
3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

phone ext. 7203

rev. January 12, 2016

Open Informatics Master’s Course

https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/
h
http://cmp.felk.cvut.cz
h
mailto:sara@cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

Part II

Perspective Camera

2.1 Basic Entities: Points, Lines

2.2 Homography: Mapping Acting on Points and Lines

2.3 Canonical Perspective Camera

2.4 Changing the Outer and Inner Reference Frames

2.5 Projection Matrix Decomposition

2.6 Anatomy of Linear Perspective Camera

2.7 Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

3D Computer Vision: II. Perspective Camera (p. 15/186) R. Šára, CMP; rev. 12–Jan–2016

IBasic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, ϕ

• associated vector representations

m =

[
u
v

]
= [u, v]>, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn,1

• associated homogeneous representations

m = [m1,m2,m3]>, X = [x1, x2, x3, x4]>, n

‘in-line’ forms: m = (m1,m2,m3), X = (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm,n, linear map of a Rn,1 vector is y = Qx

3D Computer Vision: II. Perspective Camera (p. 16/186) R. Šára, CMP; rev. 12–Jan–2016

IImage Line

finite line in the plane a u+ b v + c = 0

corresponds to a (homogeneous) vector n ' (a, b, c)

and there is an equivalence class for λ ∈ R, λ 6= 0 (λa, λb, λc) ' (a, b, c)

’Finite’ lines
• standard representative for finite n = (n1, n2, n3) is λn, where λ = 111√

n2
1+n2

2

assuming n2
1 + n2

2 6= 0; 111 is the unit, usually 111 = 1

’Infinite’ lines
• we augment the set of lines for a special entity called the Ideal Line (line at infinity)

n∞ ' (0, 0, 1) (standard representative)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2

a set of rays →20

• lines at infinity are a proper member of P2

• I may sometimes wrongly use = instead of ', if you are in doubt, ask me

3D Computer Vision: II. Perspective Camera (p. 17/186) R. Šára, CMP; rev. 12–Jan–2016

IImage Point

Finite point m = (u, v) is incident on a finite line n = (a, b, c) iff this works both ways!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m>n = 0

’Finite’ points

• a finite point is also represented by a homogeneous vector m' (u, v,111)

• the equivalence class for λ ∈ R, λ 6= 0 is (m1, m2, m3) = λm'm

• the standard representative for finite point m is λm, where λ = 111
m3

assuming m3 6= 0

• when 111 = 1 then units are pixels and λm = (u, v, 1)

• when 111 = f then all components have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

’Infinite’ points

• we augment for Ideal Points (points at infinity) m∞ ' (m1,m2, 0)
proper members of P2

• all such points lie on the ideal line (line at infinity) n∞ ' (0, 0, 1), i.e. m>∞ n∞ = 0

3D Computer Vision: II. Perspective Camera (p. 18/186) R. Šára, CMP; rev. 12–Jan–2016

ILine Intersection and Point Join

The point of intersection m of image lines n and n′, n 6' n′ is

m' n× n′

n′

n

m

proof: If m = n× n′ is the intersection point, it
must be incident on both lines. Indeed, using a
known equivalence from vector algebra

n> (n× n′)︸ ︷︷ ︸
m

≡ n′> (n× n′)︸ ︷︷ ︸
m

≡ 0

The join n of two image points m and m′, m 6' m′ is

n'm×m′

Paralel lines intersect at the line at infinity n∞ ' (0, 0, 1)

a u+ b v + c = 0,

a u+ b v + d = 0, d 6= c

(a, b, c)× (a, b, d) ' (b,−a, 0)

• all such intersections lie on n∞

• line at infinity represents a set of directions in the plane

• Matlab: m = cross(n, n prime);

3D Computer Vision: II. Perspective Camera (p. 19/186) R. Šára, CMP; rev. 12–Jan–2016

IHomography

x1

x2
(0, 0, 0)

elements of P2

λx2

x3

a plane selecting
the representatives

R3

Projective plane P2: Vector space of dimension 3
excluding the zero vector, R3 \ (0, 0, 0), factorized
to linear equivalence classes (‘rays’)

including ‘points at infinity’

Homography: Non-singular linear mapping in P2

x′ ' Hx, H ∈ R3,3 non-singular

defining properties
• collinear image points are mapped to collinear image points

lines of points are mapped to lines of points

• concurrent image lines are mapped to concurrent image lines
concurrent = intersecting at a point

• and point-line incidence is preserved
e.g. line intersection points mapped to line intersection points

• homogeneous matrix representant: det H = 1

• what we call homography here is often called ‘projective collineation’ in mathematics

3D Computer Vision: II. Perspective Camera (p. 20/186) R. Šára, CMP; rev. 12–Jan–2016

IMapping Points and Lines by Homography

H−⊤

H

m′ ' Hm image point

n′ ' H−>n image line H−> = (H−1)> = (H>)−1

• incidence is preserved: (m′)>n′ 'm>H>H−>n = m>n = 0

1. H is a 3× 3 matrix

2. homography has 8 DOF; it is given by 4 correspondences (points, lines) in a general position

3. extending pixel coordinates to homogeneous coordinates m = (u, v,111)

4. mapping by homography, eg. m′ = H m

5. conversion of the result m′ = (m′1,m
′
2,m

′
3) to canonical coordinates (pixels):

u′ =
m′1
m′3

111, v′ =
m′2
m′3

111

6. can use the unity for the homogeneous coordinate on one side of the equation only!

3D Computer Vision: II. Perspective Camera (p. 21/186) R. Šára, CMP; rev. 12–Jan–2016

Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →121 (homography estimation)

H ' KR>K−1
from image to facade

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ' K

(
R− tn>

d

)
K−1

[H&Z, p. 327]

3D Computer Vision: II. Perspective Camera (p. 22/186) R. Šára, CMP; rev. 12–Jan–2016

Elementary Decomposition of a Homography

Unique decompositions: H = HS HAHP (= H′P H′AH′S)

HS =

[
sR t

0> 1

]
similarity

HA =

[
K 0

0> 1

]
special affine

HP =

[
I 0

v> w

]
special projective

K – upper triangular matrix with positive diagonal entries

R – orthogonal, R>R = I, detR = 1

s, w ∈ R, s > 0, w 6= 0

H =

[
sRK + t v> w t

v> w

]

• must use ‘thin’ QR decomposition, which is unique [Golub & van Loan 2013, Sec. 5.2.6]

• HS , HA, HP are homography subgroups

(eg. K = K1K2, K−1, I are all upper triangular with unit determinant, associativity holds)

3D Computer Vision: II. Perspective Camera (p. 23/186) R. Šára, CMP; rev. 12–Jan–2016

IHomography Subgroups: Euclidean Mapping

• Euclidean mapping: rotation, translation
and their combination

H =

cosφ − sinφ tx
sinφ cosφ ty

0 0 1


• eigenvalues

(
1, e−iφ, eiφ

)

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

u

v

rotation by 30◦, then translation by (7, 2)
1. det H = 1 . . . areas are preserved

2. Let x′i = Hxi (check we can use = instead of '). Let (xi)3 = 1, Then

‖x′2 − x′1‖ = ‖Hx2 −Hx1‖ = ‖H(x2 − x1)‖ = · · · = ‖x2 − x1‖
and lengths are preserved

3. angles are preserved

• eigenvectors when φ 6= kπ, k = 0, 1, . . . (columnwise)

e1 '

tx + ty cot φ
2

ty − tx cot φ
2

2

 , e2 '

i1
0

 , e3 '

−i1
0

 e2, e3 circular points

4. points at infinity (i, 1, 0), (−i, 1, 0) : circular points; are preserved (by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)

3D Computer Vision: II. Perspective Camera (p. 24/186) R. Šára, CMP; rev. 12–Jan–2016

IHomography Subgroups: Affine Mapping

H =

a11 a12 tx
a21 a22 ty
0 0 1



−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5

u

v

rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

preserves
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints)
• convex hull
• line at infinity n∞ (not pointwise) H>n∞ ' n∞ ⇒ n∞ ' H−>n∞

does not preserve
• lengths
• angles
• areas
• circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

3D Computer Vision: II. Perspective Camera (p. 25/186) R. Šára, CMP; rev. 12–Jan–2016

IHomography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33


preserves only

• incidence and concurrency
• collinearity
• cross-ratio on the line see later

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors

(midpoints, etc.)
• convex hull
• line at infinity n∞

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

H =

7 −0.5 6
3 1 3
1 0 1


line n = (1, 0, 1) is mapped to n∞: H−>n' n∞

(which line is it in the picture?)

3D Computer Vision: II. Perspective Camera (p. 26/186) R. Šára, CMP; rev. 12–Jan–2016

ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

1. in this picture we are looking ‘down the street’

2. right-handed canonical coordinate system
(x, y, z)

3. origin = center of projection C

4. image plane π at unit distance from C

5. optical axis O is perpendicular to π

6. principal point xp: intersection of O and π

7. perspective camera is given by C and π

y–z plane

y

y′

π

C
O

z − 11

X

y

projected point in the natural image
coordinate system:

y′

1
= y′ =

y

1 + z − 1
=
y

z
, x′ =

x

z

3D Computer Vision: II. Perspective Camera (p. 27/186) R. Šára, CMP; rev. 12–Jan–2016

INatural and Canonical Image Coordinate Systems

projected point in canonical camera

(x′, y′, 1) =
(x
z
,
y

z
, 1
)

=
1

z
(x, y, z) '

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0

·


x
y
z
1

 = P0 X

projected point in scanned image (scale by f and translate the coordinate system)

xp = (u0; v0) (u; v)
(0; 0) uv

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0

z

 '
f 0 u0

0 f v0

0 0 1

·
1 0 0 0

0 1 0 0
0 0 1 0

·

x
y
z
1

 = KP0 X = PX

• ‘calibration’ matrix K transforms canonical camera P0 to standard projective camera P

3D Computer Vision: II. Perspective Camera (p. 28/186) R. Šára, CMP; rev. 12–Jan–2016

IComputing with Perspective Camera Projection Matrix

m =

m1

m2

m3

 =

f 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
1

 '
fx+ u0z
fy + v0z

z

 '

x+ z
f
u0

y + z
f
v0

z
f


︸ ︷︷ ︸

(a)

m1

m3
=
f x

z
+ u0 = u,

m2

m3
=
f y

z
+ v0 = v when m3 6= 0

f – ‘focal length’ – converts length ratios to pixels, [f] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f , see (a)
for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π i.e. points with z = 0

3D Computer Vision: II. Perspective Camera (p. 29/186) R. Šára, CMP; rev. 12–Jan–2016

IChanging The Outer (World) Reference Frame

A transformation of a point from the world to camera
coordinate system:

Xc = RXw + t

R; tFw F

world

cam

R – camera rotation matrix world orientation in the camera coordinate frame

t – camera translation vector world origin in the camera coordinate frame

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= KP0

[
R t

0> 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 selects the first 3 rows of T and discards the last row

• R is rotation, R>R = I, det R = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame t = −RC
r>3 – optical axis in the world reference frame third row of R: r3 = R−1[0, 0, 1]>

• we can save some conversion and computation by noting that KR
[
I −C

]
X = KR(X−C)

3D Computer Vision: II. Perspective Camera (p. 30/186) R. Šára, CMP; rev. 12–Jan–2016

IChanging the Inner (Image) Reference Frame

The general form of calibration matrix K includes
• skew angle θ of the digitization raster
• pixel aspect ratio a

1av u (u0; v0)� K =

f −f cot θ u0

0 f/(a sin θ) v0

0 0 1


units: [f] = px, [u0] = px, [v0] = px, [a] = 1

~ H1; 2pt: Verify this K. Hints: express point x as
x = u′eu′ + v′ev′ = ueu + vev , eu, ev etc. are basis vectors, K
maps from an orthogonal system to a skewed system
[w′u′, w′v′, w′]> = K[u, v, 1]>; map first by skew then by
sampling scale then shift by u0, v0 deadline LD+2 wk

general finite perspective camera has 11 parameters:
• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: det K 6= 0

• 6 extrinsic parameters: t, R(α, β, γ)

m' PX, P =
[
Q q

]
= K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

Representation Theorem: The set of projection matrices P of finite projective cameras is isomorphic
to the set of homogeneous 3× 4 matrices with the left hand 3× 3 submatrix Q non-singular.

random finite camera: Q=rand(3,3); while det(Q)==0, Q=rand(3,3); end, P=[Q, rand(3,1)];3D Computer Vision: II. Perspective Camera (p. 31/186) R. Šára, CMP; rev. 12–Jan–2016

IProjection Matrix Decomposition

P =
[
Q q

]
−→ KR

[
I −C

]
= K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective camera)

K ∈ R3,3 upper triangular with positive diagonal entries
R ∈ R3,3 rotation: R

>
R = I and detR = +1

1.
[
Q q

]
= Q

[
I Q−1q

]
= KR

[
I −C

]
= K

[
R −RC

]
= K

[
R t

]
also →34

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−1

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g.

R32 =

1 0 0
0 c −s
0 s c

 gives
c2 + s2 = 1

0 = k32 = c q32 + s q33
⇒ c =

q33√
q2
32 + q2

33

s =
−q32√
q2
32 + q2

33

~ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive

‘thin’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

3D Computer Vision: II. Perspective Camera (p. 32/186) R. Šára, CMP; rev. 12–Jan–2016

RQ Decomposition Step

Q = Array [q #1 ,#2 & , { 3 , 3 }] ;

R32 = { { 1 , 0 , 0 } , { 0 , c , - s } , { 0 , s , c } } ; R32 // MatrixForm

1 0 0

0 c - s

0 s c

Q1 = Q . R32 ; Q1 // MatrixForm

q 1,1 c q 1,2 + s q 1,3 - s q 1,2 + c q 1,3

q 2,1 c q 2,2 + s q 2,3 - s q 2,2 + c q 2,3

q 3,1 c q 3,2 + s q 3,3 - s q 3,2 + c q 3,3

s1 = Solve [{ Q1 [[3]] [[2]] ⩵ 0 , c ^ 2 + s ^ 2 ⩵ 1 } , { c , s }] [[2]]

 c →

q 3,3

q 3,2
2

+ q 3,3
2

, s → -

q 3,2

q 3,2
2

+ q 3,3
2



Q1 /. s1 // Simplify // MatrixForm

q 1,1

-q1,3 q3,2 +q1,2 q3,3

q3,2
2

+q3,3
2

q1,2 q3,2 +q1,3 q3,3

q3,2
2

+q3,3
2

q 2,1

-q2,3 q3,2 +q2,2 q3,3

q3,2
2

+q3,3
2

q2,2 q3,2 +q2,3 q3,3

q3,2
2

+q3,3
2

q 3,1 0 q 3,2
2

+ q 3,3
2

3D Computer Vision: II. Perspective Camera (p. 33/186) R. Šára, CMP; rev. 12–Jan–2016

ICenter of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let there be B 6= 0 s.t. PB = 0. Then B is equal to the projection center C (in world
coordinate frame).

Proof.

1. Consider spatial line AB (B is given). We can write

X(λ) ' A + λB, λ ∈ R B?

B = C?

