Given P_1, P_2 and a correspondence $x \leftrightarrow y$, look for 3D point X projecting to x and y.

Idea:

1. if not given, compute F from P_1, P_2, e.g. $F = (Q_1 Q_2^{-1})^\top [q_1 - (Q_1 Q_2^{-1})q_2]$

2. correct measurement by the linear estimate of the correction vector

$$
\begin{bmatrix}
\hat{u}^1 \\
\hat{v}^1 \\
\hat{u}^2 \\
\hat{v}^2
\end{bmatrix} \approx \begin{bmatrix}
u^1 \\
v^1 \\
u^2 \\
v^2
\end{bmatrix} - \frac{\varepsilon}{\|J\|^2} J^\top = \begin{bmatrix}
u^1 \\
v^1 \\
u^2 \\
v^2
\end{bmatrix} - \frac{y^\top Fx}{\|SFx\|^2 + \|SF^\top y\|^2} \begin{bmatrix}
(F_1)^\top y \\
(F_2)^\top y \\
(F_1)^\top x \\
(F_2)^\top x
\end{bmatrix}
$$

3. use the SVD triangulation algorithm with numerical conditioning; iteration possible

Ex (cont’d from →92):

- X_T – noiseless ground truth position
- X_s – Sampson-corrected algebraic error minimizer
- X_a – algebraic error minimizer
- m – measurement (m_T with noise in v^2)
Goal: Given a set \(X = \{(x_i, y_i)\}_{i=1}^{k} \) of \(k \gg 7 \) inlier correspondences, compute a statistically efficient estimate for fundamental matrix \(F \).

What we have so far

- 7-point algorithm for \(F \) (5-point algorithm for \(E \)) \(\rightarrow 83 \)
- definition of Sampson error per correspondence \(e_i(F \mid x_i, y_i) \rightarrow 103 \)

What we need

- an optimization algorithm for

\[
F^* = \arg \min_F \sum_{i=1}^{k} e_i^2(F \mid X)
\]

- the 7-point estimate is a good starting point \(F_0 \)
Levenberg-Marquardt (LM) Iterative Estimation in a Nutshell

Consider error function \(e_i(\theta) = f(x_i, y_i, \theta) \in \mathbb{R}^m \), with \(x_i, y_i \) given, \(\theta \in \mathbb{R}^q \) unknown

Our goal: \(\theta^* = \arg \min_{\theta} \sum_{i=1}^{k} \| e_i(\theta) \|^2 \)

Idea 1 (Gauss-Newton approximation): proceed iteratively for \(s = 0, 1, 2, \ldots \)

\[
\theta^{s+1} := \theta^s + d_s, \quad \text{where} \quad d_s = \arg \min_{d} \sum_{i=1}^{k} \| e_i(\theta^s + d) \|^2
\]

\[
e_i(\theta^s + d) \approx e_i(\theta^s) + L_i d,
\]

\[
(L_i)_{jl} = \frac{\partial(e_i(\theta))}{\partial(\theta)} j, \quad L_i \in \mathbb{R}^{m,q} \quad \text{typically a long matrix}
\]

Then the solution to Problem (19) is a set of normal eqs

\[
-L_i^T e_i(\theta^s) = \left(\sum_{i=1}^{k} L_i^T L_i \right) d_s,
\]

\(e \in \mathbb{R}^{q,1} \quad L \in \mathbb{R}^{q,q} \)

- \(d_s \) can be solved for by Gaussian elimination using Choleski decomposition of \(L \)
 - \(L \) symmetric \(\Rightarrow \) use Choleski, almost 2\(\times \) faster than Gauss-Seidel, see bundle adjustment
 \(\rightarrow 137 \)
- such updates do not lead to stable convergence \(\rightarrow \) ideas of Levenberg and Marquardt
Idea 2 (Levenberg): replace $\sum_i L_i^T L_i$ with $\sum_i L_i^T L_i + \lambda I$ for some damping factor $\lambda \geq 0$

Idea 3 (Marquardt): replace λI with $\lambda \sum_i \text{diag}(L_i^T L_i)$ to adapt to local curvature:

$$- \sum_{i=1}^{k} L_i^T e_i(\theta^s) = \left(\sum_{i=1}^{k} (L_i^T L_i + \lambda \text{diag}(L_i^T L_i)) \right) d_s$$

Idea 4 (Marquardt): adaptive λ

1. choose $\lambda \approx 10^{-3}$ and compute d_s
2. if $\sum_i \|e_i(\theta^s + d_s)\|^2 < \sum_i \|e_i(\theta^s)\|^2$ then accept d_s and set $\lambda := \lambda/10$, $s := s + 1$
3. otherwise set $\lambda := 10\lambda$ and recompute d_s

