
Manipulating Correspondences for Stepwise Camera Gluing
A[E]4M33TDV—3D compute vision: labs.

Martin Matoušek

November, 2010∗

Lecture Prerequisities: Stepwise Gluing.

1 Introduction

The Stepwise Gluing algorithm constructs cluster of cameras and cloud of 3D scene points. It works
with pointwise correspondences. Tentative image-to-image correspondences, that relate interest points
between pairs of images (cameras), are the input of the algorithm. These have been obtained e.g. by
WBS matcher. Additionally, scene-to-image correspondences, tentative as well as confirmed, are
created and manipulated. These correspondences relate 3D scene points in the cluster and interest
points in the images.

While attaching the camera to the cluster, the image-to-image correspondences must be correctly prop-
agated between camera pairs to form scene-to-image correspondences. Here, a method for correspon-
dence manipulation is proposed, together with data structures for representing the correspondences.
This correspondence manipulation method is implemented as the Matlab mini-toolbox corresp, which
can be used by students.

Note, that the correspondence manipulation is driven by the Stepwise Gluing. The information which
tentative correspondences are confirmed, which points are created, etc, must be given (it comes from
appropriate geometric algorithms, e.g. P3P with RANSAC).

2 Correspondence Manipulation

2.1 Data Structures

Identifiers. Image points as well as scene points have identifiers (IDs). These identifiers can e.g.
serve as indices to tables with point coordinates. The identifiers must be given by user. The scene
points identifiers must be unique, the image point identifiers must be unique in the scope of a single
image. Cameras have also identifiers, these must be integers from 1 to n (number of cameras), later
denoted as i, i1, i2, . . .

Image-to-Image Correspondences. For every image pair (i1, i2), the image-to-image correspon-
dences are represented as a matching table, where each row contains a pair of image point IDs to i1
and i2. Internally, the tables are stored in the cell matrix m, such that the m{i1,i2} is the matching
table for the pair (i1, i2), assuming that i1 < i2. So the cell matrix m has diagonal and under-diagonal
entries empty. The case when i1 > i2 is internally treated by appropriate swapping of indices and
columns, e.g. by using m{i2,i1}(:,[2 1])}. So the user of the mini-toolbox need not care about.

∗Last revision: December 2, 2010

1

Scene-to-Image Correspondences. For each camera i, the correspondences between scene points
and image points are stored in a table, where each row contains a pair of scene point ID and image
point ID. These are stored in the cell matrix Xu, where Xu{i} belongs to the camera i.

2.2 Algorithm

The correspondence manipulation can be summarised in the following steps.

1. Data Setup—initialisation of internal correspondence structures.
Functions: corresp_init, corresp_add_pair.

2. Initialisation of Camera Cluster and Point Cloud. The first two selected cameras establish
the camera cluster and inlier image-to-image correspondences create the 3D point cloud.
Functions: corresp_start.

3. Propagation of Tentative Scene-to-Image Correspondences (1) of the newly created
scene points. Done automatically.

4. Attaching New Camera into the cluster.
Functions: corresp_join_camera.

5. Propagation of Tentative Scene-to-Image Correspondences (2) of inliers.
Functions: done automatically.

6. Reconstructing New Points from remaining image-to-image correspondences between the
attached camera and the other cameras in the cluster.
Functions: corresp_new_x.

7. Propagation of Tentative Scene-to-Image Correspondences (3) of new points.
Functions: done automatically.

8. Verification of Tentative Scene-to-Image Correspondences in the cluster that have
emerged during previous propagations.
Functions: corresp_verify_x.

9. Propagation of Tentative Scene-to-Image Correspondences (4) of the newly confirmed
ones.
Functions: done automatically.

10. Finalize New Camera—ensures data consistency.
Functions: corresp_finalize_camera.

11. Repeat Step 4 while there exists a camera outside the cluster with sufficient number of tentative
scene-to-image correspondences.

Particular steps now described in detail, accompanied with a demonstration run on a simple example.

2

2.2.1 Data Setup

The data structure must be first initialised with a number of cameras.

corresp = corresp_init(5);

Then all tentative image-to-image correspondences must be imported.

corresp = corresp_add_pair(corresp, 1, 2, [4 1; 5 1; 3 3; 2 2]);
corresp = corresp_add_pair(corresp, 2, 3, [3 3; 3 4]);
corresp = corresp_add_pair(corresp, 1, 3, [1 1; 4 2; 6 1; 7 2]);
corresp = corresp_add_pair(corresp, 1, 4, [4 3; 4 4]);
corresp = corresp_add_pair(corresp, 2, 4, [1 3; 3 4;4 5]);
corresp = corresp_add_pair(corresp, 3, 4, [1 3; 5 5]);
corresp = corresp_add_pair(corresp, 1, 5, [1 1]);

The situation is depicted on the following graph of correspondences between images, also the content
of correspondence tables m{i,j} is shown (Fig. 1). Note that the scene-to-image correspondence tables
Xu{i} are empty at the beginning.