A X(λ)

2. it images to
PX(λ) ' P A + λP B = P A

• the whole line images to a single point ⇒ it must pass through the optical center of P

• this holds for all choices of A ⇒ the only common point of the lines is the C, i.e. B' C ut
Hence

0 = PC =
[
Q q

] [C
1

]
= QC + q ⇒ C = −Q−1q

C = (cj), where cj = (−1)j det P(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;

3D Computer Vision: II. Perspective Camera (p. 34/186) R. Šára, CMP; rev. 12–Jan–2016

IOptical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line
d unit line direction vector, ‖d‖ = 1, λ ∈ R, Cartesian representation

X = C + λd

2. the image of the (finite) point X is

m'
[
Q q

] [X
1

]
= Q(C + λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is

X = C + (λQ)−1m, λ ∈ R

Cd
X � m

• optical ray may be represented by a point at infinity (d, 0) in P3

3D Computer Vision: II. Perspective Camera (p. 35/186) R. Šára, CMP; rev. 12–Jan–2016

IOptical Axis

Optical axis: The line through C that is perpendicular to image plane π

1. a line parallel to π images to line at infinity in π:uv
0

 ' PX =

q>1 q14

q>2 q24

q>3 q34

[X
1

]

2. therefore the set of points X is parallel to π iff

q>3 X + q34 = 0

3. this is a plane with ±q3 as the normal vector

o XC�
4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]

3D Computer Vision: II. Perspective Camera (p. 36/186) R. Šára, CMP; rev. 12–Jan–2016

IPrincipal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, q3 is the directional vector of optical axis

2. we take point at infinity on the optical axis that must
project to principal point m0

3. then

m0 '
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ' Qq3

• principal point is also the center of radial distortion (see →??)

3D Computer Vision: II. Perspective Camera (p. 37/186) R. Šára, CMP; rev. 12–Jan–2016

IOptical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d = Q−1m

optical ray given by m′ d′ = Q−1m′

p = d× d′ = (Q−1m)× (Q−1m′) = Q>(m×m′) = Q>n

• note the way Q factors out!

hence, 0 = p>(X−C) = n>Q(X−C) = n>PX = (P>n)>X for every X in plane ρ
see →30

optical plane is given by n: ρ ' P>n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0

3D Computer Vision: II. Perspective Camera (p. 38/186) R. Šára, CMP; rev. 12–Jan–2016

Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q>n

optical plane normal given by n′ p′ = Q>n′

d = p× p′ = (Q>n)× (Q>n′) = Q−1(n× n′) = Q−1m

3D Computer Vision: II. Perspective Camera (p. 39/186) R. Šára, CMP; rev. 12–Jan–2016

ISummary: Optical Center, Ray, Axis, Plane

General finite camera

P =
[
Q q

]
=

q
>
1 q14

q>2 q24

q>3 q34

 = K
[
R t

]
= KR

[
I −C

]

C' rnull(P) optical center (world coords.)

d = Q−1 m optical ray direction (world coords.)

det(Q)q3 outward optical axis (world coords.)

Qq3 principal point (in image plane)

ρ = P> n optical plane (world coords.)

K =

f −f cot θ u0

0 f/(a sin θ) v0

0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels)

R camera rotation matrix (cam coords.)

t camera translation vector (cam coords.)

3D Computer Vision: II. Perspective Camera (p. 40/186) R. Šára, CMP; rev. 12–Jan–2016

What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine?

distance between sleepers (ties) 0.806m but we cannot count them, resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .

3D Computer Vision: II. Perspective Camera (p. 41/186) R. Šára, CMP; rev. 12–Jan–2016

IVanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line
infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ' lim
λ→±∞

P

[
X0 + λd

1

]
= · · · = Qd ~ P1; 1pt: Derive or prove

• V.P. is independent on line position, it depends on its orientation only
all parallel lines have the same V.P.

• the image of the V.P. of a spatial line with direction vector d is m = Qd

• V.P. m corresponds to spatial direction d = Q−1m optical ray through m

• V.P. is the image of a point at infinity on any line, not just the optical ray as on →35

3D Computer Vision: II. Perspective Camera (p. 42/186) R. Šára, CMP; rev. 12–Jan–2016

Some Vanishing Point Applications

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!

3D Computer Vision: II. Perspective Camera (p. 43/186) R. Šára, CMP; rev. 12–Jan–2016

IVanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane

and in all parallel planesv1 n | plane normal

m | line orientation ve
tor
v2

• V.L. n corresponds to space plane of normal vector p = Q>n
because this is the normal vector of a parallel optical plane (!) →38

• a space plane of normal vector p has a V.L. represented by n = Q−>p.

3D Computer Vision: II. Perspective Camera (p. 44/186) R. Šára, CMP; rev. 12–Jan–2016

ICross Ratio

Four distinct collinear space points R,S, T, U define cross-ratio

[RSTU] =
|
−→
RT |
|
−→
UR|

|
−→
SU |
|
−→
TS|

a mnemonic

R S T U

|
−→
RT | – signed distance from R to T

(w.r.t. a fixed line orientation)

[SRUT] = [RSTU], [RSUT] =
1

[RSTU]
, [RTSU] = 1− [RSTU] �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU] =

∣∣r t v
∣∣∣∣r u v
∣∣ ·
∣∣s u v

∣∣∣∣s t v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)>v (1)

Corollaries:
• cross ratio is invariant under homographies x′ ' Hx plug Hx in (1): (H−>(r× t))>Hv

• cross ratio is invariant under perspective projection: [RSTU] = [r s t u]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images

• we measure the same cross-ratio in image as on the world line

• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞∞ = 1)

3D Computer Vision: II. Perspective Camera (p. 45/186) R. Šára, CMP; rev. 12–Jan–2016

I1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P] = [P∞ P0 PI P] = [p∞ p0 pI p] =
|−−→p0 p|
|−−→pI p0|

|−−−→p∞ pI |
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

PI – the unit point [PI] = 1

P∞ – the supporting point [P∞] = ±∞

[P] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

the mnemonic now is ‘∞’

p∞p0 pI p

p0

pI

p∞

n′n

p

N ′‖N in 3D

Applications
• Given the image of a 3D line N , the origin, the unit point, and the vanishing point,

then the Euclidean coordinate of any point P ∈ N can be determined →47

• Finding v.p. of a line through a regular object →48

3D Computer Vision: II. Perspective Camera (p. 46/186) R. Šára, CMP; rev. 12–Jan–2016

Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps) 4Mpx camera

3D Computer Vision: II. Perspective Camera (p. 47/186) R. Šára, CMP; rev. 12–Jan–2016

Application: Finding the Horizon from Repetitionsp0 pI p
p1 P

P0 PI
in 3D: |P0P | = 2|P0PI | then [H&Z, p. 218]~ P1; 1pt: How high is the camera above the floor?

[P∞P0PIP] =
|P0P |
|P0PI |

= 2 ⇒ |p∞p0| =
|p0pI | · |p0p|
|p0p| − 2|p0pI |

• could be applied to counting steps (→47)

3D Computer Vision: II. Perspective Camera (p. 48/186) R. Šára, CMP; rev. 12–Jan–2016

Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2 weeks

B

A

tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. what are the properties of line h connecting the top of Buiding B tB with the point m at which the
horizon is intersected with the line p joining the foots fA, fB of both buildings? [1 point]

2. how do we actually get the horizon n∞? (we do not see it directly, there are hills there) [1 point]

3. what tool measures the length ratio? [formula = 1 point]

3D Computer Vision: II. Perspective Camera (p. 49/186) R. Šára, CMP; rev. 12–Jan–2016

2D Projective Coordinates

V.P.

locate on the plane

pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 pxI px px∞

pI

p

py∞

py

pyI

[Px] = [Px∞ P0 PxI Px] [Py] = [Py∞ P0 PyI Py]

3D Computer Vision: II. Perspective Camera (p. 50/186) R. Šára, CMP; rev. 12–Jan–2016

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

3D Computer Vision: II. Perspective Camera (p. 51/186) R. Šára, CMP; rev. 12–Jan–2016

Part III

Computing with a Single Camera

3.1 Calibration: Internal Camera Parameters from Vanishing Points and Lines

3.2 Camera Resection: Projection Matrix from 6 Known Points

3.3 Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]

3D Computer Vision: III. Computing with a Single Camera (p. 52/186) R. Šára, CMP; rev. 12–Jan–2016

Obtaining Vanishing Points and Lines

• orthogonal direction pairs can be collected from more images by camera rotation

• vanishing line can be obtained without vanishing points (→48)

3D Computer Vision: III. Computing with a Single Camera (p. 53/186) R. Šára, CMP; rev. 12–Jan–2016

ICamera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1
di = Q−1vi, i = 1, 2, 3 →42

pij = Q>nij , i, j = 1, 2, 3, i 6= j →38
(2)

• naive method: solve linear eqs. (2)

Constraints

1. orthogonal rays d1 ⊥ d2 in space then

0 = d>1 d2 = v>1 Q−>Q−1v2 = v>1 (KK>)−1︸ ︷︷ ︸
ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p>ijpik = n>ij QQ>nik = n>ij ω
−1nik

3. orthogonal ray and plane dk ‖ pij , k 6= i, j normal parallel to optical ray

pij ' dk ⇒ Q>nij = λQ−1vk ⇒ nij = λQ−>Q−1vk = λω vk, λ 6= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio

• ω is a symmetric, positive definite 3× 3 matrix IAC = Image of Absolute Conic

3D Computer Vision: III. Computing with a Single Camera (p. 54/186) R. Šára, CMP; rev. 12–Jan–2016

Icont’d

condition equation # constraints

(3) orthogonal v.p. v>i ω vj = 0 1

(4) orthogonal v.l. n>ij ω
−1nik = 0 1

(5) v.p. orthogonal to v.l. nij = λω vk 2

(6) orthogonal raster θ = π/2 ω12 = ω21 = 0 1

(7) unit aspect a = 1 when θ = π/2 ω11 − ω22 = 0 1

(8) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• these are homogeneous linear equations for the 5 parameters in ω in the form Dw = 0
λ can be eliminated from (5)

• we need at least 5 constraints for full ω symmetric 3× 3

• we get K from ω−1 = KK> by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in K

• unlike in the naive method solving (2), we can introduce constraints on K

3D Computer Vision: III. Computing with a Single Camera (p. 55/186) R. Šára, CMP; rev. 12–Jan–2016

Examples

Assuming orthogonal raster, unit aspect (ORUA): θ = π/2, a = 1

ω '

 1 0 −u0

0 1 −v0

−u0 −v0 f2 + u2
0 + v2

0


Ex 1:
Assuming ORUA and known m0 = (u0, v0), two finite orthogonal vanishing points give f

v>1 ω v2 = 0 ⇒ f2 =
∣∣(v1 −m0)>(v2 −m0)

∣∣
in this formula, vi, m0 are not homogeneous!

Ex 2:

Non-orthogonal vanishing points vi, vj , known angle φ: cosφ =
v>i ωvj√

v>i ωvi
√

v>j ωvj

• leads to polynomial equations

• e.g. ORUA and u0 = v0 = 0 gives

(f2 + v>i vj)
2 = (f2 + ‖vi‖2) · (f2 + ‖vj‖2) · cos2 φ

3D Computer Vision: III. Computing with a Single Camera (p. 56/186) R. Šára, CMP; rev. 12–Jan–2016

In[1]:= K � ��f, s, u�0��, �0, a � f, v�0��, �0, 0, 1��;

K �� MatrixForm

Out[2]//MatrixForm=

f s u�0�
0 a f v�0�
0 0 1

In[4]:= Ω � Inverse�K.Transpose�K�� � Det�K�^2;

Ω �� Simplify �� MatrixForm

Out[5]//MatrixForm=

a2 f2 �a f s a f ��a f u�0� � s v�0��
�a f s f2 � s2 a f s u�0� � �f2 � s2� v�0�

a f ��a f u�0� � s v�0�� a f s u�0� � �f2 � s2� v�0� a2 f2 �f2 � u�0�2� � 2 a f s u�0� v�0� � �f2 � s2� v�0�2

In[8]:= Ω � f^2 �. s � 0 �� Simplify �� MatrixForm

Out[8]//MatrixForm=

a2 0 �a2 u�0�
0 1 �v�0�

�a2 u�0� �v�0� a2 �f2 � u�0�2� � v�0�2

In[10]:= Ω �. �u�0� � 0, v�0� � 0� �� MatrixForm

Out[10]//MatrixForm=

a2 f2 �a f s 0

�a f s f2 � s2 0

0 0 a2 f4

In[17]:= Ω � f^2 �. �a � 1, s � 0� �� Simplify �� MatrixForm

Out[17]//MatrixForm=

1 0 �u�0�
0 1 �v�0�

�u�0� �v�0� f2 � u�0�2 � v�0�2

3D Computer Vision: III. Computing with a Single Camera (p. 57/186) R. Šára, CMP; rev. 12–Jan–2016

ICamera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal
directions d1, d2, compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ' Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ' wi

• knowing d1,2 we conclude that wi/‖wi‖
is the i-th column ri of R

• the third column is orthogonal:
r3 = r1 × r2

R =
[

w1
‖w1‖

w2
‖w2‖

w1×w2
‖w1×w2‖

]

.

v2
d2 d1 v1

some suitable scenes

3D Computer Vision: III. Computing with a Single Camera (p. 58/186) R. Šára, CMP; rev. 12–Jan–2016

Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m' KR
[
I −C

]
X m′ ' K

[
I −C

]
X

m′ ' K(KR)−1 m = KR>K−1 m = Hm

• H is the rectifying homography

• both K and R can be calibrated from two finite vanishing points assuming ORUA →56

• not possible when one (or both) of them are infinite

• without ORUA we would need 4 additional views as on →53

3D Computer Vision: III. Computing with a Single Camera (p. 59/186) R. Šára, CMP; rev. 12–Jan–2016

ICamera Resection

Camera calibration and orientation from a known set of k ≥ 6 reference points and their
images {(Xi,mi)}6i=1.

P

m̂i

mi

ei

Xi

• Xi are considered exact

• mi is a measurement subject to
detection error

mi = m̂i + ei Cartesian

• where m̂i ' PXi

3D Computer Vision: III. Computing with a Single Camera (p. 60/186) R. Šára, CMP; rev. 12–Jan–2016

Resection Targets

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

key1
2

3
4

8
7

6
5

−7,11

−8,10

−9,9

−5,11

−6,10

−7,9

−8,8

−3,11

−4,10

−5,9

−6,8

−7,7

−8,6

−9,5

−1,11

−2,10

−3,9

−4,8

−5,7

−6,6

−7,5

−8,4

1,11

0,10

−1,9

−2,8

−3,7

−4,6

−5,5

−6,4

−7,3

3,11

2,10

1,9

0,8

−1,7

−2,6

−3,5

−4,4

−5,3

3,9

2,8

1,7

0,6

−1,5

−2,4

−3,3

3,7

2,6

1,5

0,4

−1,3

3,5

2,4

1,3

4,4

3,3

−6,12 −4,12

−9,7

−2,12

−10,6

0,12 2,12

−6,2

4,10

−4,2

4,8

−2,2

4,6

0,2 2,2

−10,8

1,13

calibration chart automatic calibration point detection

z

• target translated at least once

• by a calibrated (known) translation

• Xi point locations looked up in a table
based on their code

resection target with translation stage

3D Computer Vision: III. Computing with a Single Camera (p. 61/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs
{

(Xi, mi)
}k
i=1

, find P

λimi = PXi, P =

 q>1 q14

q>2 q24

q>3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi 6= 0

easy to modify for infinite points Xi

expanded: λiui = q>1 Xi + q14, λivi = q>2 Xi + q24, λi = q>3 Xi + q34

after elimination of λi: (q>3 Xi + q34)ui = q>1 Xi + q14, (q>3 Xi + q34)vi = q>2 Xi + q24

Then

Aq =


X>1 1 0> 0 −u1X

>
1 −u1

0> 0 X>1 1 −v1X
>
1 −v1

...
...

