Consider error function \(e_i(\theta) = f(x_i, y_i, \theta) \in \mathbb{R}^m \), with \(x_i, y_i \) given, \(\theta \in \mathbb{R}^q \) unknown

\[
\theta = F, \quad q = 9, \quad m = 1 \text{ for f.m. estimation}
\]

Our goal: \(\theta^* = \arg \min_{\theta} \sum_{i=1}^k \| e_i(\theta) \|^2 \)

Idea 1 (Gauss-Newton approximation): proceed iteratively for \(s = 0, 1, 2, \ldots \)

\[
\theta^{s+1} = \theta^s + d_s, \quad \text{where} \quad d_s = \arg \min_d \sum_{i=1}^k \| e_i(\theta^s + d) \|^2
\]

\[
e_i(\theta^s + d) \approx e_i(\theta^s) + L_i d,
\]

\[
(L_i)_{jl} = \frac{\partial(e_i(\theta))_j}{\partial(\theta)_l}, \quad L_i \in \mathbb{R}^{m,q} \text{ typically a long matrix}
\]

Then the solution to Problem (19) is a set of normal eqs

\[
- \sum_{i=1}^k L_i^\top e_i(\theta^s) = \left(\sum_{i=1}^k L_i^\top L_i \right) d_s,
\]

\[
A \ x = b
\]

\[
A = C^T C
\]

\[
\hat{x} = A \backslash b
\]

\[
\ x = \hat{x} \quad \rightarrow 134
\]

- \(d_s \) can be solved for by Gaussian elimination using Choleski decomposition of \(L \)

 \(L \) symmetric \(\Rightarrow \) use Choleski, almost \(2 \times \) faster than Gauss-Seidel, see bundle adjustment

- such updates do not lead to stable convergence \(\rightarrow \) ideas of Levenberg and Marquardt
Idea 2 (Levenberg): replace $\sum_i L_i^T L_i$ with $\sum_i L_i^T L_i + \lambda I$ for some damping factor $\lambda \geq 0$

Idea 3 (Marquardt): replace λI with $\lambda \sum_i \text{diag}(L_i^T L_i)$ to adapt to local curvature:

$$- \sum_{i=1}^{k} L_i^T e_i(\theta^s) = \left(\sum_{i=1}^{k} (L_i^T L_i + \lambda \text{diag}(L_i^T L_i)) \right) d_s$$

Idea 4 (Marquardt): adaptive λ

1. choose $\lambda \approx 10^{-3}$ and compute d_s
2. if $\sum_i \| e_i(\theta^s + d_s) \|^2 < \sum_i \| e_i(\theta^s) \|^2$ then accept d_s and set $\lambda := \lambda/10$, $s := s + 1$
3. otherwise set $\lambda := 10\lambda$ and recompute d_s

- sometimes different constants are needed for the 10 and 10^{-3}
- note that $L_i \in \mathbb{R}^{m,q}$ (long matrix) but each contribution $L_i^T L_i$ is a square singular $q \times q$ matrix (always singular for $k < q$)
- error can be made robust to outliers, see the trick $\rightarrow 107$
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]
- λ helps avoid the consequences of gauge freedom $\rightarrow 136$
LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates \(u^1, v^1, u^2, v^2 \))

\[
e_i(F) = \frac{\varepsilon_i}{\|J_i\|} = \frac{y_i^T F x_i}{\sqrt{\|SFx_i\|^2 + \|SF^Ty_i\|^2}}
\]

where \(S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \)

LM (by linearization over parameters \(F \'))

\[
L_i = \frac{\partial e_i(F)}{\partial F} = \cdots = \frac{1}{2\|J_i\|} \left[\left(y_i - \frac{2e_i}{\|J_i\|} SFx_i \right) x_i^T + y_i \left(x_i - \frac{2e_i}{\|J_i\|} SF^Ty_i \right)^T \right] \tag{21}
\]