Xu{1} Xu{2} Xu{3} Xu{4} Xu{5}

m{1,2}

4 1

5 1

3 3

2 2

m{1,3}

1 1

4 2

6 1

7 2

m{1,4}

4 3

4 4

m{1,5}

1 1

m{2,3}

3 3

3 4

m{2,4}

1 3

3 4

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}

img:1
1

23

4

5

6

7

img:2

12

3

4

img:3

1

2

3 4

5

img:4

1 2

3

4

5

img:5
1

Fig. 1: Starting State.

2.2.2 Initialisation of Camera Cluster and Point Cloud

Two cameras i1 and i2 are selected to be the seed of the cluster. Calibrated epipolar geometry between
the cameras is estimated and inlier image-to-image correspondences are found. The cameras Pi1 , Pi2

and set of 3D scene points are reconstructed.

i1 = 1; i2 = 2; % need not be ordered, the function takes care itself
m12 = corresp_get_m(corresp, i1, i2); % get image-to-image correspondences

Estimateepipolar geometry using correspondences m12. Obtain set of inliers, reconstruct cameras and
scene points.

inl = [1 3]; % indices to m12 – obtained inliers
xid = [’A’ ’B’]; % IDs of the reconstructed scene points
corresp = corresp_start(corresp, i1, i2, inl, xid);

3

Now the cluster of cameras consists of these two cameras and the point cloud of these points. Inlier
image-to-image correspondences are transferred into confirmed scene-to-image correspondences in i1
and i2 and all image-to-image correspondences between i1 and i2 are removed. Note that the confirmed
correspondences can exist only in the cameras belonging to the cluster. This will be more clear later.

The situation is depicted in the following two figures. The first one (Fig. 2) emphasises image-to-
image inliers and outliers, new scene points and new scene-to-image correspondences. The second one
(Fig. 3) shows the final state.

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3} Xu{4} Xu{5}

m{1,2}

4 1

5 1

3 3

2 2

m{1,3}

1 1

4 2

6 1

7 2

m{1,4}

4 3

4 4

m{1,5}

1 1

m{2,3}

3 3

3 4

m{2,4}

1 3

3 4

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}

img:1
1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

2

3 4

5

img:4

1 2

3

4

5

img:5
1AB

Fig. 2: The camera cluster and the point cloud initialisation in the progress. Emphasized: image-to-image
inliers (yellow), outliers (gray), and new points with confirmed scene-to-image correspondences (yellow).

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3} Xu{4} Xu{5}

m{1,2} m{1,3}

1 1

4 2

6 1

7 2

m{1,4}

4 3

4 4

m{1,5}

1 1

m{2,3}

3 3

3 4

m{2,4}

1 3

3 4

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}

img:1
1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

2

3 4

5

img:4

1 2

3

4

5

img:5
1AB

Fig. 3: The camera cluster and the point cloud initialised. The cameras belonging to the cluster are marked
red, the scene-to-image correspondences that are confirmed are red as well.

4

2.2.3 Propagation of Tentative Scene-to-Image Correspondences (1)

The newly confirmed scene-to-image correspondences are now propagated along tentative image-to-
image correspondences into tentative scene-to-image correspondences. The propagation is done into
cameras in the neighbourhood of the cluster. (Not inside, since there are no image-to-image correspon-
dences inside the cluster). The image-to-image correspondences used for propagation are removed. It is
clear, that after the propagation, every interest point related by at least one confirmed scene-to-image
correspondence is no more related by any image-to-image correspondence.

This propagation is done automatically by the corresp_start function.

The situation is depicted on the following three figures. The first two (Fig. 4, Fig. 5) show the
propagation from the first and the second camera, respectively. The final situation is shown on the
third figure (Fig. 6).

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3}

A 2

Xu{4}

A 3

A 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

4 2

m{1,4}

4 3

4 4

m{1,5}

1 1

m{2,3}

3 3

3 4

m{2,4}

1 3

3 4

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}

img:1
1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

A2

3 4

5

img:4

1 2

A3

A4

5

img:5
1AB

Fig. 4: Correspondence propagation from the first camera. The used and later removed correspondences are
emphasised in gray, while the new correspondences are emphasised in yellow.

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

B 4

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

m{1,4} m{1,5}

1 1

m{2,3}

3 3

3 4

m{2,4}

4 5

1 3

3 4

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}

img:1
1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

A2

B3 B4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 5: Correspondence propagation from the first camera. The same colours as in the previous figure.

