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Module VI

3D Structure and Camera Motion

@ Reconstructing Camera System
@Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.

additional references

@ D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In
Proc CVPR, 2007

@ M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment.
ACM Trans Math Software 36(1):1-30, 2009.
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» Reconstructing Camera System by Stepwise Gluing

Given: Calibration matrices K; and tentative correspondences per camera triples.

Initialization

X;

1. initialize camera cluster C with Py, P,

2. find essential matrix E12 and matches
M2 by the 5-point algorithm —88

3. construct camera pair

P,=Ki[I 0], P;=Kz[R t]

4. triangulate {X;} per match from
Mo —105

5. initialize point cloud X with {X;}
satisfying chirality constraint z; > 0
and apical angle constraint |a;| > ar

Attaching camera P; ¢ C
1. select points X from X that have matches to P;

2. estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; —66
3. reconstruct 3D points from all tentative matches from P; to all P}, [ # k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X

5. add Pj to C

6. perform bundle adjustment on X and C coming next —137
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» The Projective Reconstruction Theorem

Observation: Unless P; are constrained, then for any number of cameras i = 1,...,k

m ~P,X=P,H 'HX =P, X
——
P/ X/’

e when P; and X are both determined from correspondences (including calibrations
K;), they are given up to a common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

mi ma X )¢

e when cameras are internally calibrated (K; known) then H is restricted to a similarity
since it must preserve the calibrations K; [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]
(translation, rotation, scale)
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»Analyzing the Camera System Reconstruction Problem

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [Eij]XRi]' and

calibration matrices K; reconstruct the camera system P;, i =1,...,k
—81 and —146 on representing E

We construct calibrated camera pairs f’,-j € R see (17)

—1 S .
Pi; = [KI P,} = {AI AO] e R%*

—1 al
® singletons ¢, j correspond to graph nodes k nodes
® pairs ij correspond to graph edges p edges

P, En P P; Py

P.; are in different coordinate systems but these are related by similarities P;;H;; = P,

I 0 Rij trij R Ri ti
{Rz‘j ‘Ez‘j} [OT 52’]} a {RJ‘ ta] (28)
————
RrR6,4 H,,‘7€R4v4 R6,4

® (28) is a linear system of 24p eqgs. in Tp 4+ 6k unknowns Tp ~ (tij, Rij, 8:5), 6k ~ (Rs, t;)
e each P; appears on the right side as many times as is the degree of node P; eg. P5 3-times
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»cont’d

L Ri;; | _ [Rs tij |t
Fa. (28) implies [Rini.i] B {Ra] |:Rijtij +.9,-,_,-E1-J B L:j]

e R;; and t;; can be eliminated:

RiRi =R,  Ryti+siyty=t;, s3>0 (29)
® note transformations that do not change these equations assuming no error in Ry
1. R;— R;R, 2. t;— ot; and s — 0555, 3. ti—t;+Rit

o the global frame is fixed, e.g. by selecting

k
R =1, th =0, %ZSU =1 (30)
i=1 W]

® rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of Eij from essential matrix decomposition —81

but R; cannot correct the a sign in R;;
= therefore make sure all points are in front of cameras and constrain s;; > 0; —83

+ pairwise correspondences are sufficient
— suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve RijR; =R, i,j € V, (i,j) € E where R are a 3 x 3 rotation matrix each.
Per columns ¢ =1, 2,3 of R;:

Rir{ —r; =0, for all 4, j (31)
e fix ¢ and denote r¢ = [I‘i, rs,..., I‘H T sth columns of all rotation matrices stacked; r® € R3F
e then (31) becomes Dr¢ =0 D € R37:3F
e 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1,0, 0]
Ex: (k=p=23)
Rur(j — r§ =0 R12 —I 0 I'lf
—  Rogr5—r;=0 — Dr'=]0 Ry -I||ri|=0
A - c
Risri —r5=0 Ris 0 —I1 1%

e must hold for any ¢

Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3F that solve (31) D is sparse, use [V,E] = eigs(D’#D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD  because ||r®|| = 1 is necessary but insufficient

L . R; =UV', where R; = UDV "
o global world rotation is arbitrary '
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Finding The Translation Component in Eq. (29)
From (29) and (30): 0 < d <3 - rank of camera center set, p — #pairs, k — #cameras

k
Rijti + Sijf]ij —-t; =0, Zti =0, ZSW’ =Dp, s >0, t; € Rd
i=1 4,5

e inrankd: d-p+d+1 indep. eqns for d- k+ p unknowns — p > % def (d, k)

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

p=k—1 k=p=3 k=p=4 k=p>4
o
N
o

o—

k < 2 for any d 3 > d > 2: non-collinear ok 3 > d > 3: non-planar ok 3>d >k — 1: impossible

e equations insufficient for chains, trees, or when d = 1 collinear cameras

e 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D
— s-connected graph has p > [%] edges for s > 2, hence p > [%] > Q(3,k) = % -2

e 4-connectivity implies sufficient eqns. for any k when d = 2  coplanar cams
— since p > [2k] > Q(2,k) =2k —3
— maximal planar tringulated graphs have p = 3k — 6
and give a solution for k > 3 maximal planar triangulated graph example:
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cont’d