X>k 1 0> 0 −ukX>k −uk
0> 0 X>k 1 −vkX>k −vk

·


q1

q14

q2

q24

q3

q34

 = 0 (9)

• we need 11 indepedent parameters for P

• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rank A = 12 and there is no non-trivial null space

• drop one row to get rank 11 matrix, then the basis vector of the null space of A gives q

3D Computer Vision: III. Computing with a Single Camera (p. 62/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in the 6 points?

Jack-knife estimation

1. n := 0

2. for i = 1, 2, . . . , 2k do
a) delete i-th row from A, this gives Ai

b) if dim null Ai > 1 continue with the next i
c) n := n+ 1
d) compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e) q̂i:= qi normalized by q11 and dimension-reduced assuming finite camera with P3,3 = 1

3. from all n vectors q̂i collected in Step 1d compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i−1

(q̂i − q)(q̂i − q)> regular for n ≥ 11

• have a solution + an error estimate, per individual elements of P

• at least 5 points must be in a general position (→64)

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7⇒ 364 draws

• better error estimation method: decompose Pi to Ki, Ri, ti (→32), represent Ri with 3 parameters
(e.g. Euler angles, or in Cayley representation →136) and compute the errors for the parameters

3D Computer Vision: III. Computing with a Single Camera (p. 63/186) R. Šára, CMP; rev. 12–Jan–2016

IDegenerate (Critical) Configurations for Camera Resection

Let X = {Xi; i = 1, . . .} be a set of points and P1 6' Pj be two regular (rank-3) cameras.
Then two configurations (P1,X) and (Pj ,X) are image-equivalent if

P1Xi ' PjXi for all Xi ∈ X
there is a non-trivial set of other cameras that see the same image{C1C2C1C

Case 4

• importantly: If all calibration points Xi ∈ X lie on a plane
κ then camera resection is non-unique and all
image-equivalent camera centers lie on a spatial line C
with the C∞ = κ ∩ C excluded

this also means we cannot resect if all Xi are infinite

• by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see
next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable homographies then P1 ' QP0T, where P0 is canonical and the

analysis can be made with P̂j ' Q−1Pj

P0 TXi︸ ︷︷ ︸
Yi

' P̂j TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y

3D Computer Vision: III. Computing with a Single Camera (p. 64/186) R. Šára, CMP; rev. 12–Jan–2016

cont’d (all cases)C C
Case 5 Case 6

• cameras C1, C2 co-located at point C
• points on three optical rays or one optical ray

and one optical plane

• Case 5: camera sees 3 isolated point images

• Case 6: cam. sees a line of points and an isolated pointC C1
C 01C1C2 {C1C2C1C

Case 3 Case 4

• cameras lie on a line C \ {C∞, C′∞}
• points lie on C and

1. on two lines meeting C at C∞, C′∞
2. or on a plane meeting C at C∞

• Case 3: camera sees 2 lines of points

Case 2

CC2
C1C1 • cameras lie on a planar conic C \ {C∞}

not necessarily an ellipse

• points lie on C and an additional line meeting the
conic at C∞

• Case 2: camera sees 2 lines of points

Case 1 CC1 C2 • cameras and points all lie on a twisted cubic C

• Case 1: camera sees a conic

3D Computer Vision: III. Computing with a Single Camera (p. 65/186) R. Šára, CMP; rev. 12–Jan–2016

IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{

(mi, Xi)
}3

i=1
, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (11)

3. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2
ij = z2

i + z2
j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

configuration w/o rotation in (11)

X3X1 v2
X2z1 v1 v3z2

C
d12

4. Solve system of 3 quadratic eqs in 3 unknowns zi [Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot be ignored

(verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi from (11) and R
from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

3D Computer Vision: III. Computing with a Single Camera (p. 66/186) R. Šára, CMP; rev. 12–Jan–2016

http://cmp.felk.cvut.cz/minimal/

Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3) camera sees a

lineX1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees a line

• additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. IJCV 1994]
3D Computer Vision: III. Computing with a Single Camera (p. 67/186) R. Šára, CMP; rev. 12–Jan–2016

IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, C 66

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 68/186) R. Šára, CMP; rev. 12–Jan–2016

Part IV

Computing with a Camera Pair

4.1 Camera Motions Inducing Epipolar Geometry

4.2 Estimating Fundamental Matrix from 7 Correspondences

4.3 Estimating Essential Matrix from 5 Correspondences

4.4 Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.

3D Computer Vision: IV. Computing with a Camera Pair (p. 69/186) R. Šára, CMP; rev. 12–Jan–2016

IGeometric Model of a Camera Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line in image πj induced
by mi in image πi

Epipolar constraint: d2, b, d1 are coplanar a necessary condition, see →82

3D Computer Vision: IV. Computing with a Camera Pair (p. 70/186) R. Šára, CMP; rev. 12–Jan–2016

Epipolar Geometry Example: Forward Motion

 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

 1
 2 3
 4 5

 6

 7 8 910111213
1415

1617

18

image 1 image 2

• red: correspondences click on the image to see their IDs

• green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

movement2 1 h=?
3D Computer Vision: IV. Computing with a Camera Pair (p. 71/186) R. Šára, CMP; rev. 12–Jan–2016

ICross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x>Ax = 0 for all x

3. [b]3× = −‖b‖2 · [b]×

4. ‖[b]×‖F =
√

2 ‖b‖ Frobenius norm (‖A‖2F =
∑
i,j |aij |

2)

5. [b]×b = 0

6. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×
7. eigenvalues of [b]× are (0, λ,−λ)

8. for any regular B: [Bz]×B = detB ·B−>[z]× follows from the factoring on →38

9. special case: if RR> = I then [Rb]×R = R [b]×

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography it is singular

3D Computer Vision: IV. Computing with a Camera Pair (p. 72/186) R. Šára, CMP; rev. 12–Jan–2016

IExpressing Epipolar Constraint Algebraically"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 Pi =

[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R
>
1

t21 – relative camera translation, t21 = t2 −R21t1 = −R2b

b – baseline (world coordinate system)

remember: C = −Q−1q = −R>t →32 and 34

0 = d>2 pε︸︷︷︸
normal of ε

' (Q−1
2 m2)>︸ ︷︷ ︸

optical ray

Q>1 l1︸ ︷︷ ︸
optical plane

= m>2 Q−>2 Q>1 (e1 ×m1)︸ ︷︷ ︸
image of ε in π2

= m>2
(
Q−>2 Q>1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m>2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ' Fm1

• point m1 is incident on epipolar line l1 ' F>m2

• Fe1 = F>e2 = 0 (non-trivially)

• all epipolars meet at the epipole

e1 ' Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
>
2 t21 = −K1R

>
21t21

F = Q−>2 Q>1 [e1]× = Q−>2 Q>1 [K1R1b]× =
~ 1· · · ' K−>2 [−t21]×R21K

−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21 = R21 [R1b]×︸ ︷︷ ︸
baseline in Cam 1

= R21[−R21t21]× essential

3D Computer Vision: IV. Computing with a Camera Pair (p. 73/186) R. Šára, CMP; rev. 12–Jan–2016

IKey Properties of the Fundamental Matrix

F = K−>2 [−t21]×R21︸ ︷︷ ︸
essential matrix E

K−1
1

1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)[
R′i t′i

]
=
[
Ri ti

]
·
[
R t

0> 1

]
=
[
RiR Rit + ti

]
,

then

R′21 = R′2R
′
1
>

= · · · = R21

t′21 = t′2 −R′21t
′
1 = · · · = t21

2. the translation length t21 is lost since E is homogeneous

3. F maps points to lines and it is not a homography

4. e2 × (e2 × Fm1) ' Fm1, in general F ' [e2]2a× F [e1]2b× for any a, b ∈ N

e2
e2

l2 ≃ Fm1e2 × Fm1 • by point/line transmutation (left)

• point e2 does not lie on line e2 (dashed): e>2 e2 6= 0

3D Computer Vision: IV. Computing with a Camera Pair (p. 74/186) R. Šára, CMP; rev. 12–Jan–2016

ISome Mappings by the Fundamental Matrix

�2�1 e2e1m1 l1 m2l2
Fm1

0 = m>2 Fm1

e1 ' null(F), e2 ' null(F>)

l2 = Fm1 l1 = F>m2

l2 = F[e1]×l1 l1 = F>[e2]×l2

m⊤
2 Fm1 = 0

Q−⊤
1 Q⊤

2 or F⊤[e2]×

m1 m2

l1l2

F⊤F

Q−⊤
2 Q⊤

1 or F [e1]×

• l2 ' F [e1]× l1: by ‘transmutation’ →74

• F[e1]× maps lines to lines but it is not a homography

• H−> = Q−>2 Q>1 is the epipolar homography
mapping epipolar lines to epipolar lines, hence

H = Q2Q−1
1 = K2R21K−1

1

you have seen this →59

3D Computer Vision: IV. Computing with a Camera Pair (p. 75/186) R. Šára, CMP; rev. 12–Jan–2016

IRepresentation Theorem for Fundamental Matrices

Theorem

Every 3× 3 matrix of rank 2 is a fundamental matrix.

Proof.
Converse: By the definition F = H[e1]× is a 3× 3 matrix of rank 2.

Direct:

1. let A = UDV> be the SVD of a 3× 3 matrix A of rank 2; then D = diag(λ1, λ2, 0)

2. we can write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 6= 0

3. then A = UBC WW>︸ ︷︷ ︸
I

V>

4. we look for rotation W that maps C to skew-symmetric S

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = [s]×, s = (0, 0, 1)

6. we can write

A = UB[s]×W>V> =
~ 1· · · = UB(VW)>︸ ︷︷ ︸

H−>

[v3]×, v3 – 3rd column of V (12)

7. H regular ⇒ A does the job of a fundamental matrix, with epipole v3 and epipolar
homography H−>

ut• we also got a (non-unique: λ3, α = ±1) decomposition formula for fundamental matrices

3D Computer Vision: IV. Computing with a Camera Pair (p. 76/186) R. Šára, CMP; rev. 12–Jan–2016

IRepresentation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV>. Then E is essential iff D ' diag(1, 1, 0).

Proof.
Direct:

If E is an essential matrix, then UB(VW)> in (12) must be orthogonal, hence B = λI.

Converse:

E is fundamental with D = λ diag(1, 1, 0) then we do not need B (as if B = λI) and
U(VW)> is orthogonal, as required.

ut

3D Computer Vision: IV. Computing with a Camera Pair (p. 77/186) R. Šára, CMP; rev. 12–Jan–2016

IEssential Matrix Decomposition

We are decomposing E to E = [−t21]×R21 = R21[−R>21t]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV> and verify D = λdiag(1, 1, 0)
2. if detU < 0 transform it to −U, do the same for V the overall sign is dropped

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V>, t21 = −β u3, |α| = 1, β 6= 0 (13)

Notes

• U(VW)>v3 = · · · = u3

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• change of sign in W rotates the solution by 180◦ about t

R1 = UWV>, R2 = UW>V> ⇒ T = R2R
>
1 = · · · = U diag(−1,−1, 1)U> which is

a rotation by 180◦ about u3 = t21:

U diag(−1,−1, 1)U
>
u3 = U

−1 0 0
0 −1 0
0 0 1

0
0
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation

3D Computer Vision: IV. Computing with a Camera Pair (p. 78/186) R. Šára, CMP; rev. 12–Jan–2016

IFour Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b
and W rotates about the baseline b. →73

b C2C1
C1 C2

α, β −α, β (twisted by W)

C1
C2

C1
C2

α, −β (baseline reversal) −α, −β (combination of both)

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]

3D Computer Vision: IV. Computing with a Camera Pair (p. 79/186) R. Šára, CMP; rev. 12–Jan–2016

I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (u1
i , v

1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

D =


u1

1u
2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v1

1v
2
1 v1

1 u2
1 v2

1 1
u1

2u
2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v1

2v
2
2 v1

2 u2
2 v2

2 1
u1

3u
2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v1

3v
2
3 v1

3 u2
3 v2

3 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1

kv
2
k v1

k u2
k v2

k 1

 D ∈ Rk,9

D vec(F) = 0, vec(F) =
[
f11 f21 f31 . . . f33

]>
, vec(F) ∈ R9,

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
• but we know that detF = 0, hence

1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for αi from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2 (check rankF = 2)

• the result may depend on image transformations
• normalization improves conditioning →87
• this gives a good starting point for the full algorithm →104
• dealing with mismatches need not be a part of the 7-point algorithm →105

3D Computer Vision: IV. Computing with a Camera Pair (p. 80/186) R. Šára, CMP; rev. 12–Jan–2016

IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide C1 = C2: H = K2R21K−1

1

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n>/d)K−1
1

• in both cases: epipolar geometry is not defined
• we do get an F from the 7-point algorithm but it is of the form of F = [s]×H with s

arbitrary (nonzero) note that [s]×H ' H′[s′]× →72

l

s

y ≃ Hx
• correspondence x↔ y

• y is the image of x: y ' Hx

• a necessary condition: y ∈ l, l' s×Hx arbitrary s

0 = y>(s×Hx) = y>[s]×Hx

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes

• estimation of E can deal with planes: [s]×H = [s]×(R21 − t21n>/d) has equal eigenvalues

iff s = t21, the decomposition works (nonunique, as before) ~ P1; 1pt for a proof

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• a stronger epipolar constraint could reject some configurations

3D Computer Vision: IV. Computing with a Camera Pair (p. 81/186) R. Šára, CMP; rev. 12–Jan–2016

A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

e2 ×m2 +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →105 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint

3D Computer Vision: IV. Computing with a Camera Pair (p. 82/186) R. Šára, CMP; rev. 12–Jan–2016

I5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. E – 8 numbers

2. R – 3DOF, t – we can recover 2DOF only, in total 5 DOF → we need 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

~ P1; 1pt: verify this equation from E = UDV>, D = λ diag(1, 1, 0)

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method,
2. this gives E = xE1 + yE2 + zE3 + E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→79) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

3D Computer Vision: IV. Computing with a Camera Pair (p. 83/186) R. Šára, CMP; rev. 12–Jan–2016

http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y

λ1 x = P1X , λ2 y = P2X , x =

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi1)>

(pi2)>

(pi3)>


Linear triangulation method

u1 (p1
3)>X = (p1

1)>X, u2 (p2
3)>X = (p2

1)>X,

v1 (p1
3)>X = (p1

2)>X, v2 (p2
3)>X = (p2

2)>X,

Gives

DX = 0, D =


u1 (p1

3)> − (p1
1)>

v1 (p1
3)> − (p1

2)>

u2 (p2
3)> − (p2

1)>

v2 (p2
3)> − (p2

2)>

 , D ∈ R4,4, X ∈ R4 (14)

• back-projected rays will generally not intersect due to image error, see next

• using Jack-knife (→63) not recommended sensitive to small error

• we will use SVD (→85)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points at infinity

3D Computer Vision: IV. Computing with a Camera Pair (p. 84/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let Di be the i-th row of D, then

‖DX‖2 =

4∑
i=1

(DiX)2 =

4∑
i=1

X>D>iDiX = X>QX, where Q =

4∑
i=1

D>iDi = D>D ∈ R4,4

• we write the SVD of Q as Q =
4∑
j=1

σ2
j uju

>
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u>l um =

{
0 if l 6= m

1 otherwise

• then X = arg min
q,‖q‖=1

q>Qq = u4

Proof (by contradiction).

q>Q q =
4∑
j=1

σ2
j q>uj u>j q =

4∑
j=1

σ2
j (u>j q)2 is a sum of non-negative elements 0 ≤ (u>j q)2 ≤ 1

Let q = u4 cosα+ q̄ sinα s.t. q̄ ⊥ u4 and q̄ = 1, then ‖q‖ = 1 and

q>Q q = · · · = σ2
4 cos2 α+ sin2 α

3∑
j=1

σ2
j (u>j q̄)2

︸ ︷︷ ︸
≥σ2

4

≥ σ2
4

ut3D Computer Vision: IV. Computing with a Camera Pair (p. 85/186) R. Šára, CMP; rev. 12–Jan–2016

Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = O(3,3)/O(4,4);

~ P1; 1pt: Why did we decompose D and not Q = D>D?