- \(L_i \) is a \(3 \times 3 \) matrix, must be reshaped to dimension-9 vector \(\text{vec}(L_i) \)
- \(x_i \) and \(y_i \) in Sampson error are normalized to unit homogeneous coordinate \((21) \) relies on this
- reinforce \(\text{rank} \ F = 2 \) after each LM update to stay in the fundamental matrix manifold and \(\|F\| = 1 \) to avoid gauge freedom by SVD \(\rightarrow \) 105
- LM linearization could be done by numerical differentiation (small dimension)
Local Optimization for Fundamental Matrix Estimation

Given a set \(\{(x_i, y_i)\}_{i=1}^{k} \) of \(k > 7 \) inlier correspondences, compute a (reasonably) efficient estimate for fundamental matrix \(F \).

1. Find the conditioned (→88) 7-point \(F_0 \) (→80) from a suitable 7-tuple

2. Improve the \(F_0^* \) using the LM optimization (→102–103) and the Sampson error (→104) on all inliers, reinforce rank-2, unit-norm \(F_k^* \) after each LM iteration using SVD

- if there are no wrong matches (outliers), this gives a local optimum
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)
Problem: Given image point sets \(X = \{x_i\}_{i=1}^m \) and \(Y = \{y_j\}_{j=1}^n \) and their descriptors \(D \), find the most probable

1. inliers \(S_X \subseteq X, S_Y \subseteq Y \)
2. one-to-one perfect matching \(M : S_X \rightarrow S_Y \)
3. fundamental matrix \(F \) such that \(\text{rank } F = 2 \)
4. such that for each \(x_i \in S_X \) and \(y_j = M(x_i) \) it is probable that
 a) the image descriptor \(D(x_i) \) is similar to \(D(y_j) \), and
 b) the total geometric error \(E = \sum_{ij} e_{ij}^2(F) \) is small
5. inlier-outlier and outlier-outlier matches are improbable

\[
(M^*, F^*) = \arg \max_{M,F} p(E, D, F | M) P(M)
\]

- probabilistic model: an efficient language for problem formulation
- the (22) is a Bayesian probabilistic model
- binary matching table \(M_{ij} \in \{0, 1\} \) of fixed size \(m \times n \)
 - each row/column contains at most one unity
 - zero rows/columns correspond to unmatched point \(x_i/y_j \).
Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of $(M^*, F^*) = \arg \max_{M,F} p(E,D,F \mid M) P(M)$ solve

$$ F^* = \arg \max_F p(E,D,F) $$

by marginalization of $p(E,D,F \mid M) P(M)$ over M

ignoring that M are 1:1 matchings and assuming correspondence-wise independence:

$$ p(E,D,F \mid M) P(M) = \prod_{i=1}^m \prod_{j=1}^n p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) $$

- e_{ij} represents geometric error for match $x_i \leftrightarrow y_i$: $e_{ij}(x_i, y_i, F)$
- d_{ij} represents descriptor similarity for match $x_i \leftrightarrow y_i$: $d_{ij} = \|d(x_i) - d(y_j)\|$

Marginalization:

$$ p(E,D,F) \approx \sum_{m_{11} \in \{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{mn}} p(E,D,F \mid M) P(M) = $$

$$ = \sum_{m_{11}} \cdots \sum_{m_{mn}} \prod_{i=1}^m \prod_{j=1}^n p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) = \bigotimes 1 = $$

$$ = \prod_{i=1}^m \prod_{j=1}^n \sum_{m_{ij} \in \{0,1\}} p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) $$

we will continue with this term
Robust Matching Model (cont’d)

\[
\sum_{m_{ij} \in \{0, 1\}} p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) =
\]

\[
= p_e(e_{ij}, d_{ij}, F \mid m_{ij} = 1) P(m_{ij} = 1) + p_e(e_{ij}, d_{ij}, F \mid m_{ij} = 0) P(m_{ij} = 0) =
\]

\[
= (1 - p_0) p_1(e_{ij}, d_{ij}, F) + p_0 p_0(e_{ij}, d_{ij}, F)
\]

(24)

