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Forward and inverse kinematics @

Robot usually directly measures its inner kinematic parameters - joint coordinates. 1
Those coordinates measure the position of joints. We denote them usually as ¢, joint 34
coordinate of the revolute joint is denoted as @, joint coordinate of the prismatic joint 5
is denoted as d.
7|8
User is interested in the position of the end effector or the position of the
manipulated rigid body. It has 6 DOF and it could be described in number of ways, 9110
e.g. by the transformation matrix describing position of the end effector coordinate 11112
system in the world coordinate system.
13|14
We are interested in the mapping between those two descriptions of the robot 15/16
position.
17|18
19|20
21(22
23|24
25|26
27|28
29|30
31

Students often confuse position of the end effector (6 gripper is important for both manipulation or operation (e.g.
DOF) with the position of the center of the gripper (point welding).
- has 3 DOF). This is a crucial error as orientation of the
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Forward kinematics @ \

Forward kinematics is a mapping from joint coordinate space to space of end-effector
positions. That is we know the position of all (or some) individual joints and we are E
looking for the position of the end effector. Mathematically: 506
T 7|8
q— q
9110
Forward kinematics could be immediately used in coordinate measurement systems. 11l12
Sensors in the joints will inform us about the relative position of the links, joint
coordinates. The goal is to calculate the position of the reference point of the 13]14
measuring system. 15/16
17(18
19(20
21|22
23|24
25|26
27|28
29(30
31

Let us emphasize, that forward kinematics is mapping, not infinitely many solutions for particular ¢
a mathematical function. It could have none, one, several, or
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Inverse kinematics @

Inverse kinematics is a mapping from space of end-effector positions to joint 1
coordinate space . That is we know the position of the end effector and we are 3
looking for the coordinates of all individual joints. Mathematically:

5
T — ¢(T) 78

9|10
1112
13(14
15(16
17(18
19(20
21(22
23(24
25(26
27|28
29(30
31

Inverse kinematics is needed in robot control, one knows the required position of the
gripper, but for control the joint coordinates are needed.

Let us emphasize, that inverse kinematics is mapping, not infinitely many solutions for particular ¢
a mathematical function. It could have none, one, several, or
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Open kinematic chain @

Joint .

Joint: + 1 910

11{12
13(14
End effector 1516

Link n 17l18
19(20
21|22
" 123|224
25|26
27|28
29(30
31

Open kinematic chain modelling ometrical tranformations we can easily find transformation

of point coordinates from end effector coordinate system to

Open kinematic chain is formed by the sequence of links con- base coordinate system and vice versa. This transformation
nected by joints. If we know the description joints using ge- is called kinematic equations.
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Open kinematic chain modeling in plane @ mp
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Homogeneous coordinate system transformation could be
described by transformation matrix A

x = Ax’,
cos(¢) —sin(¢) x,
A= [ (?0 Xlo } = sinO(QS) coso(gb) ylo ,

where ¢ is relative rotation of second coordinate system to
first coordinate system. Inverse matrix is immediately:

1 R” —-RTx,
L I R Sl St
cos(¢p)  sin(¢) —cos(¢)x, — sin(P)y,
= 751(1)1(@ coso(gb) sin(gb)xozcos(qﬁ)yo , (2)

The simple serial planar manipulator is shown on the figure.
The manipulator consist of the revolute joint (joint variable
601), link of the length [;, then there is a prismatic joint with
the joint variable dy, which is tilted by angle as. Consequent
joint is revolute 03. At the end of the link with the length
l3 is gripper. The angle of the gripper to the base coordinate
frame is denoted as ¢, the origin of the gripper in the base
coordinate system is Go = (xo,y0)" -