3D Computer Vision: IV. Computing with a Camera Pair (p. 86/186) R. Šára, CMP; rev. 12–Jan–2016

INumerical Conditioning

• The equation DX = 0 in (14) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = Dq = DSS−1q = D̄ q̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), 1))

2. solve for q̄ as before
3. get the final solution as q = S q̄

• when SVD is used in camera resection, conditioning is essential for success →62

3D Computer Vision: IV. Computing with a Camera Pair (p. 87/186) R. Šára, CMP; rev. 12–Jan–2016

Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (uc, vc) – image coordinates) from SVD →86

ε
2

= σ
2
4 =

2∑
c=1

[(
u
c
(p
c
3)
>
X− (p

c
1)
>
X
)2

+
(
v
c
(p
c
3)
>
X− (p

c
2)
>
X
)2
]

• reprojection error
e
2

=
2∑
c=1

[(
u
c − (pc1)>X

(pc3)>X

)2

+

(
v
c − (pc2)>X

(pc3)>X

)2]
• algebraic error zero ⇒ reprojection error zero σ4 = 0⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error cheap but it gives inferior results

• minimizing reprojection error expensive but it gives good results

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• the golden standard method – deferred to →100

Ex: • forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

3D Computer Vision: IV. Computing with a Camera Pair (p. 88/186) R. Šára, CMP; rev. 12–Jan–2016

IWe Have Added to The ZOO

continuation from →68

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, t 66

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7

i=1
F 80

relative orientation K, 5 img–img correspondences
{

(mi, m
′
i)
}5

i=1
R, t 83

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 84

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →112)

• algebraic error optimization (with SVD) makes sense in camera resection and triangulation
only

• but it is not the best method; we will now focus on ‘optimizing optimally’

3D Computer Vision: IV. Computing with a Camera Pair (p. 89/186) R. Šára, CMP; rev. 12–Jan–2016

http://cmp.felk.cvut.cz/minimal/

Part V

Optimization for 3D Vision

5.1 The Concept of Error for Epipolar Geometry
5.2 Levenberg-Marquardt’s Iterative Optimization
5.3 The Correspondence Problem
5.4 Optimization by Random Sampling

covered by

[1] [H&Z] Secs: 11.4, 11.6, 4.7

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243.

Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented

epipolar constraint. In Proc ICPR, vol 1:112–115, 2004.

3D Computer Vision: V. Optimization for 3D Vision (p. 90/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points xi ↔ yj in a general position, estimate the
most likely (or most probable) fundamental matrix F.

xi = (u1
i , v

1
i), yi = (u2

i , v
2
i), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points (measurements) xi, yi

• we introduce matches Zi = (u1
i , v

1
i , u

2
i , v

2
i) ∈ R4; S =

{
Zi
}k
i=1

• corrected points x̂i, ŷi; Ẑi = (û1
i , v̂

1
i , û

2
i , v̂

2
i); Ŝ =

{
(Ẑi
}k
i=1

are correspondences

• correspondences satisfy the epipolar geometry exactly ŷ>
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• let ei(·) be the ‘reprojection error’ (vector) per match i,

ei(xi, yi | x̂i, ŷi,F) =

[
xi − x̂i
yi − ŷi

]
= ei(Zi | Ẑi,F) = Zi − Ẑi(F)

‖ei(·)‖2
def
= e2

i (·) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 = ‖Zi − Ẑi‖2
(15)

3D Computer Vision: V. Optimization for 3D Vision (p. 91/186) R. Šára, CMP; rev. 12–Jan–2016

Icont’d

• the total reprojection error (of all data) then is

L(S | Ŝ,F) =

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) =

k∑
i=1

e2
i (Zi | Ẑi,F)

• and the optimization problem is

(Ŝ∗,F∗) = arg min
F

rank F = 2

min
Ŝ

ŷ>
i
F x̂i = 0

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) (16)

Three possible approaches

• they differ in how the correspondences x̂i, ŷi are obtained:

1. direct optimization of reprojection error over all variables Ŝ, F →93

2. Sampson optimal correction = partial correction of Zi towards Ẑi used in an iterative
minimization over F →94

3. removing x̂i, ŷi altogether = marginalization of L(S, Ŝ | F) over Ŝ followed by
minimization over F not covered, the marginalization is difficult

3D Computer Vision: V. Optimization for 3D Vision (p. 92/186) R. Šára, CMP; rev. 12–Jan–2016

Method 1: Geometric Error Optimization

• we need to encode the constraints ŷ
i
F x̂i = 0, rank F = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

• equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F + e2e>1 e2

]
(17)

~ H3; 2pt: Verify that F is a f.m. of P1, P2, for instance that there is a regular H such that F ' H−>[e1]×

1. compute F(0) by the 7-point algorithm →80; construct camera P
(0)
2 from F(0) using (17)

2. triangulate 3D points X̂
(0)
i from matches (xi, yi) for all i = 1, . . . , k →84

3. starting from P
(0)
2 , X̂(0) minimize the reprojection error (15)

(X̂∗,P∗2) = arg min
P2, X̂

k∑
i=1

e2
i (Zi | Ẑi(X̂i,P2))

where
Ẑi = (x̂i, ŷi) (Cartesian), x̂i ' P1X̂i, ŷi ' P2 X̂i (homogeneous)

Non-linear, non-convex problem

4. compute F from P1, P∗2

• 3k + 12 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: P2

• minimal representation: 3k + 7 parameters, P2 = P2(F) →139

• there are pitfalls; this is essentially bundle adjustment; we will return to this later →131

3D Computer Vision: V. Optimization for 3D Vision (p. 93/186) R. Šára, CMP; rev. 12–Jan–2016

IMethod 2: First-Order Error Approximation

An elegant method for solving problems like (16):

• we will get rid of the latent parameters X̂ needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y>F x from →80

• consider matches Zi, correspondences Ẑi, and reprojection error ei = ‖Zi − Ẑi‖2

• correspondences satisfy ŷi
>F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F

• algebraic error vanishes for Ẑi: 0 = εi(Ẑi) = ŷi
>F x̂i

L

VF

ei(Ẑi,Zi)
Ẑi

Zi Sampson’s idea: Linearize the algebraic error ε(Z) at Zi (where it is

non-zero) and evaluate the resulting linear function at Ẑi (where it is
zero). The zero-crossing replaces VF by a linear manifold L. The
point on VF closest to Zi is replaced by the closest point on L.

εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi
(Ẑi − Zi)

3D Computer Vision: V. Optimization for 3D Vision (p. 94/186) R. Šára, CMP; rev. 12–Jan–2016

ISampson’s Approximation of Reprojection Error

• linearize ε(Z) at match Zi, evaluate it at correspondence Ẑi

0 = εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
ei(Ẑi,Zi)

def
= εi(Zi) + Ji(Zi) ei(Ẑi,Zi)

• this is a linear equation for Ẑi

• ei(·) is the distance of Ẑi from Zi

• we compute the distance by least squares per match i

e∗i = arg min
ei
‖ei‖2 subject to εi + Ji ei = 0

• which has a closed-form solution note that Ji is not invertible! ~ P1; 1pt: derive e∗i

e∗i = −J>i (JiJ
>
i)−1εi

‖e∗i ‖2 = ε>i (JiJ
>
i)−1εi

(18)

• this mapping translates ε(·) to an estimate of e(·)
• we often do not need ei, just ‖ei‖2 exception: triangulation →100

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)

3D Computer Vision: V. Optimization for 3D Vision (p. 95/186) R. Šára, CMP; rev. 12–Jan–2016

IExample: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle C to a set of 2D points {xi}ki=1, C : ‖x‖2 − r2 = 0.

1. consider radial error as the ‘algebraic error’ ε(x) = ‖x‖2 − r2

2. linearize it at x̂ we are dropping i in εi, ei etc for clarity

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x>

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x>x̂− (r2 + ‖x‖2)
def
= εL(x̂)

εL(x̂) = 0 is a line with normal x
‖x‖ and intercept r2+‖x‖2

2‖x‖ not tangent to C, outside!

3. using (18), express error approximation e∗ as

‖e∗‖2 = ε>(JJ>)−1ε =
(‖x‖2 − r2)2

4‖x‖2
4. fit circle

x2

x1

ε(x) = 0

VC

εL1(x) = 0

εL2(x) = 0

r∗ = arg min
r

k∑
i=1

(‖xi‖2 − r2)2

4‖xi‖2
= · · · =

(
1

k

k∑
i=1

1

‖xi‖2

)− 1
2

• this example results in a convex quadratic optimization problem

• note that

arg min
r

k∑
i=1

(‖xi‖2 − r2)2 =

(
1

k

k∑
i=1

‖xi‖2
) 1

2

3D Computer Vision: V. Optimization for 3D Vision (p. 96/186) R. Šára, CMP; rev. 12–Jan–2016

Circle Fitting: Some Results

medium isotropic noise medium radial noise big isotropic noise big radial noise

opt=1.8, dir=2.0, Smp=2.2 1.8, 1.9, 2.3 1.6, 2.0, 2.4 1.6, 1.8, 2.6
mean ranks over 10 000 random trials with k = 32 samples

green – ground truth

red – Sampson error minimizer

blue – direct radial error minimizer

black – optimal estimator for isotropic error

optimal estimator for isotropic error (black, dashed):

r ≈ 3

4k

k∑
i=1

‖xi‖+

√√√√(3

4k

k∑
i=1

‖xi‖
)2

− 1

2k

k∑
i=1

‖xi‖2

which method is better?

• error should model noise, radial noise and isotropic noise behave differently

• ground truth: Normally distributed isotropic error, Gamma-distributed radial error

• Sampson correction is closer to the radial distribution model

• no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

3D Computer Vision: V. Optimization for 3D Vision (p. 97/186) R. Šára, CMP; rev. 12–Jan–2016

Discussion: On The Art of Probabilistic Model Design. . .

• a few models for fitting zero-centered circle C of radius r to points in R2

marginalized over C orthogonal deviation from C Sampson approximation

er
ro

r
m

o
d

el x
N(0, σ2I)

x
Γ(·, ·) x

N(0, σ2I)

ra
d

ia
l

p
.d

.f
.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p(
||x

||
| r

 =
 1

)

σ = 0.25
σ = 0.5
σ = 1
σ = 2

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p(
||x

||
| r

 =
 1

)

σ = 0.25
σ = 0.5
σ = 1
σ = 2

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

ra
n

d
o

m
sa

m
p

le

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p
(x
|r

)

≈ 1

σ
√

(2π)3r ‖x‖
e
− (‖x‖−r)2

2σ2 1

2πΓ(r
2

σ
)

1
‖x‖2

(
r‖x‖
σ

) r2
σ
e−

r‖x‖
σ 1

rσ
√

(2π)3
e
− e

2(x;r)

2σ2

•mode inside the circle • peak at the center •mode at the circle
•models the inside well • unusable for small radii • hole at the center
• tends to normal distrib. • tends to Dirac distrib. • tends to normal distrib.

3D Computer Vision: V. Optimization for 3D Vision (p. 98/186) R. Šára, CMP; rev. 12–Jan–2016

ISampson Error for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes ei is scalar, hence ei

F∗ = arg min
F,rank F=2

k∑
i=1

e2
i (F)

Let F =
[
F1 F2 F3

]
(per columns) =

(F1)>

(F2)>

(F3)>

 (per rows), S =

1 0 0
0 1 0
0 0 0

, then

Sampson

εi(F) = y>i F xi εi ∈ R scalar algebraic error →80

Ji(F) =

[
∂εi(F)

∂u1
i

,
∂εi(F)

∂v1
i

,
∂εi(F)

∂u2
i

,
∂εi(F)

∂v2
i

]
Ji ∈ R1,4 derivatives over point coords.

ei(F) =
εi(F)

‖Ji(F)‖
ei ∈ R Sampson error

Ji(F) =
[
(F1)>yi, (F2)>yi, (F1)>xi, (F2)>xi

]
ei(F) =

y>i Fxi√
‖SFxi‖2 + ‖SF>yi‖2

• Sampson correction ‘normalizes’ the algebraic error

• automatically copes with multiplicative factors F 7→ λF

• actual optimization not yet covered →103

3D Computer Vision: V. Optimization for 3D Vision (p. 99/186) R. Šára, CMP; rev. 12–Jan–2016

IBack to Triangulation: The Golden Standard Method

We are given P1, P2 and a single correspondence x↔ y and we look for 3D point X
projecting to x and y. →84

Idea:

1. compute F from P1, P2, e.g. F = (Q1Q
−1
2)>[q1 − (Q1Q

−1
2)q2]×

2. correct measurement by the linear estimate of the correction vector →95
û1

v̂1

û2

v̂2

 ≈

u1

v1

u2

v2

− ε

‖J‖2
J> =


u1

v1

u2

v2

− y>Fx

‖SFx‖2 + ‖SF>y‖2


(F1)>y
(F2)>y
(F1)>x
(F2)>x


3. use the SVD algorithm with numerical conditioning →85

Ex (cont’d from →88):

XT – noiseless ground truth position
• – reprojection error minimizer

Xs – Sampson-corrected algebraic error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

3D Computer Vision: V. Optimization for 3D Vision (p. 100/186) R. Šára, CMP; rev. 12–Jan–2016

Levenberg-Marquardt (LM) Iterative Estimation in a Nutshell

Consider error function ei(θ) = f(xi,yi,θ) ∈ Rm, with xi,yi given, θ ∈ Rq unknown
θ = F, q = 9, m = 1 for f.m. estimation

Our goal: θ∗ = arg min
θ

k∑
i=1

‖ei(θ)‖2

Idea 1 (Gauss-Newton approximation): proceed iteratively for s = 0, 1, 2, . . .

