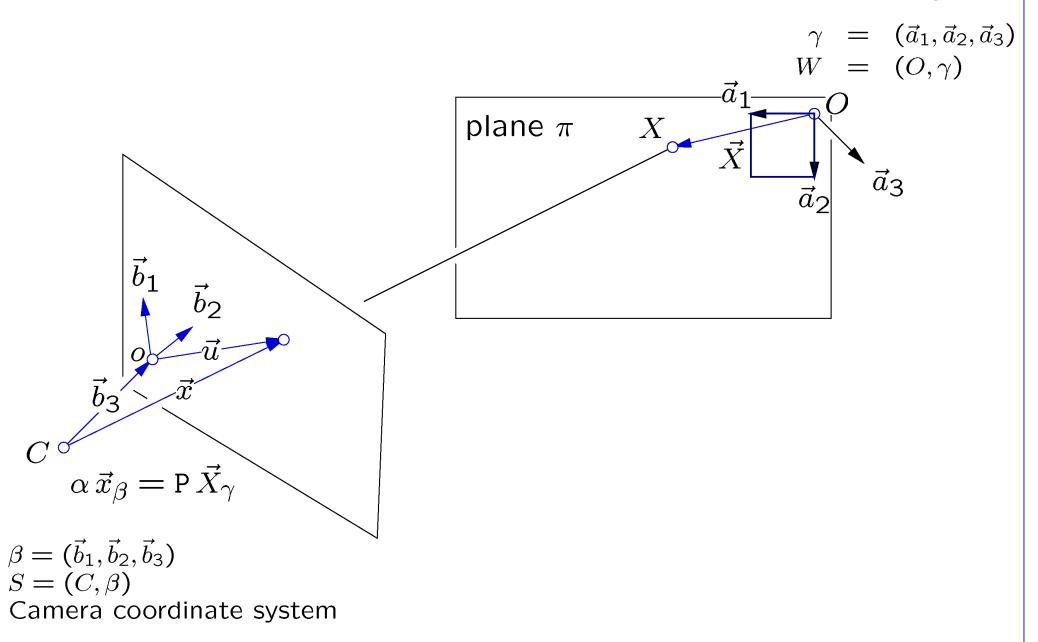


Camera calibration from homography to a "metric plane"

World coordinate system



Camera calibration from homography to a "metric plane"

Let us recall the relationship between the coordinates of points X, which all lie in a plane π and are measured in a coordinate system $(O, \vec{a}_1, \vec{a}_2)$ in π . The points X are projected by a perspective camera with projection matrix P into image coordinates (u, v), w.r.t. an image coordinate system $(o, \vec{b}_1, \vec{b}_2)$. The corresponding camera coordinate system is (C, β) with $\beta = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$.

Points X are projected by a perspective camera with a projection matrix P into projections \vec{x}_{β} as

$$lpha\,ec{x}_eta = ext{P}\,\,\mathbf{X}_\gamma = egin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 \end{bmatrix} egin{bmatrix} x \ y \ 0 \ 1 \end{bmatrix} = egin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_4 \end{bmatrix} egin{bmatrix} x \ y \ 1 \end{bmatrix} = ext{H}\,\,egin{bmatrix} x \ y \ 1 \end{bmatrix}$$

where $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4$ are columns of P. Recall that the columns of P can be writen as

$$egin{array}{lll} {\sf P} &=& \left[{\sf A} \, | \, - \, {\sf A} \, ec{C}_\gamma
ight] \ &=& \left[ec{a}_{1eta} \quad ec{a}_{2eta} \quad ec{a}_{3eta} \quad - ec{C}_eta
ight] \end{array}$$

and therefore we get

$$\mathbf{h}_1 = \mathbf{p}_1 = \vec{a}_{1\beta}$$
 $\mathbf{h}_2 = \mathbf{p}_2 = \vec{a}_{2\beta}$
 $\mathbf{h}_3 = \mathbf{p}_4 = -\vec{C}_{\beta}$

Now imagine, that we are observing a sugare with 4 corner points X_1 , X_2 , X_3 and X_4 in the plane π and we construct the coordinate system in π by assigning coordinates to the corners as

$$ec{X}_{1\gamma} = \begin{bmatrix} 0 & 0 & 0 \\ ec{a}_{1\gamma} = ec{X}_{2\gamma} & = \begin{bmatrix} 1 & 0 & 0 \\ ec{a}_{2\gamma} = ec{X}_{3\gamma} & = \begin{bmatrix} 0 & 1 & 0 \\ \end{array}$$

