Let us emphasize, that inverse kinematics is mapping, not
a mathematical function. It could have none, one, several, or

infinitely many solutions for particular ~q.
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Open kinematic chain
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Open kinematic chain modelling

Open kinematic chain is formed by the sequence of links con-
nected by joints. If we know the description joints using ge-

ometrical tranformations we can easily find transformation
of point coordinates from end effector coordinate system to
base coordinate system and vice versa. This transformation
is called kinematic equations.
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Open kinematic chain modeling in plane
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Homogeneous coordinate system transformation could be
described by transformation matrix A

x = Axb,

A =

[
R xo

0 0 1

]
=

 cos(φ) − sin(φ) xo
sin(φ) cos(φ) yo

0 0 1

 ,
where φ is relative rotation of second coordinate system to
first coordinate system. Inverse matrix is immediately:

A−1 =

[
RT −RTxo

0 0 1

]
= (1)

=

 cos(φ) sin(φ) − cos(φ)xo − sin(φ)yo
− sin(φ) cos(φ) sin(φ)xo − cos(φ)yo

0 0 1

 , (2)

The simple serial planar manipulator is shown on the figure.
The manipulator consist of the revolute joint (joint variable
θ1), link of the length l1, then there is a prismatic joint with
the joint variable d2, which is tilted by angle α2. Consequent
joint is revolute θ3. At the end of the link with the length
l3 is gripper. The angle of the gripper to the base coordinate
frame is denoted as φ, the origin of the gripper in the base
coordinate system is G0 = (x0, y0)

T
.

We shall assign coordinate systems to each end of the link,
the transformations between coordinate systems will then

have the simplest form of either pure translation (prismatic
joint) or pure rotation, revolute joint. Starting with the base
coordinate system 0, rotating by θ1, translation by l1, rotation
by α2, translation by d2, rotation by θ3, and translation by
l3. The individual transformation matrices will look like:

A0
1 =

 cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 , (3)

A1
2 =

 1 0 l1
0 1 0
0 0 1

 , (4)

A2
3 =

 cos(α2) − sin(α2) 0
sin(α2) cos(α2) 0

0 0 1

 , (5)

A3
4 =

 1 0 d2
0 1 0
0 0 1

 , (6)

A4
5 =

 cos(θ2) − sin(θ2) 0
sin(θ2) cos(θ2) 0

0 0 1

 , (7)

A5
6 =

 1 0 l3
0 1 0
0 0 1

 , (8)

x0 = A0
1A

1
2A

2
3A

3
4A

4
5A

5
6x6. (9)
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Geometry Intermezzo: Relative Position of Two Straight Lines and
Transversal

Transversal of two lines is the shortest line connecting the point on one line with the
point on the other line. It is perpendicular to both.

A=B A

B
A=B

A B

Relative position of two straight lines in space could be:
� coincident lines, both end points of degenerate transversal can be placed to any
point on the line,

� parallel lines, transversal can be placed anywhere along the parallel lines,
� crossing lines, degenerate transversal is located in the intersection of lines,
� nonparallel and nonintersecting lines.
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Open kinematic chain modeling in space – the Denavit-Hartenberg
notation
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Unique and efficient description of transformations can be
found by the method Denavit-Hartenberg. The description is
then called Denavit-Hartenberg notation.

Euler’s theorem about the existence of motion axis says
roughly that each motion in 3D space could be represented as
composition of rotation around certain axis and translation
around the same axis. This theorem allows to formulate the
algorithm for forward kinematics of open kinematic chains.
D–H notation is just one of those fomalisms. D–H notation is
based on the idea of mathematical induction. Therefore D–H
notation could be used only for open kinematic chains
(think about why).

We describe the joint i.

1. Find the axes of rotation of joints i− 1, i, i+ 1.

2. Find the common normal of joint axes i − 1 and i and
axes of joints i a i+ 1.

3. Find points Oi−1, Hi, Oi.

4. Axis zi shall be placed into the axis of the joint i+ 1.

5. Axis xi shall be placed into the common normal HiOi.

6. Axis yi forms with the other axes right-hand coordinate
system.

7. Name the distance of points |Oi−1, Hi| = di.

8. Name the distance of points |Hi, Oi| = ai.

9. Name the angle between common normals θi.

10. Name the angle between axes i, i+ 1 αi.

11. The origin of a base coordinate system Oo can be placed
anywhere on the joint axis and axis x0 can be oriented
arbitrarily. For example to get d1 = 0.

12. The origin On of the end effector coordinate system and
orientation of the axis zn can be placed arbitrarily when
other rules hold.

13. When the axis of two consecutive joints are parallel, the
common normal position can be placed arbitrarily, e.g.
to get di = 0.

