Robotics

Forward and Inverse Kinematics of Serial Manipulators

m p

11 12

13 14

15 16

21 22

23 24

29 30 31

Vladimír Smutný

Center for Machine Perception

Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC)

Czech Technical University in Prague

Forward and inverse kinematics

User is interested in the position of the end effector or the position of the

We are interested in the mapping between those two descriptions of the robot

Robot usually directly measures its inner kinematic parameters - joint coordinates. Those coordinates measure the position of joints. We denote them usually as \vec{q} , joint

coordinate of the revolute joint is denoted as θ , joint coordinate of the prismatic joint

manipulated rigid body. It has 6 DOF and it could be described in number of ways, e.g. by the transformation matrix describing position of the end effector coordinate

1

3

5

7

15 16

17 18 19 20

25 26

31

Students often confuse position of the end effector (6 gripper is important for both manipulation or operation (e.g. DOF) with the position of the center of the gripper (point - has 3 DOF). This is a crucial error as orientation of the

system in the world coordinate system.

is denoted as d.

position.

welding).

Forward kinematics is a mapping from joint coordinate space to space of end-effector positions. That is we know the position of all (or some) individual joints and we are looking for the position of the end effector. Mathematically:

Forward kinematics

$$\vec{q} \to \mathbf{T}(\vec{q})$$

Forward kinematics could be immediately used in coordinate measurement systems. Sensors in the joints will inform us about the relative position of the links, joint coordinates. The goal is to calculate the position of the reference point of the measuring system.

29 30

31

m p

1

3

5

7

Let us emphasize, that forward kinematics is mapping, not \vec{q} infinitely many solutions for particular \vec{q} . a mathematical function. It could have none, one, several, or

Inverse kinematics m p 1 Inverse kinematics is a mapping from space of end-effector positions to joint coordinate space. That is we know the position of the end effector and we are 3 looking for the coordinates of all individual joints. Mathematically: 5 7 $\mathbf{T} ightarrow \vec{q}(\mathbf{T})$ Inverse kinematics is needed in robot control, one knows the required position of the 11 gripper, but for control the joint coordinates are needed. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Let us emphasize, that inverse kinematics is mapping, not infinitely many solutions for particular \vec{q} . a mathematical function. It could have none, one, several, or

31

Open kinematic chain modelling

Open kinematic chain is formed by the sequence of links connected by joints. If we know the description joints using ge-

ometrical tranformations we can easily find transformation of point coordinates from end effector coordinate system to base coordinate system and vice versa. This transformation is called kinematic equations.

Homogeneous coordinate system transformation could be described by transformation matrix ${\cal A}$

$$\mathbf{x} = \mathbf{A}\mathbf{x}^{b},$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{R} & \mathbf{x}_{o} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) & x_{o} \\ \sin(\phi) & \cos(\phi) & y_{o} \\ 0 & 0 & 1 \end{bmatrix},$$

where ϕ is relative rotation of second coordinate system to first coordinate system. Inverse matrix is immediately:

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \mathbf{x}_o \\ 0 & 1 \end{bmatrix} = \tag{1}$$

$$= \begin{bmatrix} \cos(\phi) & \sin(\phi) & -\cos(\phi)x_o - \sin(\phi)y_o \\ -\sin(\phi) & \cos(\phi) & \sin(\phi)x_o - \cos(\phi)y_o \\ 0 & 0 & 1 \end{bmatrix}, \quad (2)$$

The simple serial planar manipulator is shown on the figure. The manipulator consist of the revolute joint (joint variable θ_1), link of the length l_1 , then there is a prismatic joint with the joint variable d_2 , which is tilted by angle α_2 . Consequent joint is revolute θ_3 . At the end of the link with the length l_3 is gripper. The angle of the gripper to the base coordinate frame is denoted as ϕ , the origin of the gripper in the base coordinate system is $G_0 = (x_0, y_0)^T$.