We shall assign coordinate systems to each end of the link,
the transformations between coordinate systems will then

have the simplest form of either pure translation (prismatic
joint) or pure rotation, revolute joint. Starting with the base
coordinate system 0, rotating by 61, translation by [;, rotation
by as, translation by ds, rotation by 63, and translation by
l3. The individual transformation matrices will look like:

cos(f;) —sin(61) O

AV = sin(fy) cos(f1) O |, (3)
0 0 1
(1 0 &

Al = |01 0|, (4)
(00 1
[ cos(az) —sin(az) 0

AZ = sin(ag)  cos(az) 0 |, (5)
0 0 1
[1 0 do

A3 = |01 0 |, (6)
00 1
[ cos(fy) —sin(fz) O

Al = sin(f2) cos(fz) O |, (7
0 0 1
[1 0 I

Al = o1 0], (8)
(00 1

xo = AYAJAZATAZAGxe (9)
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Geometry Intermezzo: Relative Position of Two Straight Lines and @

Transversal
Transversal of two lines is the shortest line connecting the point on one line with the 112
point on the other line. It is perpendicular to both. 3|4
5|6
b
- PavA A8 A g 910
11(12
13(14
15(16
Relative position of two straight lines in space could be: 17|18

¢ coincident lines, both end points of degenerate transversal can be placed to any  [19(20

point on the line, 21(22
@ parallel lines, transversal can be placed anywhere along the parallel lines, 23(24
¢ crossing lines, degenerate transversal is located in the intersection of lines, 25|26
nonparallel and nonintersecting lines. 27128
29(30

31
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notation

Open kinematic chain modeling in space — the Denavit-Hartenberg

@

Joinet

Joint:1—1
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Joint 1 +

Linkt

17|18
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2122
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Unique and efficient description of transformations can be
found by the method Denavit-Hartenberg. The description is
then called Denavit-Hartenberg notation.

Euler’s theorem about the existence of motion axis says
roughly that each motion in 3D space could be represented as
composition of rotation around certain axis and translation
around the same axis. This theorem allows to formulate the
algorithm for forward kinematics of open kinematic chains.
D-H notation is just one of those fomalisms. D-H notation is
based on the idea of mathematical induction. Therefore D—H
notation could be used only for open kinematic chains
(think about why).

We describe the joint i.

1. Find the axes of rotation of joints ¢ — 1, 4, 7 + 1.

2. Find the common normal of joint axes i — 1 and ¢ and
axes of joints 7 a ¢ + 1.

3. Find points O;_1, H;, O;.
4. Axis z; shall be placed into the axis of the joint 7 + 1.

5. Axis x; shall be placed into the common normal H;O;.

10.
11.

12.

13.

14.

Axis y; forms with the other axes right-hand coordinate
system.

Name the distance of points |0;_1, H;| = d;.
Name the distance of points |H;, O;| = a;.
Name the angle between common normals 6;.
Name the angle between axes ¢, ¢ + 1 ;.

The origin of a base coordinate system O, can be placed
anywhere on the joint axis and axis x¢ can be oriented
arbitrarily. For example to get dy = 0.

The origin O,, of the end effector coordinate system and
orientation of the axis z,, can be placed arbitrarily when
other rules hold.

When the axis of two consecutive joints are parallel, the
common normal position can be placed arbitrarily, e.g.
to get d; = 0.

The position of joint axis can be arbitrarily chosen for
prismatic joints.
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Adjacent coordinate frames in DH @

23(24
25(26

0, 5\ H— 27)28
Y-l 29|30

31
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Position of end effector in base coordinate system @
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Base and end effector coordinate frames in DH @
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5-R-1-P manipulator
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Joint 1

25

3
5
2 7
9
11

17|18
19|20
2122
23(24
25(26
27|28
29|30
31

The tranformation in the joint is uniquelly described by
four parameters 6;, d;, a;, ;. Parameters a;, «; are constant,
one of the parameters d;, 0; is changing when the joint moves.

The joints are usually:

e Revolute, then d; is constant and 6; is changing,
e Prismatic, then 0; is constant and d; is changing.
The matrix of transformation A can be calculated

—1 _ i—1 A int
A= AL,

int

where i
cos); —sin#; 0 O
i—1__ | sinf; costy 0 O
Aint - 0 0 1 dz 5
0 0 0 1 |
]. O O a; T
Aint — 0 cosa; —sina; O
i 7| 0 sinag cosa; O
0 0 0 1]

It can be shown, that:

cosf; —sinb; cosa; sin 6; sin o a; cos 6;

Al _ sin 0; cos 0; cos o —cos0O;sina; a;sinb;
v 0 sin o; COS d;
0 0 0 1

Denote ¢; the parameter 6;, d;, which is changing. Expres-
sion [ can be redrawn to

x" = A(q1)A3(q2)A3(q3) A% (qa) ... AT (gn)x™

For each value of the vector q = (¢1,62,93,¢4,.-.qn) € Q =
R™ we can calculate coordinates of point P in base coordinate
system from given P coordinates in end effector coordinate
system and vice versa.