14. The position of joint axis can be arbitrarily chosen for
prismatic joints.
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Adjacent coordinate frames in DH
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Position of end effector in base coordinate system
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Base and end effector coordinate frames in DH
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5-R-1-P manipulator
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The tranformation in the joint is uniquelly described by
four parameters θi, di, ai, αi. Parameters ai, αi are constant,
one of the parameters di, θi is changing when the joint moves.

The joints are usually:

• Revolute, then di is constant and θi is changing,

• Prismatic, then θi is constant and di is changing.

The matrix of transformation A can be calculated

Ai−1
i = Ai−1

int A
int
i ,

where

Ai−1
int =


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di
0 0 0 1

 ,

Aint
i =


1 0 0 ai
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

 .

It can be shown, that:

Ai−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 .

Denote qi the parameter θi, di, which is changing. Expres-
sion 9 can be redrawn to

x0 = A0
1(q1)A1

2(q2)A2
3(q3)A3

4(q4) . . .An−1
n (qn)xn.

For each value of the vector q = (q1, q2, q3, q4, . . . qn) ∈ Q =
Rn we can calculate coordinates of point P in base coordinate
system from given P coordinates in end effector coordinate
system and vice versa.

Kinematic equation are always solvable analytically for
open kinematic chain.
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Denavit–Hartenberg

Matrix representing transformation from one link to the succesive link

Ai−1
i =




cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


 .
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Inverse kinematics of 5-R-1-P manipulator
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Inverse kinematics

We call inverse kinematics the task when there is give a ma-
trix

T(q) = A0
1(q1)A1

2(q2)A2
3(q3)A3

4(q4) . . .An−1
n (qn). (10)

and we are looking for values of vector q. The system of
nonlinear equations (usually trigonometric) is typically not
possible to solve analytically.

Solving inverse kinematics:

• Analytically, if possible. There is not a unique descrip-
tion, how to solve the system.

• Numerically.

• Look up table, precalculated for the working space
W ⊂ Q.

There are a manipulator structures, which can be solved ana-
lytically. We call them solvable.

The sufficient condition of solvability is e.g. when the 6
DOF robot has three consecutive revolute joint with axes in-
tersecting in one point.

The other property of inverse kinematics is ambiquity of
solution in singular points. There is often the subspace Qs of
the space Q, which gives the same T.

∀q ∈ Qs : T(q) = T

To decide which q solving 10 to select has to be taken into
account mainly:

1. Is the selected value q applicable, i.e. can the robot be
sent to q?

2. How to reach the singular point. The function q shall
allways be a continuous function of time. The precee-
ding values of q should make with the selected value
continous function of time.

3. How to continue from the singular point? The future va-
lues of q should form with the selected value continous
function of time.

4. Will not the selected value of q guide us to the situation
where we will not be able to satisfy above conditions?

5. Will the required operational space limit us during
manipulation? The example is the insertion of the seat
into car.

We design sometimes redundant robots (with more de-
grees of freedom, e.g. 8), to increase the space Qs, from which
we select q to allow more freedom to fulfill above require-
ments.

Think about following:

• Is it possible to design the robot with prismatic joints
only which can position arbitrarily the rigid body in 3D
space? Why?

• Choose some manipulating task and design the
structure of redundant robot for it.
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Inverse Kinematics - example
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Inverse Kinematics - example

                               ２  Robot arm                

   Outside dimensions ・ Operating range diagram   2-13         

2.4 Outside dimensions ・ Operating range diagram

(1) RV-6S/6SC

Fig.2-4 ： Outside dimensions : RV-6S/6SC
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Inverse Kinematics - example

2-14   Outside dimensions ・ Operating range diagram

２  Robot arm

Fig.2-5 ： Operating range diagram : RV-6S/6SC
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Note1) J2＋Ｊ3×2 ≧ -200 degree when -45 degree≦ J2 ＜ 15 degree. 
Note2) J2＋Ｊ3 ≧ 8 degree when ｜J1｜≦ 75 degree, Ｊ2 ＜ -45 degree. 
Note3) J2＋Ｊ3 ≧ -40 degree when ｜J1｜＞ 75 degree, Ｊ2 ＜ -45 degree. 
Restriction on wide angle in the front section
Note4) J3 ≧ -40 degree when -105 degree≦ J1 ≦  95 degree, J2 ≧ 123 degree. 
Note5) J2 ≧ 110 degree when J1 ＜ -105 degree, J1 ＜ -95 degree. 
           However, J2 - J3 ≦ 150 degree when 85 degree J2 ≦ 110 degree.  
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Inverse Kinematics - example