5

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

B 4

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

A2

B3 B4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 6: Correspondences propagated. Tentative scene-to-image correspondences are marked green. Recall that
confirmed scene-to-image correspondences are marked red.

6

2.2.4 Attaching New Camera into the Cluster

A camera, not already in the cluster, but with a sufficient number of tentative scene-to-image corre-
spondences, is selected. The camera is reconstructed (e.g. RANSAC with P3P) from these correspon-
dences. Scene-to-image correspondence inliers are confirmed, outliers are removed.

% list of cameras with tentative scene-to-image correspondences
ig = corresp_get_green_cameras(corresp);
% counts of tentative correspondences in each ‘green’ camera
Xucount = corresp_get_Xucount(corresp, ig);
i = 3; % select the camera to be attached, based e.g. on the Xucount
Xu = corresp_get_Xu(corresp, i); % get scene-to-image correspondences

Obtain the i-th camera pose (R, t) and a set of inliers using the scene-to-image correspondences in Xu.

xinl = [1 2]; % obtained inliers – indices to Xu{i}
corresp = corresp_join_camera(corresp, i, xinl);

This step is depicted in the next two figures. The first one (Fig. 7) emphasises inliers and outliers,
the second one (Fig. 8) shows the final state. Note that inliers in Xu{3} become confirmed (red).

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

B 4

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

A2

B3 B4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 7: Attaching a new camera. Scene-to-image correspondence inliers and outliers are emphasised yellow and
gray, respectively.

2.2.5 Propagation of Tentative Scene-to-Image Correspondences (2)

Again, the newly confirmed scene-to-image correspondences in the attached camera are now propa-
gated into tentative scene-to-image correspondences in the other cameras, by the same algorithm as
in the previous propagation. The propagation can lead outside as well as inside the cluster, in this
case.

This step is done automatically by the corresp_join_camera function.

The step is again shown in the following two figures. The first one (Fig. 9 shows the propagation,
emphasising new and used-and-removed correspondences. The final situation is shown in the second
figure (Fig. 10). Note that tentative scene-to-image correspondence (green) emerge in the camera 1
inside the cluster.

7

Xu{1}

A 4

B 3

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 8: New camera attached.

Xu{1}

A 4

B 3

A 7

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

7 2

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 9: Correspondence propagation from the attached camera. Used and removed correspondences are em-
phasised gray, new correspondences are emphasised yellow.

2.2.6 Reconstructing New Points

Remaining image-to-image correspondences between the attached camera and the other cameras in
the cluster are verified, inliers are used to create new scene points and confirmed scene-to-image
correspondences. Then all these image-to-image correspondences are removed.

8

Xu{1}

A 4

B 3

A 7

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5} img:1
1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
1AB

Fig. 10: Correspondences propagated from the attached camera (red for confirmed, green for tentative).

% i = 3; already set
ilist = corresp_get_cneighbours(corresp, i); % List of cameras in the cluster that are re-
lated to the attached camera by some image-to-image correspondences.

ic = 1; % a camera in the neighbourhood (must be iterated through ilist).
m = corresp_get_m(corresp, i, ic); % get remaining image-to-image correspondences

Reconstruct new scene points using the cameras i and ic and image-to-image correspondences m. Sets
of inliers and new scene points’ IDs are obtained.

inl = [1]; % Obtained inliers–indices to m

xid = [’C’]; % scene points’ IDs
corresp = corresp_new_x(corresp, i, ic, inl, xid);

The step is demonstrated on the following two images. The first one (Fig. 11) emphasises the inliers
and new scene-to-image correspondences, the second one (Fig. 12) shows the final state.

2.2.7 Propagation of Tentative Scene-to-Image Correspondences (3)

Again, the new confirmed scene-to-image correspondences are now propagated, done automatically by
the corresp_new_x function. See Fig. 13, Fig. 14, and Fig. 15.

9

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3}

1 1

6 1

m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
1AB

C

Fig. 11: Reconstructing new points from inlier image-to-image correspondences (emphasised yellow) between
the attached camera and the cluster. The new (confirmed) scene-to-image correspondences are emphasised
yellow.

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

Xu{5}

m{1,2} m{1,3} m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
1AB

C

Fig. 12: New points reconstructed.

10

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

1 1

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

1 3

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

A3

AB4

5

img:5
C1AB

C

Fig. 13: Propagation of new confirmed scene-to-image correspondences.

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

C 3

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

5 5

1 3

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

AC3

AB4

5

img:5
C1AB

C

Fig. 14: Propagation of new confirmed scene-to-image correspondences.

11

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

C 3

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

AC3

AB4

5

img:5
C1AB

C

Fig. 15: New confirmed scene-to-image correspondences propagated.