Kinematic equation are always solvable analytically for
open kinematic chain.
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Denavit—Hartenberg @

Matrix representing transformation from one link to the succesive link

cosf; —sinf;cosc; sinf;sinca;  a;cosb;
sinf; cosf;cosco; —cosH;sinca; a;sinb;
0 sin «; CoS q; d;
0 0 0 1

i—1 _
A~ =

17|18
19|20
21(22
23(24

25|26
27|28
29|30
31
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Inverse kinematics of 5-R-1-P manipulator

(®

X0

- dscosb,

23(24
25
27|28
29|30
31

Inverse kinematics

We call inverse kinematics the task when there is give a ma-
trix

T(q) = AY(a1)A)(q2) A3 (g3)Al(qa) .- AL (qm).
and we are looking for values of vector q. The system of
nonlinear equations (usually trigonometric) is typically not

possible to solve analytically.
Solving inverse kinematics:

(10)

e Analytically, if possible. There is not a unique descrip-
tion, how to solve the system.

e Numerically.

e Look up table, precalculated for the working space

W cC Q.

There are a manipulator structures, which can be solved ana-
lytically. We call them solvable.

The sufficient condition of solvability is e.g. when the 6
DOF robot has three consecutive revolute joint with axes in-
tersecting in one point.

The other property of inverse kinematics is ambiquity of
solution in singular points. There is often the subspace Q, of
the space Q, which gives the same T.

Vqe Q,: T(q)=T

To decide which q solving [10]to select has to be taken into
account mainly:

1. Is the selected value q applicable, i.e. can the robot be
sent to q7

2. How to reach the singular point. The function q shall
allways be a continuous function of time. The precee-
ding values of q should make with the selected value
continous function of time.

3. How to continue from the singular point? The future va-
lues of q should form with the selected value continous
function of time.

4. Will not the selected value of q guide us to the situation
where we will not be able to satisfy above conditions?

5. Will the required operational space limit us during
manipulation? The example is the insertion of the seat
into car.

We design sometimes redundant robots (with more de-
grees of freedom, e.g. 8), to increase the space Qg, from which
we select q to allow more freedom to fulfill above require-
ments.

Think about following:

e Is it possible to design the robot with prismatic joints
only which can position arbitrarily the rigid body in 3D
space? Why?

e Choose some manipulating task and design the
structure of redundant robot for it.
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Inverse Kinematics - example

17|18
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Inverse Kinematics - example

(®

View A: Detail of mechanical interface

View D bottom view drawing : Detail of installation dimension
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Inverse Kinematics - example
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Inverse Kinematics - example

170°

170°

P-point path: Reverse range
(alternate long and short dash line)

P-point path: Entire range
(solid line)

23(24
25(26
27|28
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Multiple configurations in inverse kinematics @

17|18
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Inverse Kinematics - Multiple Configurations @
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Example: Multiple configurations for simple planar

manipulator

@

12

Working envelope

0 solutions

1 (double) solution
=singular surface

o solutions = singular point

2 solutions

1 (double) solution
=singular surface

co solutions = singular point

Working space of the 2DOF planar RR manipulator 11=0.5,12=0.5

17
19

1000 —

23
25
27
: 29
31

@[degrees]

108 06 04 02 0 02 o4 o5 o0g -

2DOF planar manipulator with 2 revolute joints have two
solutions within the circle, where it can reach. On the border
of the circle there is a single solution, where two solutions ba-
sically coincide (compare 1 solution of quadratic equation),
this border is singular surface, where one configuration can
switch to the other configuration. Outside of the circle there
is no solution. There is infinitely many solutions in the center
of the circle, this is another singular point of the robot.

This planar manipulator has only 2 DOF but it operates
in the 3D working space, that is e.g. x, y, and orientation
of the gripper ¢. DOF deficiency thus causes that only some
points in the working space are reachable, that is only some
combinations of (z,y,¢). The picture of the working space

shows the reachable points, green color represent first confi-
guration, red color representing second configuration. The ¢
axis is a singular point, where any orientation is reachable,
the boundary between green and red surface is also singular,
where both solutions meet. Working space is shown here in
the interval < 0,720° >, the spiral is actually from —oo to
00.

It shall be stressed that ideally the working space shall
occupy some compact but dense region, where all orientations
of the end effector could be reached in all locations. Visuali-
sation of six dimensional working space of spatial manipulator
is of course difficult.

ROBOTICS: Vladimir Smutny

Slide 22, Page 21



Example: Multiple configurations for simple planar manipulator @ mp

Working space of the 2DOF planar RR manipulator 110.3,12=0.7 Working space of the 2DOF planar RR manipulator 11=0.7,12=0.3

1000 — 1000 —

17(18
19|20
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25|26
27|28
11 29(30

Manipulator with links of different length cannot reach near first joint.
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Mapping between Joint and Working Space @

Joints space < Working (Cartezian) space

eeeeeeeeee

17|18
19|20

25(26

<: ) ) -2 g 2 4 6 Eﬂ

29|30
31

Mapping between joint space and working space is for ro- bot with revolute joints quite nonlinear.
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Innacurately Known Robot Model — Robot Accuracy

Innacurate knowledge of links lengths

. working space, 11 = 0.5 +0.02, J2 =0.5-0.02, max(error)=0.04
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Mapping between joint space and working space is for ro-
bot with revolute joints quite nonlinear. The same holds for
the impact of the robot model parameters, when they are not
known accurately. Particularly important is that different ro-
bot configurations result in different position, so the robot
positions compensated in one configuration will produce even
worse position for other configuration. The resulting errors for

various points in working space are shown for 2-D manipula-
tor with two revolute joints. The resulting errors in position
are demonstrated for incorectly known length of links and in-
corectly known joint offsets. Chosen 2-D manipulator cannot
demonstrate the errors caused e.g by non-perpendicularity
of the succesive joint axes or non-straight linear guidance of
prismatic joint.
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Forward and inverse kinematics - summary @ mp
Kinematics Structure Solutions  Difficulty 12
Serial 1 Easy 314
Forward Hybrid 0,1, N,oo Difficult 5|6
Parallel 0,1, N,oo Difficult
Serial 0.1,N,o0 Difficult 7|8
Inverse Hybrid 0,1, N,oo Difficult 9110
Parallel 0,1, N,oo Easier
11{12
13(14
15(16
17(18
19(20
21|22
23|24
25|26
27|28
29
31

Number of solutions and difficulty to solve the particular
kinematics for particular robot is given by the mathematical
nature of the problem, the tranformation is described by set
of nonlinear equations, which has to be solved. The equati-
ons are basically polynomial in variables or their sines and
cosines, goniometric functions causing the nonlinearity. The

equtions have in some cases unique solution, e.g. forward kine-
matics of the open kinematic chain (serial manipulator) and
are relatively easily solvable. In other cases the task is not
solvable analytically or its solution is not known. Numerical
methods are used in such cases or such structures are avoided
altogether.
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Motion in other coordinate systems @ mp
N N -

S 34

+J5 - -J3
ﬁ i 5|6

-J6 w3
¥ 36 . q 7|8
b o (& 910
—J1
L. 11(12
. +J1
13(14
Joint coordinates Cartezian world coordinates 15016
o - 17(18
W # N 19(20
*':1.*?_‘ +B'"'-"-1

1 TC7_& - 23|24
| ~ [25[26
pc A e - 27|28
Cylindrical world coordinates Cartesian tool coordinates 29130

a1l

The robot controller usually allows using a pendant inter-
active control of end-effector position in various coordinate
systems:

most standard),

tem,
e joint coordinates (standard),

e cylindrical coordinate system in world coordinate sys-

e cartesian coordinate system in end-effector coordinates

e cartezian coordinates in world coordinate system (al- system,...
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