2-14   Outside dimensions ・ Operating range diagram

２  Robot arm

Fig.2-5 ： Operating range diagram : RV-6S/6SC

Restriction on wide angle in the rear section
Note1) J2＋Ｊ3×2 ≧ -200 degree when -45 degree≦ J2 ＜ 15 degree. 
Note2) J2＋Ｊ3 ≧ 8 degree when ｜J1｜≦ 75 degree, Ｊ2 ＜ -45 degree. 
Note3) J2＋Ｊ3 ≧ -40 degree when ｜J1｜＞ 75 degree, Ｊ2 ＜ -45 degree. 
Restriction on wide angle in the front section
Note4) J3 ≧ -40 degree when -105 degree≦ J1 ≦  95 degree, J2 ≧ 123 degree. 
Note5) J2 ≧ 110 degree when J1 ＜ -105 degree, J1 ＜ -95 degree. 
           However, J2 - J3 ≦ 150 degree when 85 degree J2 ≦ 110 degree.  

170°

170°

170°

R258

R
526

R2
02

R
69

6

170°

P-point path: Reverse range 
(alternate long and short dash line)

P-point path: Entire range 
(solid line)

P

R611

10
0

96
1

28
0

35
0

1
79

85 315

308 238

85

R
28

0

R
28

0

R173

13
5°

R
33192°

R
33

1

76°

17°

R
28

7

258437

444

42
1

29
4

474

Flange downward 
limit line(dotted line)

Restriction on wide angle 
in the rear section Note1)

Areas as restricted by Note1) and Note3) 
within the operating range

Restriction on wide angle 
in the rear section Note3)

Restriction on wide angle 
in the rear section Note2)

Restriction on wide angle 
in the front section Note5)

Restriction on wide angle 
in the front section Note4)

59
4

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31

ROBOTICS: Vladimı́r Smutný Slide 19, Page 18



Multiple configurations in inverse kinematics
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Inverse Kinematics - Multiple Configurations

                               6Appendix                  

   Configuration flag   Appendix-63       

6 Appendix

Appendix 1 ： Configuration flag

The configuration flag indicates the robot posture.

For the 6-axis type robot, the robot hand end is saved with the position data configured of X, Y, Z, A, B and C. 
However, even with the same position data, there are several postures that the robot can change to. The posture 
is expressed by this configuration flag, and the posture is saved with FL1 in the position constant (X, Y, Z, A, B, C) 
(FL1, FL2).

The types of configuration flags are shown below.

(1) RIGHT/LEFT
Q is center of J5 axis rotation in comparison with the plane through the J2 axis vertical to the ground. 　 .

Fig.6-1 ： Configuration flag (RIGHT/LEFT)

(2) ABOVE/BELOW
Q is center of J5 axis rotation in comparison with the plane through both the J3 and the J2 axis. .

Fig.6-2 ： Configuration flag  (ABOVE/BELOW)

RIGHT LEFT

Ｑ

J2 axis
Rotation center

Ｆ Ｌ １ (Flag １ )

＆ Ｂ ０ ０ ０ ０   ０ ０ ０ ０

 ↑

１ ／ ０ ＝ Ｒ Ｉ Ｇ Ｈ Ｔ ／ Ｌ Ｅ Ｆ Ｔ

Note)  "&B" is shows the binary

J2 axis
Rotation center

J3 axis
Rotation center

Ｑ

ABOVE

BELOW Ｆ Ｌ １ (Flag １ )

＆ Ｂ ０ ０ ０ ０   ０ ０ ０ ０

 ↑

１ ／ ０ ＝ Ａ Ｂ Ｏ Ｖ Ｅ ／ Ｂ Ｅ Ｌ ＯＷ     

　Note)  "&B" is shows the binary
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6 Appendix

Appendix 1 ： Configuration flag

The configuration flag indicates the robot posture.

For the 6-axis type robot, the robot hand end is saved with the position data configured of X, Y, Z, A, B and C. 
However, even with the same position data, there are several postures that the robot can change to. The posture 
is expressed by this configuration flag, and the posture is saved with FL1 in the position constant (X, Y, Z, A, B, C) 
(FL1, FL2).

The types of configuration flags are shown below.

(1) RIGHT/LEFT
Q is center of J5 axis rotation in comparison with the plane through the J2 axis vertical to the ground. 　 .

Fig.6-1 ： Configuration flag (RIGHT/LEFT)

(2) ABOVE/BELOW
Q is center of J5 axis rotation in comparison with the plane through both the J3 and the J2 axis. .

