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Statics – Forces and moments acting on the link.
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Statics

• Deals with forces and moments applied on the robot at
rest.

• Takes into account weights of links and manipulated
object.

• Takes into account the force and the moment robot ap-
plies on the environment.

• Considers finite stiffness of joints and links.

We will take into account only simplified model of the
joint stiffness. The links are considered infinitely stiff. Open
kinematic chain is discussed only.

See Fig. The forces acting on the i-th link are (placed to
the origin of i-th coordinate system) fi−1,i, −f i,i+1 the wei-
ght of a link is mig and moments are Ni−1,i, −Ni,i+1. Let
us denote the vectors ri−1,i = Oi−1Oi, ri,ci = OiCi. Then
the condition for static balance of the forces is:

fi−1,i−f i,i+1 +mig = 0, i = 1, . . . , n . (1)

Static balance of the moments expressed to the centroid:

Ni−1,i−Ni,i+1−(ri−1,i+ri,ci)×fi−1,i+(−ri,ci)×(−f i,i+1) = 0, i = 1, . . . , n .
(2)

All variables (forces, moments, vectors) has to be expres-
sed in a single coordinate system, e.g. in the base coordinate
system.

Show as the exercise that the condition is independent on
the reference point.

Manipulator with n DOF is described by a system of 2n
equations with 2n + 2 unknown variables. To get unique so-
lution we need to know the force and moment the robot is
acting on the environment. For example robot manipulating
the object acts by force fn,n+1 equal to the weight of the
object and the moment is zero: Nn,n+1 = 0. Let us define
the vector of forces in end effector the vector:

F =

[
fn,n+1

Nn,n+1

]
. (3)

The force and the moment, by which one link acts on the
other, are compensated partially by the structure of the ma-
nipulator and partially by the joint force. The structure of
prismatic joint absorbs all moments and two of three force
components. Only the component acting in the direction of
joint axis has to be compensated by the joint force

τi = bT
i−1fi−1,i . (4)

The joint moment for revolute joint can be derived from:

τi = bT
i−1Ni−1,i . (5)

The components which are compensated by the structure
do not produce the work because of zero path, on which they
act.
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Statics – Forces acting on the base and the end effector.
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The vector of forces and moments produced by joints is
called joint moments and denoted as:

τ =


τ1
τ2
...
τn

 . (6)

If the robot does not apply force to the environment
F = 0, then we can calculate the part of the joint moments
corresponding to the supporting of the arm against gravity:

τG. Component τG will be omitted in following calculati-
ons.

It can be shown that joint moments without the compo-
nent supporting the robot weight can be calculated from the
vector of forces in end effector by the formula:

τ = JTF , (7)

where J is a Jacobian of the manipulator. τG. will be
omitted in following calculations. Show as the exercise the
above relationship (e.g. by use of Energy conservation law).
Calculate τ for manipulator shown on the Fig.
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Statics – The forces in prismatic joint.
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Statics – Motion and rotation caused by the force.
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Statics – Stiffness and compliance of the manipulator.
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Stiffness modeling

The stiffness of the manipulator is influenced by various
components: stiffness of the links, stiffness of the joints etc.
The links are usually relatively stiff (the counterexample is
the manipulator on the spaceshutle). The stiffness of the joints
can be modeled e.g. by the spring between actuator and a
link. This is a good assumption as the most of the error has
actually this origin and some of the stiffness of link can be
approximated in this way (the linear term in the Taylor ex-
pansion of the actual error). This model does not model the
effects similar to the hysteresis. The force and moment τi is
then proportional to the deviation of the joint position from
the unloaded position ∆qi by the coefficient ki:

τi = ki∆qi .

In matrix notation:
τ = K∆q ,

where

K =

 k1 0
. . .

0 kn

 .
The compliance in joints results in compliance of end ef-

fector (see Fig. The force F acting on the end effector have
to be compensated by the joint torques τ :

τ = JTF . (8)

The deviation in joints using the compliance model of
joints is expressed as ∆q.

τ = K∆q . (9)

The deviation in joints will cause the deviation in end
effector position ∆p:

∆p = J∆q . (10)

When the stiffness of the manipulator are all nonzero, the
matrix K is invertible and we can write

∆p = JK−1JTF = CF . (11)

The matrix C is called compliance matrix of the end effec-
tor. If the manipulator Jacobian has square size and regular
then the matrix C can be inverted and its inversion is called
the stiffness matrix:

F = C−1∆p . (12)

If the manipulator Jacobian is singular, it exists a no-
nempty region S2 (see Fig. and thus nonempty null space
N(JT ). If the force acts in region N(JT ) no joint torques
are generated and the manipulator appears as infinitely stiff.
Note that manipulator Jacobian and thus the compliance ma-
trix depends on the manipulator position.
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Statics – Example of stiffness analysis.