We shall assign coordinate systems to each end of the link, the transformations between coordinate systems will then have the simplest form of either pure translation (prismatic joint) or pure rotation, revolute joint. Starting with the base coordinate system 0, rotating by θ_1 , translation by l_1 , rotation by α_2 , translation by d_2 , rotation by θ_3 , and translation by l_3 . The individual transformation matrices will look like:

$$\mathbf{A}_{1}^{0} = \begin{bmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) & 0\\ \sin(\theta_{1}) & \cos(\theta_{1}) & 0\\ 0 & 0 & 1 \end{bmatrix}, \tag{3}$$

$$\mathbf{A}_{2}^{1} = \begin{bmatrix} 1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{4}$$

$$\mathbf{A}_{3}^{2} = \begin{bmatrix} \cos(\alpha_{2}) & -\sin(\alpha_{2}) & 0\\ \sin(\alpha_{2}) & \cos(\alpha_{2}) & 0\\ 0 & 0 & 1 \end{bmatrix}, \tag{5}$$

$$\mathbf{A}_4^3 = \begin{bmatrix} 1 & 0 & d_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{6}$$

$$\mathbf{A}_{5}^{4} = \begin{bmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0\\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0\\ 0 & 0 & 1 \end{bmatrix}, \tag{7}$$

$$\mathbf{A}_{6}^{5} = \begin{bmatrix} 1 & 0 & l_{3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{8}$$

$$\mathbf{x}_0 = \mathbf{A}_1^0 \mathbf{A}_2^1 \mathbf{A}_3^2 \mathbf{A}_4^3 \mathbf{A}_5^4 \mathbf{A}_6^5 x_6. \tag{9}$$

Geometry Intermezzo: Relative Position of Two Straight Lines and Transversal

Transversal of two lines is the shortest line connecting the point on one line with the point on the other line. It is perpendicular to both.

5 6

7 8

9 10

15 16

17 18

19 20

21 2223 24

25 26

27 2829 30

31

point on the other	mic. it is perpendica	iai to botii.
A=B	A B	A=B

Relative position of two straight lines in space could be:

- coincident lines, both end points of degenerate transversal can be placed to any point on the line,
- parallel lines, transversal can be placed anywhere along the parallel lines,
- crossing lines, degenerate transversal is located in the intersection of lines,
- nonparallel and nonintersecting lines.

Unique and efficient description of transformations can be found by the method Denavit-Hartenberg. The description is then called Denavit-Hartenberg notation.

Euler's theorem about the existence of motion axis says roughly that each motion in 3D space could be represented as composition of rotation around certain axis and translation around the same axis. This theorem allows to formulate the algorithm for forward kinematics of open kinematic chains. D–H notation is just one of those fomalisms. D–H notation is based on the idea of mathematical induction. Therefore **D**–**H** notation could be used only for open kinematic chains (think about why).

We describe the joint i.

- 1. Find the axes of rotation of joints i-1, i, i+1.
- 2. Find the common normal of joint axes i-1 and i and axes of joints i a i+1.
- 3. Find points O_{i-1} , H_i , O_i .
- 4. Axis z_i shall be placed into the axis of the joint i + 1.
- 5. Axis x_i shall be placed into the common normal H_iO_i .

- 6. Axis y_i forms with the other axes right-hand coordinate system.
- 7. Name the distance of points $|O_{i-1}, H_i| = d_i$.
- 8. Name the distance of points $|H_i, O_i| = a_i$.
- 9. Name the angle between common normals θ_i .
- 10. Name the angle between axes i, i + 1 α_i .
- 11. The origin of a base coordinate system O_o can be placed anywhere on the joint axis and axis x_0 can be oriented arbitrarily. For example to get $d_1 = 0$.
- 12. The origin O_n of the end effector coordinate system and orientation of the axis z_n can be placed arbitrarily when other rules hold.
- 13. When the axis of two consecutive joints are parallel, the common normal position can be placed arbitrarily, e.g. to get $d_i = 0$.
- 14. The position of joint axis can be arbitrarily chosen for prismatic joints.