Fig.6-2 ： Configuration flag  (ABOVE/BELOW)

RIGHT LEFT

Ｑ

J2 axis
Rotation center

Ｆ Ｌ １ (Flag １ )

＆ Ｂ ０ ０ ０ ０   ０ ０ ０ ０

 ↑

１ ／ ０ ＝ Ｒ Ｉ Ｇ Ｈ Ｔ ／ Ｌ Ｅ Ｆ Ｔ

Note)  "&B" is shows the binary

J2 axis
Rotation center

J3 axis
Rotation center

Ｑ

ABOVE

BELOW Ｆ Ｌ １ (Flag １ )

＆ Ｂ ０ ０ ０ ０   ０ ０ ０ ０

 ↑

１ ／ ０ ＝ Ａ Ｂ Ｏ Ｖ Ｅ ／ Ｂ Ｅ Ｌ ＯＷ     

　Note)  "&B" is shows the binary

Appendix-64   Configuration flag

6Appendix

(3) NONFLIP/FLIP (6-axis robot only.)
This means in which side the J6 axis is in comparison with the plane through both the J4 and the J5 axis..

Fig.6-3 ： Configuration flag (NONFLIP/FLIP)

J4 axis
 

J6 axis flange surface

FLIP

NON FILIP

Ｆ Ｌ １ (Flag １ )

＆ Ｂ ０ ０ ０ ０   ０ ０ ０ ０

 ↑

１ ／ ０ ＝ Ｎ Ｏ Ｎ Ｆ Ｌ Ｉ Ｐ ／ Ｆ Ｌ Ｉ Ｐ

Note)  "&B" is shows the binary
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Example: Multiple configurations for simple planar manipulator
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2DOF planar manipulator with 2 revolute joints have two
solutions within the circle, where it can reach. On the border
of the circle there is a single solution, where two solutions ba-
sically coincide (compare 1 solution of quadratic equation),
this border is singular surface, where one configuration can
switch to the other configuration. Outside of the circle there
is no solution. There is infinitely many solutions in the center
of the circle, this is another singular point of the robot.

This planar manipulator has only 2 DOF but it operates
in the 3D working space, that is e.g. x, y, and orientation
of the gripper φ. DOF deficiency thus causes that only some
points in the working space are reachable, that is only some
combinations of (x, y, φ). The picture of the working space

shows the reachable points, green color represent first confi-
guration, red color representing second configuration. The φ
axis is a singular point, where any orientation is reachable,
the boundary between green and red surface is also singular,
where both solutions meet. Working space is shown here in
the interval < 0, 720o >, the spiral is actually from −∞ to
∞.

It shall be stressed that ideally the working space shall
occupy some compact but dense region, where all orientations
of the end effector could be reached in all locations. Visuali-
sation of six dimensional working space of spatial manipulator
is of course difficult.
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Example: Multiple configurations for simple planar manipulator
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Manipulator with links of different length cannot reach near first joint.
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PUMA
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Mapping between Joint and Working Space

Joints space ⇔ Working (Cartezian) space
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Mapping between joint space and working space is for ro- bot with revolute joints quite nonlinear.
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Innacurately Known Robot Model – Robot Accuracy

Innacurate knowledge of links lengths Innacurate knowledge of joints offsets
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Mapping between joint space and working space is for ro-
bot with revolute joints quite nonlinear. The same holds for
the impact of the robot model parameters, when they are not
known accurately. Particularly important is that different ro-
bot configurations result in different position, so the robot
positions compensated in one configuration will produce even
worse position for other configuration. The resulting errors for

various points in working space are shown for 2–D manipula-
tor with two revolute joints. The resulting errors in position
are demonstrated for incorectly known length of links and in-
corectly known joint offsets. Chosen 2–D manipulator cannot
demonstrate the errors caused e.g by non-perpendicularity
of the succesive joint axes or non-straight linear guidance of
prismatic joint.
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Forward and inverse kinematics - summary

Kinematics Structure Solutions Difficulty
Serial 1 Easy

Forward Hybrid 0, 1, N,∞ Difficult
Parallel 0, 1, N,∞ Difficult
Serial 0, 1, N,∞ Difficult

Inverse Hybrid 0, 1, N,∞ Difficult
Parallel 0, 1, N,∞ Easier
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Number of solutions and difficulty to solve the particular
kinematics for particular robot is given by the mathematical
nature of the problem, the tranformation is described by set
of nonlinear equations, which has to be solved. The equati-
ons are basically polynomial in variables or their sines and
cosines, goniometric functions causing the nonlinearity. The

equtions have in some cases unique solution, e.g. forward kine-
matics of the open kinematic chain (serial manipulator) and
are relatively easily solvable. In other cases the task is not
solvable analytically or its solution is not known. Numerical
methods are used in such cases or such structures are avoided
altogether.
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Motion in other coordinate systems

Joint coordinates Cartezian world coordinates

Cylindrical world coordinates Cartesian tool coordinates
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The robot controller usually allows using a pendant inter-
active control of end-effector position in various coordinate
systems:

• joint coordinates (standard),

• cartezian coordinates in world coordinate system (al-

most standard),

• cylindrical coordinate system in world coordinate sys-
tem,

• cartesian coordinate system in end-effector coordinates
system,...
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