Linear equations in (29) and (30) can be rewritten to
-
Dt =0, t=[t,ta,...,t0, s12,...,8i5, ...
assuming measurement errors Dt = € and d = 3, we have
t e R¥**? D e R*P3 P gparse
and

t"=argmint D' Dt
t,s;;>0

e this is a quadratic programming problem (mind the constraints!)

z = zeros(3%k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]1), z);

e but check the rank first!
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»Bundle Adjustment

Goal: Use a good (and expensive) error model and improve all estimated parameters

Given: Required:
1. set of 3D points {X;}?_; 1. corrected 3D points {X;}?_,
2. set of cameras {P;}5_; 2. corrected cameras {P}}5_;
3. fixed tentative projections m; Latent:
X 1. visibility decision v;; € {0,1} per my;

e for simplicity, X, m are considered Cartesian (not homogeneous)
e we have projection error e;;(X;,P;) = x; — m; per image feature, where x; = P;X;
e for simplicity, we will work with scalar error e;; = [|e;;||
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Robust Objective Function for Bundle Adjustment
The data model is constructed by marginalization over v;;, as in the Robust Matching Model —113

sier . x)= [] T (- Rmes | XaP)) + Fopoles; | X0, P,))

pts:i=1 cams:j=1

marginalized negative log-density is (—114)
€3 (Xi,P))

—logp({e} [{P,X}) =D > —log(e T +¢) T3S uB(Xi,Py)
% J % J

p(ef;(X,P;)) =v7;(X;,P;)

e we can use LM, ¢;; is the projection error (not Sampson error) o
® y;; is a ‘robust’ error fcn.; it is non-robust (l/ij = eij) when t =0
e p(-) is a ‘robustification function’ we often find in M-estimation
e the L;; in Levenberg-Marquardt changes to vector s
(Liyy = 25— B S T
90 g et (0/201) vi(0) 4o} 39
small for e;; > o1 % 2 g 2 4

but the LM method stays the same as before —107-108

e outliers (wrong v;;): almost no impact on d in normal equations because the red term
in (32) scales contributions to both sums down for the particular ij

k
=L wi(0%) = (DOLILy )ds
i i
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»Sparsity in Bundle Adjustment

We have ¢ = 3p + 11k parameters: 0 = (X1, Xo,...,X,; P1,Pa,...,Pk) points, cameras

We will use a multi-index r =1,...,2, z=p-k. Then each r corresponds to some i, j

= argmlnz 0), 0°F!:=0° +ds, = > L v (6°) = (Z L L, + X diag(L,TLr)> ds

r=1 r=1
The block form of L. in Levenberg-Marquardt (—107) is zero except in columns ¢ and j:
r-th error term is v2 = p(e?j (X, Py))

i J r = (4, 7) blocks:
L= Omorrer 11 O:X;,1x3
O:.P;,1x11

, . L 3 11k
i j R =T

blocks: 5 3p
T _ 0 X;, —X;,3x3 T o
LTL’"—]. O:X;, —P,,3x11 ZLTL"—
O:P,—P,, 11x11 =1

e "“points first, then cameras” parameterization scheme
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»Choleski Decomposition for B. A.
The most expensive computation in B. A. is solving the normal egs:

z z
find x such that  — > LT v, (6°) = (Z L L, + A diag(L:Lr))x
r=1 r=1

e A is very large approx. 3 - 10 x 3 - 10% for a small problem of 10000 points and 5 cameras
e A is sparse and symmetric, A~ ! is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix A can be decomposed to A =
LL", where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LLT transforms the problemto LLTx=b
~—~

C
2. solve for x in two passes:

Lc=b c¢;:= Li_il (bi — Z LijCj) forward substitution, ¢ = 1,..., ¢ (params)
j<i

L'x=c x;:= L;! (ci — Z Lj,-xj) back-substitution
§>i

® Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are 9p + 121k + 66pk ~ 3.4 - 109; ca. 250 fewer than all elements
® it can be computed on single elements or on entire blocks
® use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]
® )\ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,

% L = PCHOL(A) returns lower-triangular sparse L such that A = LxL’
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q]l = size(A);
if p "= q, error ’Matrix A is not square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a=A®i,j) - L,k (G-1))*L(G,k: (j-1))7;
L(i,j) = a/L(j,j);
end
a = A(i,i) - sum(full(L(i,F(i):(i-1)))."2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);
end
end
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»Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem —131
m;; ~ P;X; = P,;H 'HX, = P/X]

2. Some representations are not minimal, e.g.

e P is 12 numbers for 11 parameters
e we may represent P in decomposed form K, R, t
e but R is 9 numbers representing the 3 parameters of rotation

As a result

e there is no unique solution
e matrix ., L, L, is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
2. fixing the scale (e.g. si2 = 1)
3a. either imposing constraints on projective entities
e cameras, e.g. P34 =1
e points, e.g. [|X;]|2 =1
3b. or using minimal representations

e points in their Euclidean representation X; but finite points may be an unrealistic model
e rotation matrix can be represented by axis-angle or the Cayley transform  see next

this excludes affine cameras
this way we can represent points at infinity
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