- the \(p_0(e_{ij}, d_{ij}, F) \) is a penalty for ‘missing a correspondence’ but it should be a p.d.f.
 (cannot be a constant)

 choose \(P_0 \to 1, \ p_0(\cdot) \to 0 \) so that \(\frac{P_0}{1 - P_0} p_0(\cdot) \approx \text{const} \)

- the \(p_1(e_{ij}, d_{ij}, F) \) is typically an easy-to-design term: assuming independence of geometric error and descriptor similarity:

\[
p_1(e_{ij}, d_{ij}, F) = p_1(e_{ij} \mid F) p_F(F) p_1(d_{ij})
\]

- we choose, eg.

\[
p_1(e_{ij} \mid F) = \frac{1}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}}, \ p_1(d_{ij}) = \frac{1}{T_d(\sigma_d, \text{dim} d)} e^{-\frac{\|d(x_i) - d(y_j)\|^2}{2\sigma_d^2}}
\]

(25)

- \(F \) is a random variable and \(\sigma_1, \sigma_d, P_0 \) are parameters

- the form of \(T(\sigma_1) \) depends on error definition, it may depend on \(x_i, y_j \) but not on \(F \)

- we will continue with the result from (24)
Simplified Robust Energy (Error) Function

- assuming the choice of \(p_1 \) as in (25), we are simplifying

\[
p(E, D, F) = p(E, D | F) p_F(F) = p_F(F) \prod_{i=1}^{m} \prod_{j=1}^{n} \left[(1 - P_0) p_1(e_{ij}, d_{ij} | F) + P_0 p_0(e_{ij}, d_{ij} | F) \right]
\]

- we choose \(\sigma_0 \gg \sigma_1 \) and omit \(d_{ij} \) for simplicity; then the square-bracket term is

\[
\frac{1 - P_0}{T_e(\sigma_1)} \left(-\frac{e_{ij}^2(F)}{2\sigma_1^2} + \frac{1 - P_0}{P_0} \frac{T_e(\sigma_1)}{T_e(\sigma_0)} \left(-\frac{e_{ij}^2(F)}{2\sigma_0^2} \right) \right)
\]

- we define the ‘potential function’ as: \(V(x) = -\log p(x) \), then

\[
V(E, D | F) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[-\log \frac{1 - P_0}{T_e(\sigma_1)} - \log \left(e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}} + \frac{P_0}{1 - P_0} \frac{T_e(\sigma_1)}{T_e(\sigma_0)} \left(e^{-\frac{e_{ij}^2(F)}{2\sigma_0^2}} \right) \right) \right] =
\]

\[
= m n \Delta + \sum_{i=1}^{m} \sum_{j=1}^{n} -\log \left(e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}} + t \right)
\]

\[
t = \sigma \quad \Rightarrow \quad \sum_{i} \sum_{d} e^{\frac{2(\cdot)}{2\sigma_1^2}} \hat{V}(e_{ij})
\]

- note we are summing over all \(m n \) matches (\(m, n \) are constant!)
The Action of the Robust Matching Model on Data

Example for $\hat{V}(e)$ from (26):

- red – the usual (non-robust) error when $t = 0$
- blue – the rejected correspondence penalty t
- green – ‘robust energy’ (26)

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}(e) = \text{const}$ and we essentially count outliers in (26)
- t controls the ‘turn-off’ point
- the inlier/outlier threshold is e_T – the error for which $(1 - P_0) p_1(e_T) = P_0 p_0(e_T)$:
 \[e_T = \sigma_1 \sqrt{-\log t^2} \] (27)

The full optimization problem (23) uses (26):

\[
F^* = \arg \max_F \left\{ \frac{\text{likelihood}}{\text{prior}} \cdot \text{evidence} \right\} = \arg \min_F \left[V(F) + \sum_{i=1}^{m} \sum_{j=1}^{n} \log \left(e^{\frac{-e_{ij}^2(F)}{2\sigma_1^2}} + t \right) \right]
\]

- typically we take $V(F) = -\log p(F) = 0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for F
- evidence is not needed unless we want to compare different models (eg. homography vs. epipolar geometry)
Thank You