θs+1 := θs + ds , where ds = arg min
d

k∑
i=1

‖ei(θs + d)‖2 (19)

ei(θ
s + d) ≈ ei(θ

s) + Li d,

(Li)jl =
∂
(
ei(θ)

)
j

∂(θ)l
, Li ∈ Rm,q typically a long matrix

Then the solution to Problem (19) is a set of normal eqs

−
k∑
i=1

L>i ei(θ
s)︸ ︷︷ ︸

e∈Rq,1

=

(
k∑
i=1

L>i Li

)
︸ ︷︷ ︸

L∈Rq,q

ds, (20)

• ds can be solved for by Gaussian elimination using Choleski decomposition of L
L symmetric ⇒ use Choleski, almost 2× faster than Gauss-Seidel, see bundle adjustment →134

• such updates do not lead to stable convergence −→ ideas of Levenberg and Marquardt

3D Computer Vision: V. Optimization for 3D Vision (p. 101/186) R. Šára, CMP; rev. 12–Jan–2016

LM (cont’d)

Idea 2 (Levenberg): replace
∑
i L
>
i Li with

∑
i L
>
i Li + λ I for some damping factor λ ≥ 0

Idea 3 (Marquardt): replace λ I with λ
∑
i diag(L>i Li) to adapt to local curvature:

−
k∑
i=1

L>i ei(θ
s) =

(
k∑
i=1

(
L>i Li + λ diagL>i Li

))
ds

Idea 4 (Marquardt): adaptive λ small λ → Gauss-Newton, large λ → gradient descend

1. choose λ ≈ 10−3 and compute ds

2. if
∑
i ‖ei(θ

s + ds)‖2 <
∑
i ‖ei(θ

s)‖2 then accept ds and set λ := λ/10, s := s+ 1

3. otherwise set λ := 10λ and recompute ds

• sometimes different constants are needed for the 10 and 10−3

• note that Li ∈ Rm,q (long matrix) but each contribution L>i Li is a square singular q × q
matrix (always singular for k < q)

• error can be made robust to outliers, see the trick →106

• we have approximated the least squares Hessian by ignoring second derivatives of the error
function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]

• λ helps avoid the consequences of gauge freedom →136

3D Computer Vision: V. Optimization for 3D Vision (p. 102/186) R. Šára, CMP; rev. 12–Jan–2016

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u1, v1, u2, v2)

ei(F) =
εi
‖Ji‖

=
y>i Fxi√

‖SFxi‖2 + ‖SF>yi‖2
where S =

1 0 0
0 1 0
0 0 0



LM (by linearization over parameters F)

Li =
∂ei(F)

∂F
= · · · = 1

2‖Ji‖

[(
yi −

2ei
‖Ji‖

SFxi

)
x>i + yi

(
xi −

2ei
‖Ji‖

SF>yi

)>]
(21)

• Li is a 3× 3 matrix, must be reshaped to dimension-9 vector

• xi and yi in Sampson error are normalized to unit homogeneous coordinate (21) relies on this

• reinforce rank F = 2 after each LM update to stay in the fundamental matrix manifold and
‖F‖ = 1 to avoid gauge freedom by SVD →104

• LM linearization could be done by numerical differentiation (small dimension)

3D Computer Vision: V. Optimization for 3D Vision (p. 103/186) R. Šára, CMP; rev. 12–Jan–2016

ILocal Optimization for Fundamental Matrix Estimation

Given a set {(xi, yi)}ki=1 of k > 7 inlier correspondences, compute a (reasonably) efficient
estimate for fundamental matrix F.

1. Find the conditioned (→87) 7-point F0 (→80) from a suitable 7-tuple

2. Improve the F∗0 using the LM optimization (→101–102) and the Sampson error (→103)

on all inliers, reinforce rank-2, unit-norm F∗k after each LM iteration using SVD

• if there are no wrong matches (outliers), this gives a local optimum

• contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of
all fundamental matrices)

3D Computer Vision: V. Optimization for 3D Vision (p. 104/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image point sets X = {xi}mi=1 and Y = {yj}nj=1 and their descriptors D,
find the most probable

1. inliers SX ⊆ X, SY ⊆ Y
2. one-to-one perfect matching M : SX → SY perfect matching: 1-factor of the bipartite graph

3. fundamental matrix F such that rank F = 2
4. such that for each xi ∈ SX and yj = M(xi) it is probable that

a) the image descriptor D(xi) is similar to D(yj), and

b) the total geometric error E =
∑
ij e

2
ij(F) is small note a slight change in notation: eij

5. inlier-outlier and outlier-outlier matches are improbableMSX YSYX
6

7

2

5
3

2

5

8

4 4

6

3

1

1 8

= 1

6 7

X

= 0

M : Y

1

2

3

4

5

6

1 2 3 4 5

(M∗,F∗) = arg max
M,F

p(E,D,F |M)P (M) (22)

• probabilistic model: an efficient language for task formulation it also unifies 4.a and 4.b

• the (22) is a Bayesian probabilistic model there is a constant number of random variables!

• binary matching table Mij ∈ {0, 1} of fixed size m× n
• each row/column contains at most one unity
• zero rows/columns correspond to unmatched point xi/yj

3D Computer Vision: V. Optimization for 3D Vision (p. 105/186) R. Šára, CMP; rev. 12–Jan–2016

Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of (M∗,F∗) = arg max
M,F

p(E,D,F |M)P (M) solve

F∗ = arg max
F

p(E,D,F) (23)

by marginalization of p(E,D,F |M)P (M) over M this changes the problem!

ignoring that M are 1:1 matchings and assuming correspondence-wise independence:

p(E,D,F |M)P (M)=

m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij)

• eij represents geometric error for match xi ↔ yi: eij(xi, yi,F)

• dij represents descriptor similarity for match xi ↔ yi: dij = ‖d(xi)− d(yj)‖

Marginalization:

p(E,D,F) ≈
∑

m11∈{0,1}

∑
m12

· · ·
∑
mmn

p(E,D,F |M)P (M) =

=
∑
m11

· · ·
∑
mmn

m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij) =
~ 1· · · =

=
m∏
i=1

n∏
j=1

∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij)

︸ ︷︷ ︸
we will continue with this term

3D Computer Vision: V. Optimization for 3D Vision (p. 106/186) R. Šára, CMP; rev. 12–Jan–2016

Robust Matching Model (cont’d)∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij) =

= pe(eij , dij ,F | mij = 1)︸ ︷︷ ︸
p1(eij ,dij ,F)

P (mij = 1)︸ ︷︷ ︸
1−P0

+ pe(eij , dij ,F | mij = 0)︸ ︷︷ ︸
p0(eij ,dij ,F)

P (mij = 0)︸ ︷︷ ︸
P0

=

= (1− P0) p1(eij , dij ,F) + P0 p0(eij , dij ,F) (24)

• the p0(eij , dij ,F) is a penalty for ‘missing a correspondence’ but it should be a p.d.f.
(cannot be a constant) (→108 for a simplification)

choose P0 → 1, p0(·)→ 0 so that
P0

1− P0
p0(·) ≈ const

• the p1(eij , dij ,F) is typically an easy-to-design component: assuming independence of
geometric error and descriptor similarity:

p1(eij , dij ,F) = p1(eij | F) pF (F) p1(dij)

• we choose, eg.

p1(eij | F) =
1

Te(σ1)
e
−
e2ij(F)

2σ2
1 , p1(dij) =

1

Td(σd, dim d)
e
−
‖d(xi)−d(yj)‖2

2σ2
d (25)

• F is a random variable and σ1, σd, P0 are parameters

• the form of T (σ1) depends on error definition, it may depend on xi, yj but not on F

• we will continue with the result from (24)

3D Computer Vision: V. Optimization for 3D Vision (p. 107/186) R. Šára, CMP; rev. 12–Jan–2016

ISimplified Robust Energy (Error) Function

• assuming the choice of p1 as in (25), we are simplifying

p(E,D,F) = p(E,D | F) pF (F) =

= pF (F)
m∏
i=1

n∏
j=1

[
(1− P0) p1(eij , dij | F) + P0 p0(eij , dij | F)

]
• we choose σ0 � σ1 and omit dij for simplicity; then the square-bracket term is

1− P0

Te(σ1)
e
−
e2ij(F)

2σ2
1 +

P0

Te(σ0)
e
−
e2ij(F)

2σ2
0

• we define the ‘potential function’ as: V (x) = − log p(x), then

V (E,D | F) =
m∑
i=1

n∑
j=1

− log
1− P0

Te(σ1)︸ ︷︷ ︸
∆ = const

− log
(
e
−
e2ij(F)

2σ2
1 +

P0

1− P0

Te(σ1)

Te(σ0)
e
−
e2ij(F)

2σ2
0︸ ︷︷ ︸

t ≈ const

) =

= mn∆ +
m∑
i=1

n∑
j=1

− log
(
e
−
e2ij(F)

2σ2
1 + t

)
︸ ︷︷ ︸

V̂ (eij)

(26)

• note we are summing over all mn matches (m, n are constant!)

3D Computer Vision: V. Optimization for 3D Vision (p. 108/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Action of the Robust Matching Model on Data

Example for V̂ (e) from (26):

−4 −3 −2eT −1 0 1 eT2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

σ
1
 = 1

e

V

V when t = 0
V when t = 0.25
t = 0.25

red – the usual (non-robust) error when t = 0

blue – the rejected correspondence penalty t

green – ‘robust energy’ (26)

• if the error of a correspondence exceeds a limit, it is ignored

• then V̂ (e) = const and we essentially count outliers in (26)

• t controls the ‘turn-off’ point

• the inlier/outlier threshold is eT – the error for which
(1− P0) p1(eT) = P0 p0(eT): note that t ≈ 0

eT = σ1

√
− log t2 (27)

The full optimization problem (23) uses (26):

F∗ = arg max
F

likelihood︷ ︸︸ ︷
p(E,D | F) ·

prior︷︸︸︷
p(F)

p(E,D)︸ ︷︷ ︸
evidence

≈ arg min
F

V (F) +
m∑
i=1

n∑
j=1

log
(
e
−
e2ij(F)

2σ2
1 + t

)
• typically we take V (F) = − log p(F) = 0 unless we need to stabilize a computation, e.g. when video

camera moves smoothly (on a high-mass vehicle) and we have a prediction for F

• evidence is not needed unless we want to compare different models (eg. homography vs. epipolar geometry)

3D Computer Vision: V. Optimization for 3D Vision (p. 109/186) R. Šára, CMP; rev. 12–Jan–2016

How To Find the Global Maxima (Modes) of a PDF?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p(
x)

x

0 1000 2000 3000 4000 5000

exhaustive

randomized

MH_crawl

Gibbs

iterations

• averaged over 104 trials

• number of proposals before
|x− xtrue| ≤ step

• given the function p(x) at left p.d.f. on [0, 1], mode at 0.1

consider several methods:

1. exhaustive search

step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm
(definite quantization)

• fast to implement

2. randomized search with uniform sampling

while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end
t = t+1; % time

end

• equally slow algorithm

• fast to implement

• how to stop it?

3. random sampling from p(x) (Gibbs sampler)

• faster algorithm • fast to implement but often infeasible (e.g. when

p(x) is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement

• rarely infeasible • RANSAC belongs here

3D Computer Vision: V. Optimization for 3D Vision (p. 110/186) R. Šára, CMP; rev. 12–Jan–2016

How To Generate Random Samples from a Complex Distribution?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p(
x)

,
 q

(x
|x

0)/
10

x

target (red) and scaled proposal (blue) distributions

• red: probability density function p(x) of the toy
distribution on the unit interval target distribution

p(x) =
4∑
i=1

γi Be(x;αi, βi),

4∑
i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• note we can generate samples from this p(x) how?

• suppose we cannot sample from p(x) but we can sample from some ‘simple’
distribution q(x | x0), given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

p(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide

• how to transform proposal samples q(x | x0) to target distribution p(x) samples?

3D Computer Vision: V. Optimization for 3D Vision (p. 111/186) R. Šára, CMP; rev. 12–Jan–2016

IMetropolis-Hastings (MH) Sampling

C – configuration (of all variable values) eg. C = F and p(C) = p(F | E,D)

Goal: Generate a sequence of random samples {Ct} from p(C)

• setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure
1. given Ct, draw a random sample S from q(S | Ct)

q may use some information from Ct (Hastings)

2. compute acceptance probability the evidence term drops out

a = min

{
1,

p(S)

p(Ct)
· q(Ct | S)

q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct

‘Programming’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q

2. write functions q(Ct | S) and q(S | Ct) that are proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• start local optimization from the best sample good trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

3D Computer Vision: V. Optimization for 3D Vision (p. 112/186) R. Šára, CMP; rev. 12–Jan–2016

MH Sampling Demo

sampling process (video, 7:33, 100k samples)

• blue point: current sample

• green circle: best sample so far quality = p(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution
of visited states

3D Computer Vision: V. Optimization for 3D Vision (p. 113/186) R. Šára, CMP; rev. 12–Jan–2016

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd(x0/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand(1) < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off

3D Computer Vision: V. Optimization for 3D Vision (p. 114/186) R. Šára, CMP; rev. 12–Jan–2016

IStripping MH Down

• when we are interested in the best sample only. . . and we need fast data exploration. . .