12

2.2.8 Verification of Tentative Scene-to-Image Correspondences in the Cluster.

During the previous propagations, some tentative scene-to-image correspondences can emerge also in
the cameras already selected in the cluster. These must be geometrically verified. The good ones are
turned into the confirmed state, the others are removed. Fig. 16.

ilist = corresp_get_selected_cameras(corresp); % list of all cameras in the cluster

ic = 1; % a camera in the cluster (must be iterated through ilist).
[Xu Xu_verified] = corresp_get_Xu(corresp, ic);
Xu_tentative = find(~Xu_verified);

Verify (by reprojection error) scene-to-image correspondences in Xu_tentative. A subset of good
points is obtained.

corr_ok = []; % The subset of good points—there is no one here.
corresp = corresp_verify_x(corresp, ic, corr_ok);

Xu{1}

A 4

B 3

A 7

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

C 3

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

A7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

AC3

AB4

5

img:5
C1AB

C

Fig. 16: Verification in the cluster. Tentative scene-to-image correspondences between the scene and the cluster
are removed (emphasised gray).

2.2.9 Propagation of Tentative scene-to-image Correspondences (4)

The newly verified scene-to-image correspondences must be propagated. Note that since there are
no image-to-image correspondences inside the camera cluster, the propagation affects only cameras
outside the set. Done automatically by the corresp_verify_x function.

There are none in the example now.

2.2.10 Finalize New Camera

After all new points are reconstructed and verification is done, the new camera is finalised. This
step mainly checks for data consistency. At this moment, there must be no tentative scene-to-image
correspondences leading to the cluster and no image-to-image correspondences inside the cluster.

corresp = corresp_finalize_camera(corresp);

13

2.2.11 Repeat Attaching the Camera

Repeat Step 4 while there exists a camera outside the cluster with sufficient number of tentative
scene-to-image correspondences.

corresp = corresp_join_camera(corresp, 4, [3]);

The attaching is shown in Fig. 17. No effect of propagation is in the example here.

Xu{1}

A 4

B 3

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

Xu{4}

A 3

A 4

B 4

C 3

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

C1

A2

B3 4

5

img:4

1 2

AC3

AB4

5

img:5
C1AB

C

Fig. 17: Attaching the next camera.

After attaching the camera, new points are created (Fig. 18), and propagated (Fig. 19).

corresp = corresp_new_x(corresp, 3, 4, [1], [’D’]);

Xu{1}

A 4

B 3

C 1

Xu{2}

A 1

B 3

Xu{3}

A 2

B 3

C 1

D 5

Xu{4}

B 4

D 5

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4}

5 5

m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

7

img:2

A12

B3

4

img:3

C1

A2

B3 4

D5

img:4

1 2

3

B4

D5

img:5
C1AB

C

D

Fig. 18: Reconstruction of new points.

Some correspondences propagate into the cluster and are verified and turned into the confirmed state
(Fig. 20).

corresp = corresp_verify_x(corresp, 2, [3]);

14

Xu{1}

A 4

B 3

C 1

Xu{2}

A 1

B 3

D 4

Xu{3}

A 2

B 3

C 1

D 5

Xu{4}

B 4

D 5

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4}

4 5

m{2,5}

m{3,4} m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

7

img:2

A12

B3

D4

img:3

C1

A2

B3 4

D5

img:4

1 2

3

B4

D5

img:5
C1AB

C

D

Fig. 19: Propagation of new scene-to-image correspondences.

Xu{1}

A 4

B 3

C 1

Xu{2}

A 1

B 3

D 4

Xu{3}

A 2

B 3

C 1

D 5

Xu{4}

B 4

D 5

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4} m{2,5}

m{3,4} m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

7

img:2

A12

B3

D4

img:3

C1

A2

B3 4

D5

img:4

1 2

3

B4

D5

img:5
C1AB

C

D

Fig. 20: Verification of tentative scene-to-image correspondences in the cluster.

Attaching of the last camera is now finalised.

corresp = corresp_finalize_camera(corresp);

Let us assume, that it is not possible to attach camera 5. So the final state is in Fig. 21

15

Xu{1}

A 4

B 3

C 1

Xu{2}

A 1

B 3

D 4

Xu{3}

A 2

B 3

C 1

D 5

Xu{4}

B 4

D 5

Xu{5}

C 1

m{1,2} m{1,3} m{1,4} m{1,5}

m{2,3} m{2,4} m{2,5}

m{3,4} m{3,5}

m{4,5}
img:1

C1

2B3

A4

5

6

7

img:2

A12

B3

D4

img:3

C1

A2

B3 4

D5

img:4

1 2

3

B4

D5

img:5
C1AB

C

D

Fig. 21: Final state of correspondence manipulation. There is a camera cluster and a point cloud, and these
two are related with confirmed scene-to-image correspondences.

16