5-R-1-P manipulator m p 1 3 Joint 4 5 7 -Joint 5 9 15 16 17 18 19 20 21 Joint 3 23 24 25 26 27 28 29 30 31

The tranformation in the joint is uniquelly described by four parameters θ_i , d_i , a_i , α_i . Parameters a_i , α_i are constant, one of the parameters d_i , θ_i is changing when the joint moves. The joints are usually:

- Revolute, then d_i is constant and θ_i is changing,
- **Prismatic**, then θ_i is constant and d_i is changing.

The matrix of transformation A can be calculated

$$\mathbf{A}_{i}^{i-1} = \mathbf{A}_{int}^{i-1} \mathbf{A}_{i}^{int},$$

where

$$\mathbf{A}_{int}^{i-1} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0\\ \sin\theta_i & \cos\theta_i & 0 & 0\\ 0 & 0 & 1 & d_i\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{A}_i^{int} = \begin{bmatrix} 1 & 0 & 0 & a_i\\ 0 & \cos\alpha_i & -\sin\alpha_i & 0\\ 0 & \sin\alpha_i & \cos\alpha_i & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

It can be shown, that:

$$\mathbf{A}_{i}^{i-1} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denote q_i the parameter θ_i , d_i , which is changing. Expression 9 can be redrawn to

$$\mathbf{x}^0 = \mathbf{A}_1^0(q_1)\mathbf{A}_2^1(q_2)\mathbf{A}_3^2(q_3)\mathbf{A}_4^3(q_4)\dots\mathbf{A}_n^{n-1}(q_n)\mathbf{x}^n.$$

For each value of the vector $\mathbf{q} = (q_1, q_2, q_3, q_4, \dots q_n) \in \mathcal{Q} = \mathcal{R}^n$ we can calculate coordinates of point P in base coordinate system from given P coordinates in end effector coordinate system and vice versa.

Kinematic equation are always solvable analytically for open kinematic chain.

Denavit-Hartenberg

m p

 $\label{thm:matrix} \mbox{Matrix representing transformation from one link to the succesive link}$

$$\mathbf{A}_{i}^{i-1} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- 1 2
- 3 4
- 5 6
- 7 8
- 9 10
- 11 12
- 13 <mark>14</mark>
- 15 16
- 17 18
- 19 20
- 21 22
- 23 24
- 25 26 27 20
- 29 30
- 31

Inverse kinematics of 5-R-1-P manipulator m 1 3 5 **A**⁰₁**A**¹₂ ... **A**⁵₆ 7 9 11 13 14 19 20 21 23 24 25 26 27 28 29|30 31

Inverse kinematics

We call inverse kinematics the task when there is give a matrix

$$\mathbf{T}(\mathbf{q}) = \mathbf{A}_1^0(q_1)\mathbf{A}_2^1(q_2)\mathbf{A}_3^2(q_3)\mathbf{A}_4^3(q_4)\dots\mathbf{A}_n^{n-1}(q_n).$$
(10)

and we are looking for values of vector **q**. The system of nonlinear equations (usually trigonometric) is typically not possible to solve analytically.

Solving inverse kinematics:

- Analytically, if possible. There is not a unique description, how to solve the system.
- Numerically.
- Look up table, precalculated for the working space $\mathcal{W} \subset \mathcal{Q}$.

There are a manipulator structures, which can be solved analytically. We call them solvable.

The sufficient condition of solvability is e.g. when the 6 DOF robot has three consecutive revolute joint with axes intersecting in one point.

The other property of inverse kinematics is ambiquity of solution in singular points. There is often the subspace Q_s of the space Q, which gives the same T.

$$\forall \mathbf{q} \in \mathcal{Q}_s : \mathbf{T}(\mathbf{q}) = \mathbf{T}$$

To decide which ${\bf q}$ solving 10 to select has to be taken into account mainly:

- 1. Is the selected value $\bf q$ applicable, i.e. can the robot be sent to $\bf q$?
- 2. How to reach the singular point. The function \mathbf{q} shall allways be a continuous function of time. The preceding values of \mathbf{q} should make with the selected value continuous function of time.
- 3. How to continue from the singular point? The future values of **q** should form with the selected value continuous function of time.
- 4. Will not the selected value of **q** guide us to the situation where we will not be able to satisfy above conditions?
- 5. Will the required **operational space** limit us during manipulation? The example is the insertion of the seat into car.