Simplified sampling procedure
1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct
2. compute acceptance probability

a = min

{
1,

p(S)

p(Ct)
· q(Ct | S)

q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct
5. if p(S) > p(Cbest) then remember Cbest := S

• . . . but getting a good accuracy sample might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where Ct could serve
as an attractor

• cannot use the past generated samples to estimate any parameters

• we will fix these problems by (possibly robust) ‘local optimization’

3D Computer Vision: V. Optimization for 3D Vision (p. 115/186) R. Šára, CMP; rev. 12–Jan–2016

IPutting Some Clothes Back: RANSAC with Local Optimization

1. initialize the best sample as empty Cbest := ∅ and time t := 0

2. estimate the number of needed iterations as N :=
(mn
s

)
3. while t ≤ N :

a) draw a minimal random sample S of size s from q(S)
S

b) if p(S) > p(Cbest) then

i) update the best sample Cbest := S p(S) marginalized as in (26); p(S) includes a prior⇒ MAP

ii) threshold-out inliers

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→108) Sampson error

possibly weighted by posterior p(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →117 for derivation

N =
log(1− P)

log(1− εs) , ε =
| inliers(Cbest)|

mn
,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]

3D Computer Vision: V. Optimization for 3D Vision (p. 116/186) R. Šára, CMP; rev. 12–Jan–2016

https://cw.felk.cvut.cz/doku.php/courses/a4m33mpv/start

IStopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?
this will tell us nothing about the accuracy of the result

P . . . probability that at least one sample is all-inlier 1− P . . . all previous N samples were bad

ε . . . the fraction of inliers among tentative correspondences, ε ≤ 1
s . . . sample size (7 in 7-point algorithm)

N ≥ log(1− P)

log(1− εs)

• εs . . . proposal does not contain an outlier

• 1− εs . . . proposal contains at least one outlier

• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P

ε 0.8 0.99

0.5 205 590
0.2 1.3·105 3.5·105

0.1 1.6·107 4.6·107

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

ε (inlier fraction)

N
 (

p
ro

p
o
s
a
ls

)

s = 7

P=0.5

P=0.8

P=0.99

P=0.999

• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• for ε→ 0 we gain nothing over the standard MH-sampler stopping criterion

3D Computer Vision: V. Optimization for 3D Vision (p. 117/186) R. Šára, CMP; rev. 12–Jan–2016

The Core Ideas in RANSAC [Fischler & Bolles 1981]

1. configuration = s-tuple of inlier correspondences
• the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples

2. proposal distribution q(·) is given by the empirical distribution of data sample:
a) select s-tuple from data independently q(S | Ct) = q(S)

i) q uniform q(S) =
(mn
s

)−1
MAPSAC (p(S) includes the prior)

ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

b) solve the minimal geometric problem 7→ geometry proposal e.g. F from s = 7

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F | E)

3. independent sampling & looking for the best sample⇒ no need to filter proposals by a

4. standard RANSAC replaces probability maximization with consensus maximization

x1
x22eT

the eT is the inlier/outlier threshold from (27)

5. stopping based on the probability of mode-hitting →117

3D Computer Vision: V. Optimization for 3D Vision (p. 118/186) R. Šára, CMP; rev. 12–Jan–2016

Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• notice some wrong matches (they have wrong depth, even negative)

• they cannot be rejected without additional constraints or scene knowledge

• without local optimization the minimization is over a discrete set of epipolar geometries
proposable from 7-tuples

3D Computer Vision: V. Optimization for 3D Vision (p. 119/186) R. Šára, CMP; rev. 12–Jan–2016

Beyond RANSAC

By marginalization in (23) we have lost constraints on M (eg. uniqueness). One can choose a
better model when not marginalizing:

p(M,F, E,D) = p(E |M,F)︸ ︷︷ ︸
geometric error

· p(D |M)︸ ︷︷ ︸
similarity

· p(M)︸ ︷︷ ︸
constraints

· p(F)︸ ︷︷ ︸
prior

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then S = (M,F)

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when p(M) uniform then always accepted, a = 1 ~ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij
over {Si}

• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Si} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models) and model selection

if there are multiple models explaning data, RANSAC will return one of them randomly

3D Computer Vision: V. Optimization for 3D Vision (p. 120/186) R. Šára, CMP; rev. 12–Jan–2016

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid
(then θL uniquely given by λi)

Model

• principal point known, square pixel

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

• explicit variables

1. two unknown vanishing points v1, v2

2. ‘mother line’ parameters θL (they pass
through their vanishing points)

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, L | S)

3D Computer Vision: V. Optimization for 3D Vision (p. 121/186) R. Šára, CMP; rev. 12–Jan–2016

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Part VI

3D Structure and Camera Motion

6.1 Introduction

6.2 Reconstructing Camera Systems

6.3 Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In

Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment.

ACM Trans Math Software 36(1):1–30, 2009.

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 122/186) R. Šára, CMP; rev. 12–Jan–2016

IConstructing Cameras from the Fundamental Matrix

Given F, construct some cameras P1, P2 such that F is their fundamental matrix.

Solution See [H&Z, p. 256]
P1 =

[
I 0

]
P2 =

[
[e2]×F + e2 v

> λ e2

]
where

• v is any 3-vector, e.g. v = e1 to make the camera finite

• λ 6= 0 is a scalar,

• e2 = null(F>), i.e. e>2 F = 0

Proof

1. S is skew-symmetric iff x>Sx = 0 for all x look-up the proof!

2. we have x' PX

3. a non-zero F is a f.m. iff P>2 FP1 is skew-symmetric

4. if P1 =
[
I 0

]
and P2 =

[
SF e2

]
then F corresponds to (P1,P2) by Step 3

5. we can write S = [s]×
6. a suitable choice is s = e2 [Luong96]

7. for the full the class including v, see [H&Z, Sec. 9.5]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 123/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Projective Reconstruction Theorem

Observation: Unless Pi are constrained, then for any number of cameras i = 1, . . . , k

mi ' PiX = PiH
−1︸ ︷︷ ︸

P′i

HX︸︷︷︸
X′

= P′iX
′

• when Pi and X are both determined from correspondences (including calibrations
Ki), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Ki known) then H is restricted to a similarity
since it must preserve the calibrations Ki [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale)

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 124/186) R. Šára, CMP; rev. 12–Jan–2016

IReconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij]×R̂ij and
calibration matrices Ki reconstruct the camera system Pi, i = 1, . . . , k

→77 and →139 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct calibrated camera pairs P̂ij ∈ R6,4 →123

P̂ij =

[
K−1
i P̂i

K−1
j P̂j

]
=

[
I 0

R̂ij t̂ij

]
∈ R6,4

• singletons i, j correspond to graph nodes k nodes

• pairs ij correspond to graph edges p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

R6,4

[
Rij tij
0> sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

R6,4

(28)

• (28) is a linear system of 24p eqs. in 7p+ 6k unknowns 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each Pi appears on the right side as many times as is the degree of node Pi eg. P5 3-times

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 125/186) R. Šára, CMP; rev. 12–Jan–2016

Icont’d

Eq. (28) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

] [
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (29)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti + Rit

• the global frame is fixed, e.g. by selecting

R1 = I,
k∑
i=1

ti = 0,
1

p

∑
i,j

sij = 1 (30)

• rotation equations are decoupled from translation equations

• in principle, sij could correct the sign of t̂ij from essential matrix decomposition →77

but Ri cannot correct the α sign in R̂ij

⇒ therefore make sure all points are in front of cameras and constrain sij > 0; →79

+ pairwise correspondences are sufficient
– suitable for well-located cameras only (dome-like configurations)

otherwise intractable or numerically unstable

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 126/186) R. Šára, CMP; rev. 12–Jan–2016

Finding The Rotation Component in Eq. (29)

Task: Solve R̂ijRi = Rj , i, j ∈ V , (i, j) ∈ E where R are a 3× 3 rotation matrix each.
Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (31)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]>
c-th columns of all rotation matrices stacked; rc∈R3k

• then (31) becomes D rc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I
R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (31) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ‖rc‖ = 1 is necessary but insufficient

R∗i = UV>, where Ri = UDV>• global world rotation is arbitrary

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 127/186) R. Šára, CMP; rev. 12–Jan–2016

Finding The Translation Component in Eq. (29)

From (29) and (30): d ≤ 3 – rank of camera center set, p – #pairs, k – #cameras

R̂ijti + sij t̂ij − tj = 0,
k∑
i=1

ti = 0,
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p+ d+ 1 equations for d · k + p unknowns → p ≥ d(k−1)−1
d−1

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d 3 ≥ d ≥ 2: non-collinear ok 3 ≥ d ≥ 3: non-planar ok 3 ≥ d ≥ k − 1: impossible

• equations insufficient for chains, trees, or when d = 1 collinear cameras

• 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D

– s-connected graph has p ≥ d sk
2
e edges for s ≥ 2, hence p ≥ d 3k

2
e ≥ 3k

2
− 2

• 4-connectivity implies sufficient eqns. for any k when d = 2 coplanar cams

– since p ≥ d2ke ≥ 2k − 3
– maximal planar tringulated graphs have p = 3k − 6

and give a solution for k ≥ 3 maximal planar triangulated graph example:

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 128/186) R. Šára, CMP; rev. 12–Jan–2016

cont’d

Linear equations in (29) and (30) can be rewritten to

Dt = 0, t =
[
t>1 , t

>
2 , . . . , t

>
k , s12, . . . , sij , . . .

]>
for d = 3: t ∈ R3k+p, D ∈ R3p,3k+p is sparse

t∗ = arg min
t, sij>0

t>D>Dt

• this is a quadratic programming problem (mind the constraints!)

z = zeros(3*k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 129/186) R. Šára, CMP; rev. 12–Jan–2016

ISolving Eq. (29) by Stepwise Gluing

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with P1, P2,

2. find essential matrix E12 and matches
M12 by the 5-point algorithm →83

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. compute 3D reconstruction {Xi} per

match from M12 →100

5. initialize point cloud X with {Xi}
satisfying chirality constraint zi > 0
and apical angle constraint |αi| > αT

αi

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

mi1

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj
2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l 6= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 130/186) R. Šára, CMP; rev. 12–Jan–2016

IBundle Adjustment

Given:

1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. fixed tentative projections mij

Required:

1. corrected 3D points {X′i}pi=1

2. corrected cameras {P′j}cj=1

Latent:

1. visibility decision vij ∈ {0, 1} per mijP1 Xi
ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2

• for simplicity, X, m are considered Cartesian (not homogeneous)

• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi

• for simplicity, we will work with scalar error eij = ‖eij‖
3D Computer Vision: VI. 3D Structure and Camera Motion (p. 131/186) R. Šára, CMP; rev. 12–Jan–2016

Robust Objective Function for Bundle Adjustment

Likelihood is constructed by marginalization, as in Robust Matching Model →107

p({e} | {P,X}) =

p∏
pts:i=1

c∏
cams:j=1

(
(1− P0)p1(eij | Xi,Pj) + P0 p0(eij | Xi,Pj)

)
marginalized negative log-likelihood is (→108)

− log p({e} | {P,X}) =
∑
i

∑
j

− log
(
e
−
e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν2

ij(Xi,Pj)

def
=
∑
i

∑
j

ν2
ij(Xi,Pj)

• eij is the projection error (not Sampson error)

• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0

• ρ(·) is a ‘robustification function’ we often find in M-estimation

• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for big eij

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(32)

but the LM method stays the same as on →101–102

−4 −2 0 2 4
0

2

4

6

8

10

x

−
lo

g
 p

σ = 1, t = 0.02

e
ij

2
(x)=x

2

ν
ij

2
(x)

• outliers: almost no impact on ds in normal equations because the red term in (32) scales
contributions to both sums down for the particular ij

−
∑
i,j

L>ij νij(θ
s) =

(k∑
i,j

L>ijLij
)
ds

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 132/186) R. Šára, CMP; rev. 12–Jan–2016

ISparsity in Bundle Adjustment

We have q = 3p+ 11k parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pk) points, cameras

We will use a running index r = 1, . . . , z, z = p · k . Then each r corresponds to some i, j

θ∗ = arg min
θ

z∑
r=1

ν2
r (θ), θs+1:=θs+ds, −

z∑
r=1

L>r νr(θ
s) =

(
z∑
r=1

L>r Lr + λ diagL>r Lr

)
ds

The block form of Lr in Levenberg-Marquardt (→101) is zero except in columns i and j:
r-th error term is ν2

r = ρ(e2ij(Xi,Pj))

Lr =
i j r = (i, j) blocks:

: Xi, 1× 3
: Pj , 1× 11

L>r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

z∑
r=1

L>r Lr =

3p3p 11

• “points first, then cameras” scheme

• standard bundle adjustment eliminates points and solves cameras, then back-substitutes

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 133/186) R. Šára, CMP; rev. 12–Jan–2016

ICholeski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find ds such that −
z∑
r=1

L>r νr(θ
s) =

(z∑
r=1

L>r Lr + λ diag L>r Lr
)
ds

This is a linear set of equations Ax = b, where

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix A can be decomposed to
A = LL>, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL> transforms the problem to solving L L>x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q

L>x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj
)

back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121k + 66pk ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A [Triggs et al. 1999]

• λ controls the definiteness

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 134/186) R. Šára, CMP; rev. 12–Jan–2016

Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.

[p,q] = size(A);
if p ~= q, error ’Matrix must be square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix must be positive definite’; end
L(i,i) = sqrt(a);

end
end

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 135/186) R. Šára, CMP; rev. 12–Jan–2016

IGauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem →124

mi ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. ‖Xi‖2 = 1 this way we can represent points at infinity

2b. or using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrix can be represented by Cayley transform see next

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 136/186) R. Šára, CMP; rev. 12–Jan–2016

IImplementing Simple Constraints

What for?
1. fixing external frame as in θi = ti ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and
everything else stays the same →101

�2�3�4�5T = t =�̂1 �̂2 �̂3 �̂4�1 these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →138–139

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]

• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 137/186) R. Šára, CMP; rev. 12–Jan–2016

http://www.ics.forth.gr/~lourakis/sba/

IMinimal Representations for Rotation

• o – rotation axis, ‖o‖ = 1, ϕ – rotation angle
• wanted: simple mapping to/from rotation matrices

1. Rodrigues’ representation

R = I + sinϕ[o]× + (1− cosϕ)[o]2×

sinϕ [o]× =
1

2
(R−R>), cosϕ =

1

2
(trR− 1)

• hiding ϕ in the vector o as in [sinϕo]× is not so easy
• Cayley tried:

2. Cayley’s representation; let a = o tan ϕ
2

, then

R = (I + [a]×)(I− [a]×)−1

[a]× = (R + I)−1(R− I)

a1 ◦ a2 =
a1 + a2 − a1 × a2

1− a>1 a2
composition of rotations R = R1R2

• no trigonometric functions
• cannot represent rotation by 180◦

• explicit composition formula

3. exponential map R = exp [ϕo]×, inverse by Rodrigues’ formula

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 138/186) R. Šára, CMP; rev. 12–Jan–2016

Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent
• fundamental matrix

F = UDV>, D = diag(1, d2, 0), U,V are rotations, 3 + 1 + 3 = 7 DOF

• essential matrix

E = [−t]×R, R is rotation, ‖t‖ = 1, 3 + 2 = 5 DOF

• camera
P = K

[
R t

]
, 5 + 3 + 3 = 11 DOF

2. homography can be represented via exponential map

expA =

∞∑
k=0

1

k!
Ak

note: A0 = I

some properties

exp 0 = I, exp(−A) =
(
exp A

)−1
, exp(A + B) 6= exp(A) exp(B)

exp(A>) = (exp A)> hence if A skew symmetric then exp A orthogonal(
exp(A)

)>
= exp(A

>
) = exp(−A) =

(
exp(A)

)−1

det exp A = exp(tr A) . . . a key to homography representation:

H = expZ such that trZ = 0, eg. Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)

, 8 DOF

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 139/186) R. Šára, CMP; rev. 12–Jan–2016

Part VII

Stereovision

7.1 Introduction
7.2 Epipolar Rectification
7.3 Binocular Disparity and Matching Table
7.4 Image Similarity
7.5 Marroquin’s Winner Take All Algorithm
7.6 Maximum Likelihood Matching
7.7 Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.

3D Computer Vision: VII. Stereovision (p. 140/186) R. Šára, CMP; rev. 12–Jan–2016

What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene

3D Computer Vision: VII. Stereovision (p. 141/186) R. Šára, CMP; rev. 12–Jan–2016

What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• left: we have no help from image interpretation

• right: ambiguous interpretation due to a combination of lack of texture and occlusion

3D Computer Vision: VII. Stereovision (p. 142/186) R. Šára, CMP; rev. 12–Jan–2016

IHow Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image a good disparity map disparity map from WTA

WTA Matching:

for every left-image pixel
find the most similar
right-image pixel
along the
corresponding epipolar
line [Marroquin 83]

3D Computer Vision: VII. Stereovision (p. 143/186) R. Šára, CMP; rev. 12–Jan–2016

A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

2. in sufficiently complex scenes stereopsis requires image interpretation
or another-modality measurement

we have a tradeoff: model strength ↔ universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

• epipolar rectification
• disparity
• uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

• ordering as a weak continuity model

3. use a consistent framework
• looking for the most probable solution (MAP)

3D Computer Vision: VII. Stereovision (p. 144/186) R. Šára, CMP; rev. 12–Jan–2016

ILinear Epipolar Rectification for Easier Correspondence Search

Problem: Given fundamental matrix F or camera matrices P1, P2, transform images by a
pair of homographies so that epipolar lines become horizontal with the same row
coordinate. The result is a standard stereo pair.