- sometimes different constants are needed for the 10 and 10^{-3}
- note that $L_i \in \mathbb{R}^{m,q}$ (long matrix) but each contribution $L_i^T L_i$ is a square singular $q \times q$ matrix (always singular for $k < q$)
- error can be made robust to outliers, see the trick →111
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]
- λ helps avoid the consequences of gauge freedom →139
- modern variants of LM are Trust Region methods
LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u^1, v^1, u^2, v^2)

$$e_i(F) = \frac{\varepsilon_i}{\|J_i\|} = \frac{y_i^\top F x_i}{\sqrt{\|S F x_i\|^2 + \|S F^\top y_i\|^2}}$$

where $S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

LM (by linearization over parameters F)

$$L_i = \frac{\partial e_i(F)}{\partial F} = \cdots = \frac{1}{2\|J_i\|} \left[\left(y_i - \frac{2e_i}{\|J_i\|} S F x_i \right) x_i^\top + y_i \left(x_i - \frac{2e_i}{\|J_i\|} S F^\top y_i \right) \right]$$

(21)

- L_i in (21) is a 3×3 matrix, must be reshaped to dimension-9 vector $\text{vec}(L_i)$ to be used in LM
- x_i and y_i in Sampson error are normalized to unit homogeneous coordinate. (21) relies on this
- Reinforce $\text{rank} F = 2$ after each LM update to stay in the fundamental matrix manifold and $\|F\| = 1$ to avoid gauge freedom by SVD $\rightarrow 109$
- LM linearization could be done by numerical differentiation (small dimension)
Local Optimization for Fundamental Matrix Estimation

Given a set $X = \{(x_i, y_i)\}_{i=1}^{k}$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix F.

Summary so far

1. Find the conditioned (→91) 7-point F_0 (→83) from a suitable 7-tuple
2. Improve the F_0^* using the LM optimization (→106–107) and the Sampson error (→108) on all inliers, reinforce rank-2, unit-norm F_k^* after each LM iteration using SVD

We are not yet done

- if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)
The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image point sets $X = \{x_i\}_{i=1}^m$ and $Y = \{y_j\}_{j=1}^n$ and their descriptors D, find the most probable

1. inliers $S_X \subseteq X$, $S_Y \subseteq Y$
2. one-to-one perfect matching $M : S_X \rightarrow S_Y$ (perfect matching: 1-factor of the bipartite graph)
3. fundamental matrix F such that $\text{rank } F = 2$
4. such that for each $x_i \in S_X$ and $y_j = M(x_i)$ it is probable that
 a) the image descriptor $D(x_i)$ is similar to $D(y_j)$, and
 b) the total geometric error $E = \sum_{ij} e_{ij}^2(F)$ is small
 note a slight change in notation: e_{ij}
5. inlier-outlier and outlier-outlier matches are improbable

\[
(M^*, F^*) = \arg \max_{M, F} p(E, D, F | M) P(M) \tag{22}
\]

- probabilistic model: an efficient language for problem formulation it also unifies 4.a and 4.b
- the (22) is a Bayesian probabilistic model there is a constant number of random variables!
- binary matching table $M_{ij} \in \{0, 1\}$ of fixed size $m \times n$
 - each row/column contains at most one unity
 - zero rows/columns correspond to unmatched point x_i/y_j
Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of $(M^*, F^*) = \arg \max_{M, F} p(E, D, F \mid M) P(M)$ solve

\[
F^* = \arg \max_F p(E, D, F)
\]

(23)

by \underline{marginalization} of $p(E, D, F \mid M) P(M)$ over M this changes the problem!

ignoring that M are 1:1 matchings and assuming correspondence-wise independence:

\[
p(E, D, F \mid M) P(M) = \prod_{i=1}^m \prod_{j=1}^n p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij})
\]

- e_{ij} represents geometric error for match $x_i \leftrightarrow y_i$: $e_{ij}(x_i, y_i, F)$
- d_{ij} represents descriptor similarity for match $x_i \leftrightarrow y_i$: $d_{ij} = \|d(x_i) - d(y_j)\|