We design sometimes redundant robots (with more degrees of freedom, e.g. 8), to increase the space Q_s , from which we select \mathbf{q} to allow more freedom to fulfill above requirements.

Think about following:

- Is it possible to design the robot with prismatic joints only which can position arbitrarily the rigid body in 3D space? Why?
- Choose some manipulating task and design the structure of redundant robot for it.

Inverse Kinematics - example m p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 **15 16** 17 18 19 20 21 22 23 24 MITSUBISHI 25 26 27 28 29 30 31

2DOF planar manipulator with 2 revolute joints have two solutions within the circle, where it can reach. On the border of the circle there is a single solution, where two solutions basically coincide (compare 1 solution of quadratic equation), this border is singular surface, where one configuration can switch to the other configuration. Outside of the circle there is no solution. There is infinitely many solutions in the center of the circle, this is another singular point of the robot.

This planar manipulator has only 2 DOF but it operates in the 3D working space, that is e.g. x, y, and orientation of the gripper ϕ . DOF deficiency thus causes that only some points in the working space are reachable, that is only some combinations of (x, y, ϕ) . The picture of the working space shows the reachable points, green color represent first configuration, red color representing second configuration. The ϕ axis is a singular point, where any orientation is reachable, the boundary between green and red surface is also singular, where both solutions meet. Working space is shown here in the interval $<0,720^o>$, the spiral is actually from $-\infty$ to ∞ .

It shall be stressed that ideally the working space shall occupy some compact but dense region, where all orientations of the end effector could be reached in all locations. Visualisation of six dimensional working space of spatial manipulator is of course difficult.

Manipulator with links of different length cannot reach near first joint.

Mapping between joint space and working space is for ro- bot with revolute joints quite nonlinear.

Mapping between joint space and working space is for robot with revolute joints quite nonlinear. The same holds for the impact of the robot model parameters, when they are not known accurately. Particularly important is that different robot configurations result in different position, so the robot positions compensated in one configuration will produce even worse position for other configuration. The resulting errors for

various points in working space are shown for 2–D manipulator with two revolute joints. The resulting errors in position are demonstrated for incorectly known length of links and incorectly known joint offsets. Chosen 2–D manipulator cannot demonstrate the errors caused e.g by non-perpendicularity of the succesive joint axes or non-straight linear guidance of prismatic joint.

	Forward	and inverse	kinematics - summary	•	m)
Kinematics	Structure	Solutions	Difficulty		1	
	Serial	1	Easy		3	
Forward		$0, 1, N, \infty$	Difficult		5	Ì
		, , ,	Difficult			+
		$0, 1, N, \infty$			7	
		$0, 1, N, \infty$			9	
	Parallel	$0, 1, N, \infty$	Easier		11	†
					13	†
					15	1
					17	1
					19	1
					21	
					23	Ī
					25	
					27	
					29	,
					31	

Number of solutions and difficulty to solve the particular kinematics for particular robot is given by the mathematical nature of the problem, the tranformation is described by set of nonlinear equations, which has to be solved. The equations are basically polynomial in variables or their sines and cosines, goniometric functions causing the nonlinearity. The

equtions have in some cases unique solution, e.g. forward kinematics of the open kinematic chain (serial manipulator) and are relatively easily solvable. In other cases the task is not solvable analytically or its solution is not known. Numerical methods are used in such cases or such structures are avoided altogether.

m p Motion in other coordinate systems 1 3 5 7 11 13 14 Cartezian world coordinates Joint coordinates 15 16 17 18 19 20 21 22 23 24 25|26 27 28 Cylindrical world coordinates Cartesian tool coordinates 29 30

The robot controller usually allows using a pendant interactive control of end-effector position in various coordinate systems:

- joint coordinates (standard),
- cartezian coordinates in world coordinate system (al-

most standard),

- cylindrical coordinate system in world coordinate system,
- cartesian coordinate system in end-effector coordinates system,...