Procedure:
1. find a pair of rectification homographies H1 and H2.
2. warp images using H1 and H2 and modify fundamental matrix F 7→ H−>2 FH−1

1 or
cameras P1 7→ H1P1, P2 7→ H2P2.

rectification 1 rectification 2

original pair

rectification ∞

• binocular rectification: there is a 9-parameter family of rectification homographies, see next

• trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)

• in general, linear rectification is not possible for more than three cameras

3D Computer Vision: VII. Stereovision (p. 145/186) R. Šára, CMP; rev. 12–Jan–2016

IRectification Homographies

Assumption: Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗2, l∗1, etc:
m∗

2 = (u∗
2, v

∗)v

u

m∗
1 = (u∗

1, v
∗)

l∗1 e∗2l∗2

corresponding epipolar lines must be:
1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 ⇒ l∗2 ' l∗1 ' e∗1 ×m1 = [e∗1]×m1 = F∗m1

• both conditions together give the rectified fundamental matrix

F∗ '

0 0 0
0 0 −1
0 1 0


• the rectified location difference d = u∗1 − u∗2 is called disparity

A two-step rectification procedure
1. find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. upgrade to a pair of optimal rectification homographies while preserving F∗

3D Computer Vision: VII. Stereovision (p. 146/186) R. Šára, CMP; rev. 12–Jan–2016

IGeometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2)>[e1]× →75

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

(Q∗1Q
∗
2
−1

)>[e∗1]× = (K∗1R
∗>K∗2

−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗2

−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (33)

• rectified cameras are in canonical position with respect to each other
not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies

3D Computer Vision: VII. Stereovision (p. 147/186) R. Šára, CMP; rev. 12–Jan–2016

IThe Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay
rectified, i.e. if A2

−> F∗A1
−1 ' F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3

0 sv tv
0 q 1

 ,
uv

where s 6= 0, u0, l1, l2 6= 0, l3, r1, r2 6= 0, r3, q are 9 free parameters.

general transformation canonical type

l1, r1 horizontal scales l1 = r1 algebraic

l2, r2 horizontal shears l2 = r2 algebraic

l3, r3 horizontal shifts l3 = r3 algebraic

q common special projective geometric

sv common vertical scale geometric

tv common vertical shift algebraic

9 DoF 9− 3 = 6 DoF

• q is rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G• sv changes the focal length

3D Computer Vision: VII. Stereovision (p. 148/186) R. Šára, CMP; rev. 12–Jan–2016

The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification
homographies. Then H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with
group operation (A′1, A

′
2) ◦ (A1, A2) = (A′1 A1, A

′
2 A2).

Proof:

• closure by Proposition 1

• associativity by matrix multiplication

• identity belongs to the set

• inverse element belongs to the set by A>2 F∗A1 ' F∗ ⇔ F∗ ' A−>2 F∗A−1
1

3D Computer Vision: VII. Stereovision (p. 149/186) R. Šára, CMP; rev. 12–Jan–2016

IPrimitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H1, H2

1. Let the SVD of F be UDV> = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. Write D as D = A>F∗B. For instance (F∗ is given →146)

A =

0 0 1
0 −d 0
1 0 0

, B =

0 0 1
1 0 0
0 d 0


3. Then

F = UDV> = UA>︸ ︷︷ ︸
Ĥ>2

F∗ BV>︸ ︷︷ ︸
Ĥ1

and the primitive rectification homographies are

Ĥ2 = AU>, Ĥ1 = BV>

~ P1; 1pt: derive some A, B from the admissible class

• rectification homographies do exist →146

• there are other primitive rectification homographies, these suggested are just simple to obtain

3D Computer Vision: VII. Stereovision (p. 150/186) R. Šára, CMP; rev. 12–Jan–2016

IPrimitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 are orthogonal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix
2. choose a suitable common calibration matrix K, e.g.

K =

f 0 u0

0 f v0

0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies applied as Pi 7→ HiPi are

H1 = KĤ1K
−1
1 , H2 = KĤ2K

−1
2

• we got a standard camera pair and non-negative disparity

let K−1
i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P1 = KĤ1K−1
1 P1 = K BV>R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗

[
I −C1

]
H2P2 = KĤ2K−1

2 P2 = K AU>R2︸ ︷︷ ︸
R∗

[
I −C2

]
= KR∗

[
I −C2

]

• one can prove that BV>R1 = AU>R2 with the help of (13)

• points at infinity project to KR∗ in both images ⇒ they have zero disparity →154

3D Computer Vision: VII. Stereovision (p. 151/186) R. Šára, CMP; rev. 12–Jan–2016

ISummary

• rectification is a homography (per image)
⇒ rectified camera centers are equal to the original ones

• standard rectified cameras are in canonical orientation
⇒ rectified image projection planes are coplanar

• standard rectification guarantees equal rectified calibration matrices
⇒ rectified image projection planes are equal

standard rectification homographies reproject onto
a common image plane parallel to the baseline

X

C1 C2

f

Corollary

• standard rectified pair: disparity vanishes when corresponding 3D points are at infinity

• known F used alone gives no constraints on standard rectification homographies
• for that we need either of these:

1. projection matrices, or
2. calibrated cameras, or
3. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (33)

3D Computer Vision: VII. Stereovision (p. 152/186) R. Šára, CMP; rev. 12–Jan–2016

Optimal and Non-linear Rectification

Optimal choice for the free parameters

• by minimization of residual image distortion, eg.
[Gluckman & Nayar 2001]

A∗1 = arg min
A1

∫∫
Ω

(
det J(A1Ĥ1x)− 1

)2
dx

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion

[Pollefeys et al. 1999], [Geyer & Daniilidis 2003]

forward egomotion rectified images, Pollefeys’ method

3D Computer Vision: VII. Stereovision (p. 153/186) R. Šára, CMP; rev. 12–Jan–2016

IBinocular Disparity in Standard Stereo Pair

top view

m2
X z
ot�2m1

x
u2 z
�2�1 C2C1 fb zu1

b2z
ot�1
x

side view

yC1;2 yXm1;2 vf z

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2

u1 = f cotα1 u2 = f cotα2

b =
b

2
+ x− z cotα2

X = (x, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations

• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing baseline increases disparity and reduces
the error

3D Computer Vision: VII. Stereovision (p. 154/186) R. Šára, CMP; rev. 12–Jan–2016

Understanding Basic Occlusion Constraints

• we can recognize matches but have no scene model

• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity in the presence of
repetitions (or lack of texture)

left image right image

C 1

2

3

B−2

A−1

C−3

A

B

A

B

C 1

3

C−3

B−1

A−2

2

interpretation 1 interpretation 2
3D Computer Vision: VII. Stereovision (p. 155/186) R. Šára, CMP; rev. 12–Jan–2016

IUnderstanding Basic Occlusion Types More Deeply

surface pt.

r3occluded

transparent

r1

r2

l

X2 X1 X
half occlusion mutual occlusion

• surface point at the intersection of rays l and r1 occludes a world point at the intersection
(l, r3) and implies the world point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every world point such as X1 or X2 is excluded by a binocularly visible
surface point ⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
⇒ decisions in the zone are independent on the rest

m
u
tu

a
lly

−
o
c
c
lu

d
e
d

h
a
lf
−

o
c
c
lu

d
e
d

3D Computer Vision: VII. Stereovision (p. 156/186) R. Šára, CMP; rev. 12–Jan–2016

IMatching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

C1 C2�1 �24321 1 2 43

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table
• rows and columns represent optical rays
• nodes: possible correspondence pairs
• full nodes: matches
• numerical values associated with nodes: descriptor similarities see next

3D Computer Vision: VII. Stereovision (p. 157/186) R. Šára, CMP; rev. 12–Jan–2016

Image Point Descriptors And Their Similarity

Descriptors: Tag image points by their (viewpoint-invariant) physical properties:
• texture window [Moravec 77]
• a descriptor like DAISY [Tola et al. 2010]
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• we will compute image similarity for all ‘match candidates’ and get the matching table

video
3D Computer Vision: VII. Stereovision (p. 158/186) R. Šára, CMP; rev. 12–Jan–2016

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

IConstructing A Suitable Image Similarity

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T :

�2l
r

�1
in the left image: L(l)l

• a natural descriptor similarity is sim(l, r) =
‖L(l)−R(r)‖2

σ2
I (l, r)

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
s2
(
L(l)

)
+ s2

(
R(r)

)]
, giving

sim(l, r) = 1−
2 s
(
L(l),R(r)

)
s2
(
L(l)

)
+ s2

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
s
2
(·) is sample (co-)variance (34)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’

3D Computer Vision: VII. Stereovision (p. 159/186) R. Šára, CMP; rev. 12–Jan–2016

Similarity vs. Match Likelihood

• ρ can be considered a similarity feature

• we choose some probability distribution on
[0, 1], e.g. Beta distribution

p1

(
ρ(l, r)

)
=

1

B(α, β)
ρ2(α−1)(1− ρ2)β−1

• note that uniform distribution is obtained for
α = β = 1

• when α = 3/2 and β = 1 then p1(·) = 2
3
|ρ|

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

B
e
(ρ

2
;α

,β
)

−2

0

2

4

6

8

10

ρ

−
lo

g
(B

e
(ρ

2
;α

,β
))

α=10, β=1.5

• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1

• perfect similarity is ‘suspicious’ (depends on expected camera noise level)

• from now on we will work with negative log-likelihood

V1

(
ρ(l, r)

)
= − log p1

(
ρ(l, r)

)
(35)

smaller is better

• we may also define similarity (and negative log-likelihood V0(ρ(l, r))) for non-matches

3D Computer Vision: VII. Stereovision (p. 160/186) R. Šára, CMP; rev. 12–Jan–2016

Example: Empirical Distribution for Matches and Non-Matches

• KITTI dataset
• 4.2 · 106 ground-truth (LiDAR) matches for p1(ρ) (green),
• 4.2 · 106 random non-matches for p0(ρ) (red)

• histograms of ρ computed over 5× 5 correlation window

3D Computer Vision: VII. Stereovision (p. 161/186) R. Šára, CMP; rev. 12–Jan–2016

How A Scene Looks in The Filled-In Matching Table

scene left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscrimiable

• MNCC ρ used
(α = 1.5, β = 1)

• high-correlation structures
correspond to scene objects

constant disparity

• a diagonal in matching
table

• zero disparity is the main
diagonal

depth discontinuity

• horizontal or vertical jump
in matching table

large image window

• better correlation

• worse occlusion localization
see next

repeated texture

• horizontal and vertical
block repetition

3D Computer Vision: VII. Stereovision (p. 162/186) R. Šára, CMP; rev. 12–Jan–2016

Understanding Matching Tables

right image pixel index

le
ft

 i
m

a
g

e
 p

ix
e

l
in

d
e

x

depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J

d
k

dk

3D Computer Vision: VII. Stereovision (p. 163/186) R. Šára, CMP; rev. 12–Jan–2016

Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

α

β

χ

δ

ε

ρ

γ

η

σ

ϕ

κ

λ

µ

ν

τ

• this used really large window of 25× 25 px
• errors depend on the relative contrast across the occlusion boundary
• the direction of ‘overflow’ depends on the combination of texture and edge contrasts
• solutions:

1. small windows (5× 5 typically suffices)
2. eg. ‘guided filtering’ methods for computing image similarity [Hosni 2011]

3D Computer Vision: VII. Stereovision (p. 164/186) R. Šára, CMP; rev. 12–Jan–2016

IMarroquin’s Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel

SAD(l, r) = ‖L(l)−R(r)‖1 L1 norm instead of the L2 norm in (34); unnormalized

2. represent the matching table diagonals in a compact form

1

2

3

4

5

6

d = 1

d = 2

d = 0

61 2 3 4 5

d = 0

d = 1

d = 2

3. use the ‘image sliding aggregation algorithm’

∑
image shifted by d = 1 pixel

×

win

imr

iml

4. threshold results by maximal allowed dissimilarity

3D Computer Vision: VII. Stereovision (p. 165/186) R. Šára, CMP; rev. 12–Jan–2016

The Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)

% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end

3D Computer Vision: VII. Stereovision (p. 166/186) R. Šára, CMP; rev. 12–Jan–2016

WTA: Some Results

thr = 20 thr = 10

• results are bad

• false matches in textureless image regions and on repetitive structures (book shelf)

• a more restrictive threshold (thr = 10) does not work as expected

• we searched the true disparity range, results get worse if the range is set wider

• chief failure reasons:
• unnormalized image dissimilarity does not work well
• no occlusion model

3D Computer Vision: VII. Stereovision (p. 167/186) R. Šára, CMP; rev. 12–Jan–2016

IA Principled Approach: (1) Symmetric Matching

• given matching M what is the likelihood of observed data D?
• data – all pairwise costs in matching table T
• matches – pairs pi = (li, ri), i = 1, . . . , n
• matching: partitioning matching table T to matched M and excluded E pairs

T = M ∪ E, M ∩ E = ∅

• matching cost (negative log-likelihood, smaller is better)

V (D |M) =
∑
p∈M

V1(D | p) +
∑
p∈E

V0(D | p)

V1(D | p) – negative log-probability of data D at matched pixel p (35)
V0(D | p) – ditto at unmatched pixel p (e.g. uniform)

• matching problem
M∗ = arg min

M∈M(T)
V (D |M)

M(T) – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left ↔ right image swap

3D Computer Vision: VII. Stereovision (p. 168/186) R. Šára, CMP; rev. 12–Jan–2016

IA Principled Approach: (2) Log-Likelihood Ratio

• we need to reduce the matching to a standard polynomial-complexity problem

• we convert the matching cost to an ‘easier’ sum

V (D |M) =
∑
p∈M

V1(D | p) +
∑
p∈E

V0(D | p) +

0︷ ︸︸ ︷∑
p∈M

V0(D | p)−
∑
p∈M

V0(D | p)

=
∑
p∈M

(
V1(D | p)− V0(D | p)

)
︸ ︷︷ ︸

−L(D | p)

+
∑
p∈E

V0(D | p) +
∑
p∈M

V0(D | p)

︸ ︷︷ ︸∑
p∈T

V0(D | p) = const

• hence
arg min

M∈M(T)
V (D |M) = arg max

M∈M(T)

∑
p∈M

L(D | p) (36)

L(D | p) – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood but our measurement is all data D

• (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML)
matching problem
• it must contain no pairs p with L(D | p) < 0
• use Hungarian (Munkres) algorithm and threshold the result based on L(D | p)
• or step back: sacrifice symmetry to speed and use dynamic programming

3D Computer Vision: VII. Stereovision (p. 169/186) R. Šára, CMP; rev. 12–Jan–2016

Some Results for the Maximum-Likelihood (ML) Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff
• middle row: Ve set to error rate of 3% (and 61% density is achieved) holes are black

• bottom row: Ve set to density of 76% (and 4.3% error rate is achieved)

3D Computer Vision: VII. Stereovision (p. 170/186) R. Šára, CMP; rev. 12–Jan–2016

IBasic Stereoscopic Matching Models

• notice many small isolated errors in the ML matching

• we need a stronger model

Potential models for M

1. Uniqueness: Every image point matches at most once

• excludes semi-transparent objects
• used by the ML matching algorithm (but not by the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved

• For all (i, j) ∈M, (k, l) ∈M, k > i⇒ l > j
Notation: (i, j) ∈ M or j = M(i) – left-image pixel i matches right-image pixel j

• excludes thin objects close to the cameras

3. Coherence: Objects occupy well defined 3D volumes

• concept by [Prazdny 85]
• algorithms are based on image/disparity map segmentation
• currently the most popular model (segment-based, bilateral filtering and their successors)

4. Continuity: There are no occlusions or self-occlusions

• too strong, except in some applications

3D Computer Vision: VII. Stereovision (p. 171/186) R. Šára, CMP; rev. 12–Jan–2016

IUniqueness and Ordering in Matching Table T

X-zone and F -zone

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

X-zone

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈M : pj /∈ F (pi).