Marginalization: ignore that M is a matching and take all 2^{mn} terms

\[
p(E, D, F) \approx \sum_{m_{11} \in \{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{mn}} p(E, D, F \mid M) P(M) =
\]

\[
= \sum_{m_{11}} \cdots \sum_{m_{mn}} \prod_{i=1}^m \prod_{j=1}^n p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) = \star 1 =
\]

\[
= \prod_{i=1}^m \prod_{j=1}^n \sum_{m_{ij} \in \{0,1\}} p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij})
\]

we will continue with this term
Robust Matching Model (cont’d)

\[
\sum_{m_{ij} \in \{0,1\}} p_e(e_{ij}, d_{ij}, F \mid m_{ij}) P(m_{ij}) = \\
= p_e(e_{ij}, d_{ij}, F \mid m_{ij} = 1) \underbrace{P(m_{ij} = 1)}_{p_1(e_{ij}, d_{ij}, F)} + p_e(e_{ij}, d_{ij}, F \mid m_{ij} = 0) \underbrace{P(m_{ij} = 0)}_{p_0(e_{ij}, d_{ij}, F)} = \\
= \left(1 - P_0\right) p_1(e_{ij}, d_{ij}, F) + P_0 \underbrace{p_0(e_{ij}, d_{ij}, F)}_{P_0} = \\
\tag{24}
\]

• the \(p_0(e_{ij}, d_{ij}, F)\) is a penalty for ‘missing a correspondence’ but it should be a p.d.f. (cannot be a constant) \((\rightarrow 113 \text{ for a simplification})\)

\[
\text{choose } P_0 \to 1, \quad p_0(\cdot) \to 0 \quad \text{so that } \quad \frac{P_0}{1 - P_0} p_0(\cdot) \approx \text{const}
\]

• the \(p_1(e_{ij}, d_{ij}, F)\) is typically an easy-to-design term: assuming independence of geometric error and descriptor similarity:

\[
p_1(e_{ij}, d_{ij}, F) = p_1(e_{ij} \mid F) p_F(F) p_1(d_{ij})
\]

• we choose, eg.

\[
p_1(e_{ij} \mid F) = \frac{1}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}}, \quad p_1(d_{ij}) = \frac{1}{T_d(\sigma_d, \dim d)} e^{-\frac{||d(x_i) - d(y_j)||^2}{2\sigma_d^2}} \tag{25}
\]

• \(F\) is a random variable and \(\sigma_1, \sigma_d, P_0\) are parameters

• the form of \(T(\sigma_1)\) depends on error definition, it may depend on \(x_i, y_j\) but not on \(F\)

• we will continue with the result from (24)
Simplified Robust Energy (Error) Function

• assuming the choice of \(p_1 \) as in (25), we are simplifying

\[
p(E, D, F) = p(E, D | F) p_F(F) = p_F(F) \prod_{i=1}^{m} \prod_{j=1}^{n} [(1 - P_0) p_1(e_{ij}, d_{ij} | F) + P_0 p_0(e_{ij}, d_{ij} | F)]
\]

• we choose \(\sigma_0 \gg \sigma_1 \) and omit \(d_{ij} \) for simplicity; then the square-bracket term is

\[
\frac{1 - P_0}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}} + \frac{P_0}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(F)}{2\sigma_0^2}}
\]

• we define the ‘potential function’ as: \(V(x) = -\log p(x) \), then

\[
V(E, D | F) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[-\log \frac{1 - P_0}{T_e(\sigma_1)} - \log \left(e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}} + \frac{P_0}{1 - P_0} T_e(\sigma_1) e^{-\frac{e_{ij}^2(F)}{2\sigma_0^2}} \right) \right] = m n \Delta + \sum_{i=1}^{m} \sum_{j=1}^{n} -\log \left(e^{-\frac{e_{ij}^2(F)}{2\sigma_1^2}} + t \right) \hat{V}(e_{ij}) (26)
\]

• note we are summing over all \(m n \) matches (\(m, n \) are constant!)
The Action of the Robust Matching Model on Data

Example for $\hat{V}(e)$ from (26):

- red – the usual (non-robust) error when $t = 0$
- blue – the rejected correspondence penalty t
- green – ‘robust energy’ (26)

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}(e) = const$ and we essentially count outliers in (26)
- t controls the ‘turn-off’ point
- the inlier/outlier threshold is e_T – the error for which $(1 - P_0) p_1(e_T) = P_0 p_0(e_T)$: note that $t \approx 0$

\[e_T = \sigma_1 \sqrt{-\log t^2} \quad (27) \]

The full optimization problem (23) uses (26):

\[F^* = \arg \max \begin{array}{c} F \\ \text{data model} \end{array} \begin{array}{c} p(E, D \mid F) \cdot p(F) \end{array} \approx \begin{array}{c} F \\ \text{prior} \end{array} \begin{array}{c} \text{evidence} \end{array} \begin{array}{c} V(F) + \sum_{i=1}^{m} \sum_{j=1}^{n} \log \left(e - \frac{e_{ij}^2(F)}{2\sigma_1^2} + t \right) \end{array} \]

- typically we take $V(F) = -\log p(F) = 0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for F
- evidence is not needed unless we want to compare different models (eg. homography vs. epipolar geometry)
Thank You
C_1

e_1

m_a m_s

$m_T = m$