1

2

3

4

5

6

7

8

9

10

11

12

Because the deviation of the end effector position depends
on the manipulator position, the size and the direction of the
forces acting on the manipulator, we can analyze the maxi-
mal and minimal deviation resulting from the force of a given
size. The size of the deviation for unit size of force is:

|∆p|2 = ∆pT ∆p = FTCTCF, (13)

when
|F|2 = FTF = 1 . (14)

By optimization we can find that extreme values |∆p| =√
λ are reached in the directions given by the vectors e,

where λ is minimal or maximal eigenvalue of the matrix C2

and a vector e is a corresponding eigenvector. The coordi-
nate transformation generated by the matrix of eigenvectors
is called the main transformation. If the forces act only in the
direction of eigenvectors the deviation of end effector position
is also in the direction of the eigenvectors and with the same
orientation as acting force. Because the matrix C is symme-
trical, the eigenvectors are perpendicular each to other. Let
us note that the force F contains also moments and the end
effector deviation p also rotation.

Example: Analyze the manipulator from Fig.

ROBOTICS: Vladimı́r Smutný Slide 8, Page 7



Statics – The force acting on the end effector.
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As exercise choose θ2 = 0 in Fig. form the Jacobian, deter-
mine the its dimension and show which directions correspond
to which regions in the Fig.

Let us emphasize that the manipulator Jacobian and thus
the its null space depends on the position of the manipulator
q.
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Statics – Mapping for kinematics and statics.
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Let us discuss the scheme shown on Fig. In the upper part
of the drawing is shown the transformation from velocity in
joint coordinates into the velocities in Cartesian coordinates
of end effector that is the differential kinematics analysis. In
the bottom part it is shown the transformation from the for-
ces in end effector vector to the joint moment, that is statics
problem. The region N(J) is the null space of the transfor-
mation contains the velocities or infinitesimal moves in joints
which does not change the position of the end effector. The
region R(J) describes the region of infinitesimal motions,
which can be obtained by infinitesimal motion of joints. The

complement region S2 denotes the infinitesimal motions of
end effector which cannot be performed by the manipulator.

The region N(JT ), the null space of the transformation of
the transposed Jacobian, is a set of all forces in end effector,
which are compensated by the structure of the manipulator.
The region R(JT ) represents the joint moments, which can
compensate the forces in the end effector. The region S3 de-
notes joint moments, which cannot be compensated by the
forces in the end effector. No force nor the moment in the
end effector can compensate the joint forces/moments from
the region S3 in the null space N(J).
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Statics – Example

Transformation of coordinates and forces

Let us have two coordinates systems. We can express the
coordinate transformation of infinitesimal motions, forces and
moments between them. Let us denote q and p coordinate
in one and the other coordinate system. The relationship be-
tween infinitesimal motions can be expressed by:

dp = Jdq , (15)

where J is a Jacobian of the corresponding transformation
matrix. We can write for the transformation of generalized
forces P and Q

Q = JTP . (16)

The use can be shown on the figure. The moment, which
shall be applied on the screw is given and we want to cal-
culate the force which should apply the end effector in point
O′. We can place the force/torque sensor in the point O′ and
calculated value can be inputed to the feedback controller.

The wrench is described by dq = [dx, dy, dz, dφx, dφy, dφz]
T

in the coordinate system O − xyz and by dp =
[du, dv, dw, dφu, dφv, dφw]

T
in the coordinate system O′ −

uvw. It can be easily shown that:

dp =


du
dv
dw
dφu
dφv
dφw

 =


1 0 0 0 rz −ry
0 1 0 −rz 0 rx
0 0 1 ry −rx 0

1 0 0
0 0 1 0

0 0 1




dx
dy
dz
dφx
dφy
dφz

 = Jdq .

(17)
If we choose the generalized forces in the same coordinate

systems, that is: Q = [Fx,Fy,Fz,Mx,My,Mz]
T

in the coor-

dinate system O−xyz and P = [Fu,Fv,Fw,Mu,Mv,Mw]
T

,
then

dQ =


Fx

Fy

Fz

Mx

My

Mz

 =


1 0 0
0 1 0 0
0 0 1
0 −rz ry 1 0 0
rz 0 −rx 0 1 0
−ry rx 0 0 0 1




Fu

Fv

Fw

Mu

Mv

Mw


(18)

Solve the case when axis v passes through axis z for any
position during screw driving as an exercise.

ROBOTICS: Vladimı́r Smutný Slide 12, Page 10