F -zone

• ordering constraint: matched points form a
monotonic set in both images

• ordering is a powerful constraint:
monotonic matchings O(4n)� O(n!) all matchings

in n× n table

~ 2: how many are there maximal monotonic matchings?

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model and partly also an occlusion model

• ordered matching can be found by dynamic programming

3D Computer Vision: VII. Stereovision (p. 172/186) R. Šára, CMP; rev. 12–Jan–2016

Some Results: AppleTree

left image right image ML →169

3LDP w/ordering [SP] näıve DP [Cox et al. 1992] stable segmented 3LDP

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/

3D Computer Vision: VII. Stereovision (p. 173/186) R. Šára, CMP; rev. 12–Jan–2016

http://vision.middlebury.edu/stereo/

Some Results: Larch

left image right image ML →169

3LDP w/ordering [SP] näıve DP stable segmented 3LDP

• näıve DP does not model mutual occlusion

• but even 3LDP has errors in mutually occluded region

• stable segmented 3LDP has few errors in mutually occluded region since it uses a coherence
model

3D Computer Vision: VII. Stereovision (p. 174/186) R. Šára, CMP; rev. 12–Jan–2016

Algorithm Comparison

Winner-Take-All (WTA →165)

• the ur-algorithm very weak model

• dense disparity map

• O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →169)

• semi-dense disparity map

• many small isolated errors

• models basic occlusion

• O(N3 log(NV)) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map

• models occlusion in flat, piecewise continuos
scenes

• has ‘illusions’ if ordering does not hold

• O(N3) algorithm

Stable Segmented 3LDP

• better (fewer errors at any given density)

• O(N3 logN) algorithm

• requires image segmentation itself a difficult task

0.5 1 2 3 5 10 20

2

5

10

20

30

50

70

80

90

95

98

inaccuracy [%]

d
e

n
s
it
y
 [

%
]

ROC curves and their average error rate bounds

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the
density/accuracy tradeoff

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)

3D Computer Vision: VII. Stereovision (p. 175/186) R. Šára, CMP; rev. 12–Jan–2016

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/

Part VIII

Shape from Reflectance

8.1 Reflectance Models (Microscopic Phenomena)

8.2 Photometric Stereo

mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice
Hall 2003. Chap. 5

additional references

R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451, July 1988.

P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision

and Pattern Recognition, pp. 1060–1066, 1997.

3D Computer Vision: VIII. Shape from Reflectance (p. 176/186) R. Šára, CMP; rev. 12–Jan–2016

Basic Surface Reflectance Mechanisms l n vL
macroscopic scale

n = 1:5 : : :2:3
refra
tion index n = 1opti
al boundary

air
parti
les in medium

microscopic scale

• reflection on (rough) optical boundary
• masking and shadowing
• interreflection

• refraction into the body
• subsurface scattering
• refraction into the air

3D Computer Vision: VIII. Shape from Reflectance (p. 177/186) R. Šára, CMP; rev. 12–Jan–2016

Parametric Reflectance Models

Image intensity (measurement) at pixel m given by surface reflectance function R

J(m) = η fi,r(θi, φi; θr, φr) ·
Φe

4π‖L− x‖2︸ ︷︷ ︸
σ

n>l = R(n), l =
L− x

‖L− x‖

η – sensor sensitivity for simplicity, we select η = 2π

fi,r() – bidirectional reflectance distribution function (BRDF)

[fi,r()] = sr−1 how much of irradiance in Wm−2 is
redistributed per solid angle element

L – point light source position in 3D

x – surface patch position in 3D

Φe – radiant power of the light source, [Φe] = W

n – surface normal

σ – irradiance of a surface element orthogonal to incident
light direction

Isotropic (Lambertian) reflection [Lambert 1760]

no optical boundary

fi,r(θi, φi; θr, φr) =
ρ

2π
, ρ – albedo

J(m) = σρ cos θi = σρn>l

l n l+ v
x�i �r

�i �r�
L

vV
pixel projected onto surface

3D Computer Vision: VIII. Shape from Reflectance (p. 178/186) R. Šára, CMP; rev. 12–Jan–2016

IPhotometric Stereo

Lambertian model (light j ∈ {1, 2, 3}, pixel i ∈ {1, . . . , n})

Jji = (σj lj)
>(ρi ni) = s>j bi

bi – scaled normals, sj – scaled lights

3 independent scaled lights and n scaled normals (per pixel); stacked:J11 J1n

J21 · · · J2n

J31 J3n

 =

s>1 b1 s>1 bn
s>2 b1 · · · s>2 bn
s>3 b1 s>3 bn

 =

s>1s>2
s>3

 [b1 · · · bn
]

= S>B

Solution to Photometric Stereo

J = S>B ⇒ B = S−>J S ∈ R3,3, B ∈ R3,n, J ∈ R3,n

ρi = ‖bi‖ albedo map, ni =
1

ρi
bi needle map

nilj vi�i
pixel indexing i:

1 2 3 4

8765

9 10 11 12

3D Computer Vision: VIII. Shape from Reflectance (p. 179/186) R. Šára, CMP; rev. 12–Jan–2016

Photometric Stereo: Plaster Cast Example

input images (known lights) needle & albedo maps

We have: 1. shape (surface normals), 2. intrinsic texture (albedo)

• depth map
(
u, v, z(u, v)

)
, u, v – image coordinates, z – depth Monge patch

• represented as unit normal vectors n or as a gradient field
(
p(u, v), q(u, v)

)
:

n(u, v) =
(
n1(u, v), n2(u, v), n3(u, v)

)
'
(
p(u, v), q(u, v), 1

)
see a book on differential geometry of surfaces

∂z(u, v)

∂u

def
= zu(u, v) = p(u, v) =

n1(u, v)

n3(u, v)

∂z(u, v)

∂v

def
= zv(u, v) = q(u, v) =

n2(u, v)

n3(u, v)
3D Computer Vision: VIII. Shape from Reflectance (p. 180/186) R. Šára, CMP; rev. 12–Jan–2016

The Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields p(u, v), q(u, v), find height function z(u, v) such that zu is
close to p and zv is close to q in the sense of a functional norm.

z∗ = arg min
z
Q(z), Q(z) =

∫∫
|zu(u, v)− p(u, v)|2 + |zv(u, v)− q(u, v)|2 du dv

In the Fourier domain this can be written as F(z;ω) = 1
2π

∫∫
z(u, v)e−j(uωu+vωv) du dv

Q(z) =

∫∫
|jωu F(z;ω)−F(p;ω)|2 + |jωv F(z;ω)−F(q;ω)|2︸ ︷︷ ︸

A(F(z;ω))

dω, ω = (ωu, ωv)

and its minimiser is from vanishing formal derivative of A(F(z;ω)) wrt F(z;ω)

[Frankot & Chellappa 1988]

F(z;ω) = − jωu|ω|2 F(p;ω)− jωv
|ω|2 F(q;ω)

[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));

3D Computer Vision: VIII. Shape from Reflectance (p. 181/186) R. Šára, CMP; rev. 12–Jan–2016

Photometric Stereo: Examples

3 input images surface

3 input images surface

• integrated by the FC algorithm →181

• bias due to interreflections can be removed [Drew & Funt, JOSA-A 1992]

3D Computer Vision: VIII. Shape from Reflectance (p. 182/186) R. Šára, CMP; rev. 12–Jan–2016

Optimal Light Configurations

For n lights S the error ∆b = S−>∆J in normal b due to error ∆J in image is

ε(S) = E
[
∆b>∆b

]
= E

[
∆J>(S>S)−1∆J

]
= σ2 tr

[
(SS>)−1] ≥ 9σ2

n
.

assuming pixel-independent normal camera noise ∆Ji ∼ N(0, σ)

The error ε is minimum if [Drbohlav & Chantler 2005]

SS> =
n

3
I, where S = [s1, s2, . . . , sn]

• either n ≥ 3 equidistant and equiradiant lights on a circle of uniform slant of
arctan

√
2 ≈ 54.74◦

• n− 1 lights in this configuration plus a light parallel to the sum
∑n−1
i=1 si

• or light matrix S is a concatenation of optimal solutions (each of ≥ 3 lights)
eg. 3 optimally placed (s1, s2, s3) + 3 lights (s4, s5, s6) = (s1, s2, s3) + α rotated by angle α around nn 54:74Æ

3D Computer Vision: VIII. Shape from Reflectance (p. 183/186) R. Šára, CMP; rev. 12–Jan–2016

Uncalibrated Photometric Stereo

Factorization J = S>B, J ∈ R3,n [Hayakawa94]

LS solution by SVD decomposition of J = UDV>, U ∈ R3,3, D ∈ R3,n, V ∈ Rn,n

S = D1:3U> scaled pseudo-lights

B = (V1:3)> scaled pseudo-normals V1:3 are columns 1–3

Ambiguity J = S>B = S>A−1︸ ︷︷ ︸
S̄>

AB︸ ︷︷ ︸
B̄

, A ∈ GL(3) [Koenderink94]

remaninig
known ambiguity algorithm

n ≥ 3 normals B̄ λI B̄ = AB ⇒ A B is measured

uniform albedo in
n ≥ 6 points

λR b>i A>Abi = 1: linear in A>A ⇒A up to rotation R by Choleski
[Drew92]

equal light intensity λR ‖sjA−1‖ = 1 ⇒ A up to rotation R [Hayakawa94]

integrability pv = qu GBR [Yuille99, Fan97, Belhumeur99]

uniform albedo and
integrability

λI

integrability and
n ≥ 2 specular points

λI [Drbohlav & Chantler, ICCV 2005]

3D Computer Vision: VIII. Shape from Reflectance (p. 184/186) R. Šára, CMP; rev. 12–Jan–2016

Integrability of a Vector Field

• not every vector field p(u, v), q(u, v) is integrable (born by a surface z(u, v))
• integrability constraint

pv(u, v) = qu(u, v)

• this is because a regular surface has rot∇z(u, v) = 0 irrotational gradient field

zuv(u, v) = zvu(u, v)

• noise causes non-integrability
• the FC algorithm finds the closest integrable surface

integrable non-integrable non-integrable (noisy)

3D Computer Vision: VIII. Shape from Reflectance (p. 185/186) R. Šára, CMP; rev. 12–Jan–2016

Generalized Bas Relief Ambiguity (GBR)

GBR maps surface z′(u, v) = λz(u, v) + µu+ ν v, i.e. it maps normals to n′ = Gn, where

G =

λ 0 −µ
0 λ −ν
0 0 1


Obs: If normals change n′ = G n and lights change l′ = G−> l then Lambertian shading does not
change:

n′
>

l′ = (n>G>)(G−>l) = n>l

nl l0
f(t) 0:6f(t) + 0:5t

t n0
Reproduced from [Belhumeur et al. 1997]

Obs: Shadow boundaries of surface S illuminated by light l are identical to those of surface S′
transformed by GBR G and illuminated by light l′ = G−> l weak assumptions [Belhumeur et al. 1997]

3D Computer Vision: VIII. Shape from Reflectance (p. 186/186) R. Šára, CMP; rev. 12–Jan–2016

Thank You

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

p

p∞

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

B

A

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

−7,11

−8,10

−9,9

−5,11

−6,10

−7,9

−8,8

−3,11

−4,10

−5,9

−6,8

−7,7

−8,6

−9,5

−1,11

−2,10

−3,9

−4,8

−5,7

−6,6

−7,5

−8,4

1,11

0,10

−1,9

−2,8

−3,7

−4,6

−5,5

−6,4

−7,3

3,11

2,10

1,9

0,8

−1,7

−2,6

−3,5

−4,4

−5,3

3,9

2,8

1,7

0,6

−1,5

−2,4

−3,3

3,7

2,6

1,5

0,4

−1,3

3,5

2,4

1,3

4,4

3,3

−6,12 −4,12

−9,7

−2,12

−10,6

0,12 2,12

−6,2

4,10

−4,2

4,8

−2,2

4,6

0,2 2,2

−10,8

1,13

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p(
||x

||
| r

 =
 1

)

σ = 0.25
σ = 0.5
σ = 1
σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p(
||x

||
| r

 =
 1

)

σ = 0.25
σ = 0.5
σ = 1
σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

m
u
tu

a
lly

−
o
c
c
lu

d
e
d

h
a
lf
−

o
c
c
lu

d
e
d

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

0.5 1 2 3 5 10 20

2

5

10

20

30

50

70

80

90

95

98

inaccuracy [%]

d
e

n
s
it
y
 [

%
]

ROC curves and their average error rate bounds

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 12–Jan–2016

	Perspective Camera
	Basic Entities: Points, Lines
	Homography: Mapping Acting on Points and Lines
	Canonical Perspective Camera
	Changing the Outer and Inner Reference Frames
	Projection Matrix Decomposition
	Anatomy of Linear Perspective Camera
	Vanishing Points and Lines

	Computing with a Single Camera
	Calibration: Internal Camera Parameters from Vanishing Points and Lines
	Camera Resection: Projection Matrix from 6 Known Points
	Exterior Orientation: Camera Rotation and Translation from 3 Known Points

	Computing with a Camera Pair
	Camera Motions Inducing Epipolar Geometry
	Estimating Fundamental Matrix from 7 Correspondences
	Estimating Essential Matrix from 5 Correspondences
	Triangulation: 3D Point Position from a Pair of Corresponding Points

	Optimization for 3D Vision
	The Concept of Error for Epipolar Geometry
	Levenberg-Marquardt's Iterative Optimization
	The Correspondence Problem
	Optimization by Random Sampling

	3D Structure and Camera Motion
	Introduction
	Reconstructing Camera Systems
	Bundle Adjustment

	Stereovision
	Introduction
	Epipolar Rectification
	Binocular Disparity and Matching Table
	Image Similarity
	Marroquin's Winner Take All Algorithm
	Maximum Likelihood Matching
	Uniqueness and Ordering as Occlusion Models

	Shape from Reflectance
	Reflectance Models (Microscopic Phenomena)
	Photometric Stereo

	End of Slides

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:

