How To Find the Global Maxima (Modes) of a PDF?

- given the function $p(x)$ at left

consider several methods:

1. exhaustive search

 \[
 \text{step} = 1/(\text{iterations}-1); \\
 \text{for } x = 0:\text{step}:1 \\
 \quad \text{if } p(x) > \text{bestp} \\
 \quad \quad \text{bestx} = x; \text{bestp} = p(x); \\
 \quad \text{end} \\
 \text{end}
 \]

 - slow algorithm
 - fast to implement

2. randomized search with uniform sampling

 \[
 \text{while } t < \text{iterations} \\
 x = \text{rand}(1); \\
 \quad \text{if } p(x) > \text{bestp} \\
 \quad \quad \text{bestx} = x; \text{bestp} = p(x); \\
 \quad t = t+1; \% \text{ time} \\
 \text{end}
 \]

 - equally slow algorithm
 - fast to implement

3. random sampling from $p(x)$ (Gibbs sampler)

 - faster algorithm
 - fast to implement but often infeasible (e.g. when $p(x)$ is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling

 - almost as fast (with care)
 - not so fast to implement
 - rarely infeasible
 - RANSAC belongs here
How To Generate Random Samples from a Complex Distribution?

- red: probability density function $\pi(x)$ of the toy distribution on the unit interval

$$\pi(x) = \sum_{i=1}^{4} \gamma_i \text{Be}(x; \alpha_i, \beta_i), \quad \sum_{i=1}^{4} \gamma_i = 1, \quad \gamma_i \geq 0$$

$$\text{Be}(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}$$

- alg. for generating samples from $\text{Be}(x; \alpha, \beta)$ is known

- we can generate samples from $\pi(x)$ how?

- suppose we cannot sample from $\pi(x)$ but we can sample from some ‘simple’ distribution $q(x | x_0)$, given the last sample x_0 (blue)

$$q(x | x_0) = \begin{cases}
\text{U}_{0,1}(x) & \text{(independent) uniform sampling} \\
\text{Be}(x; \frac{x_0}{T} + 1, \frac{1-x_0}{T} + 1) & \text{‘beta’ diffusion (crawler)} \\
\pi(x) & \text{ (independent) Gibbs sampler}
\end{cases}$$

- how to redistribute proposal samples $q(x | x_0)$ to target distribution $\pi(x)$ samples?

- note we have unified all the random sampling methods from the previous slide
Metropolis-Hastings (MH) Sampling

C – configuration (of all variable values)
\[\text{eg. } C = x \text{ and } \pi(C) = \pi(x) \text{ from } \rightarrow 116 \]

Goal: Generate a sequence of random samples \(\{C_t\} \) from target distribution \(\pi(C) \)

- setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure

1. given \(C_t \), draw a random sample \(S \) from \(q(S \mid C_t) \)

\[q \text{ may use some information from } C_t \text{ (Hastings)} \]

2. compute acceptance probability

\[a = \min \left\{ 1, \frac{\pi(S)}{\pi(C_t)} \cdot \frac{q(C_t \mid S)}{q(S \mid C_t)} \right\} \]

3. draw a random number \(u \) from unit-interval uniform distribution \(U_{0,1} \)

4. if \(u \leq a \) then \(C_{t+1} := S \) else \(C_{t+1} := C_t \)

‘Programming’ an MH sampler

1. design a proposal distribution (mixture) \(q \) and a sampler from \(q \)

2. write functions \(q(C_t \mid S) \) and \(q(S \mid C_t) \) that are proper distributions
\[\text{not always simple} \]

Finding the mode

- remember the best sample
\[\text{fast implementation but must wait long to hit the mode} \]

- use simulated annealing
\[\text{very slow} \]

- start local optimization from the best sample
\[\text{good trade-off between speed and accuracy} \]

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)
MH Sampling Demo

- blue point: current sample
- green circle: best sample so far
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states

sampling process (video, 7:33, 100k samples)

quality = \pi(x)
Demo Source Code (Matlab)

```matlab
function x = proposal_gen(x0)
    % proposal generator q(x | x0)
    T = 0.01; % temperature
    x = betarnd(x0/T+1,(1-x0)/T+1);
end

function p = proposal_q(x, x0)
    % proposal distribution q(x | x0)
    T = 0.01;
    p = betapdf(x, x0/T+1, (1-x0)/T+1);
end

function p = target_p(x)
    % target distribution p(x)
    % shape parameters:
    a = [2 40 100 6];
    b = [10 40 20 1];
    % mixing coefficients:
    w = [1 0.4 0.253 0.50]; w = w/sum(w);
    p = 0;
    for i = 1:length(a)
        p = p + w(i)*betapdf(x,a(i),b(i));
    end
end

%% DEMO script
k = 10000;    % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1:k
    x1 = proposal_gen(x0);
    a = target_p(x1)/target_p(x0) * ...
        proposal_q(x0,x1)/proposal_q(x1,x0);
    if rand(1) < a
        X(i) = x1; x0 = x1;
    else
        X(i) = x0;
    end
end

depth = 0:0.001:1;
plot(depth, target_p(depth), 'r', 'linewidth',2);
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1);
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```

3D Computer Vision: V. Optimization for 3D Vision (p. 119/189)
Stripping MH Down

• when we are interested in the best sample only... and we need fast data exploration...

Simplified sampling procedure

1. given C_t, draw a random sample S from $q(S \mid C_t) q(S)$ independent sampling
 no use of information from C_t

2. compute acceptance probability

 $$a = \min \left\{ 1, \frac{\pi(S)}{\pi(C_t)} \cdot \frac{q(C_t \mid S)}{q(S \mid C_t)} \right\}$$

3. draw a random number u from unit interval uniform distribution $U_{0,1}$

4. if $u \leq a$ then $C_{t+1} := S$ else $C_{t+1} := C_t$

5. if $\pi(S) > \pi(C_{\text{best}})$ then remember $C_{\text{best}} := S$

Steps 2–4 make no difference when waiting for the best sample

• ...but getting a good accuracy sample might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where C_t could serve as an attractor

• cannot use the past generated samples to estimate any parameters

• we will fix these problems by (possibly robust) 'local optimization'
1. **primitives** = elementary measurements
 - points in line fitting
 - matches in epipolar geometry estimation

2. configuration = *s*-tuple of primitives
 minimal subsets necessary for parameter estimate
 - the minimization will be over a discrete set:
 - of point pairs in line fitting (left)
 - of match 7-tuples in epipolar geometry estimation

3. proposal distribution \(q(\cdot) \) is then given by the empirical distribution of *s*-tuples:
 a) propose *s*-tuple from data independently \(q(S \mid C^t) = q(S) \)
 i) \(q \) uniform \(q(S) = \left(\frac{mn}{s} \right)^{-1} \)
 ii) \(q \) dependent on descriptor similarity
 b) solve the minimal geometric problem \(\mapsto \) parameter proposal
 - pairs of points define line distribution from \(p(\mathbf{n} \mid X) \) (left)
 - random correspondence tuples drawn uniformly propose samples of \(\mathbf{F} \) from a data-driven distribution \(q(\mathbf{F} \mid M) \)

4. local optimization from promising proposals

5. stopping based on the probability of mode-hitting
RANSAC with Local Optimization and Early Stopping

1. initialize the best sample as empty $C_{\text{best}} := \emptyset$ and time $t := 0$
2. estimate the number of needed proposals as $N := \binom{n}{s}$
 n – No. of primitives, s – minimal sample size
3. while $t \leq N$:
 a) propose a minimal random sample S of size s from $q(S)$
 b) if $\pi(S) > \pi(C_{\text{best}})$ then
 i) update the best sample $C_{\text{best}} := S$
 ii) threshold-out inliers using e_T from (27)
 iii) start local optimization from the inliers of C_{best}
 LM optimization with robustified (→113) Sampson error
 possibly weighted by posterior $\pi(m_{ij})$ [Chum et al. 2003]
 iv) update C_{best}, update inliers using (27), re-estimate N from inlier counts
 c) $t := t + 1$
4. output C_{best}

• see MPV course for RANSAC details
see also [Fischler & Bolles 1981], [25 years of RANSAC]
Principle: what is the number of proposals \(N \) that are needed to hit an all-inlier sample?

\[
N \geq \frac{\log(1 - P)}{\log(1 - \varepsilon^s)}
\]

- \(P \) ... probability that at least one proposal is an all-inlier
- \(\varepsilon \) ... the fraction of inliers among primitives, \(\varepsilon \leq 1 \)
- \(s \) ... minimal sample size (2 in line fitting, 7 in 7-point algorithm)

- \(\varepsilon^s \) ... proposal does not contain an outlier
- \(1 - \varepsilon^s \) ... proposal contains at least one outlier
- \((1 - \varepsilon^s)^N \) ... \(N \) previous proposals contained an outlier = \(1 - P \)

\[
1 - P = (1 - \varepsilon^s)^N
\]

\(N \) for \(s = 7 \)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(P = 0.5)</th>
<th>(P = 0.8)</th>
<th>(P = 0.99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>205</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>(1.3 \cdot 10^5)</td>
<td>(3.5 \cdot 10^5)</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>(1.6 \cdot 10^7)</td>
<td>(4.6 \cdot 10^7)</td>
<td></td>
</tr>
</tbody>
</table>

\(N \) can be re-estimated using the current estimate for \(\varepsilon \) (if there is LO, then after LO)

the quasi-posterior estimate for \(\varepsilon \) is the average over all samples generated so far

- this shows we have a good reason to limit all possible matches to tentative matches only
- for \(\varepsilon \to 0 \) we gain nothing over the standard MH-sampler stopping criterion
Example Matching Results for the 7-point Algorithm with RANSAC

- notice some wrong matches (they have wrong depth, even negative)
- they cannot be rejected without additional constraints or scene knowledge
- without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples
Thank You