 $ec{X}_{4\gamma} = \begin{bmatrix} 1 & 1 & 0 \\ \end{aligned}$

By this construction, the angle measured by the formula

$$\cos \angle (\vec{X}_1, \vec{X}_2) = \frac{\vec{X}_{1\gamma}^{\top} \vec{X}_{2\gamma}}{(\vec{X}_{1\gamma}^{\top} \vec{X}_{1\gamma})^{\frac{1}{2}} (\vec{X}_{2\gamma}^{\top} \vec{X}_{2\gamma})^{\frac{1}{2}}}$$

corresponds to the angle measured by a ruler and a compass.

We see that we get two constraints on $\vec{a}_{1\gamma}$, $\vec{a}_{2\gamma}$

$$\vec{a}_{1\gamma}^{\top} \vec{a}_{2\gamma} = 0$$
 $\vec{a}_{1\gamma}^{\top} \vec{a}_{1\gamma} - \vec{a}_{2\gamma}^{\top} \vec{a}_{2\gamma} = 0$

which lead to

$$\vec{a}_{1\beta}^{\top} \, \mathbf{K}^{-\top} \, \mathbf{K}^{-1} \, \vec{a}_{2\beta} \ = \ \mathbf{0} \\ \vec{a}_{1\beta}^{\top} \, \mathbf{K}^{-\top} \, \mathbf{K}^{-1} \, \vec{a}_{1\beta} - \vec{a}_{2\beta}^{\top} \, \mathbf{K}^{-\top} \, \mathbf{K}^{-1} \, \vec{a}_{2\beta} \ = \ \mathbf{0}$$

by using $\vec{a}_{i\beta} = KR\vec{a}_{i\gamma}$ for i = 1, 2, and $R^TR = I$.

These are two linear equations

$$\vec{a}_{1\beta}^{\top} \omega \, \vec{a}_{2\beta} = 0$$
 $\vec{a}_{1\beta}^{\top} \omega \, \vec{a}_{1\beta} - \vec{a}_{2\beta}^{\top} \omega \, \vec{a}_{2\beta} = 0$

on ω in terms of estimated λ H

$$\mathbf{h}_{1}^{\top} \omega \, \mathbf{h}_{2} = 0$$
$$\mathbf{h}_{1}^{\top} \omega \, \mathbf{h}_{1} - \mathbf{h}_{2}^{\top} \omega \, \mathbf{h}_{2} = 0$$

Every square provides 2 equations and therefore 3 squares in planes in general positions suffice to calibrate full K matrix and two such squares suffice to calibrate K when pixels are square.

To calibrate the camera, we first assign coordinates to the corners of the square as above, then find the homography H from the plane to the image

$$lpha_i\,ec{x}_{ieta}={\mathtt{H}}\,ec{X}_{i\gamma}$$

for $\alpha_i = 1, \ldots, 4$ and finally use columns of H the find ω .

Line coordinates under homography

Let us now investigate the behaviour of homogeneous coordinates of lines in projective plane mapped by a homography.

Let us have two points represented by vectors \vec{x}_{β} , \vec{y}_{β} . We now map the points, represented by vectors \vec{x}_{β} , \vec{y}_{β} , by a homogprahy, represented by matrix H, to points represented by vectors $\vec{x'}_{\beta}$, $\vec{y'}_{\beta}$ such that $\exists \lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1, \lambda_2 \neq 0$

$$\lambda_1 \vec{x'}_{\beta} = H \vec{x}_{\beta}$$
 $\lambda_2 \vec{y'}_{\beta} = H \vec{y}_{\beta}$

Homogeneous coordinates \vec{p}_{β} of the line passing through points represeted by \vec{x}_{β} , \vec{y}_{β} and homogeneous coordinates $\vec{p'}_{\beta}$ of the line passing through points represeted by $\vec{x'}_{\beta}$, $\vec{y'}_{\beta}$ are obtained by solving the linear systems

$$ec{p}_eta^ op ec{x}_eta = 0 \qquad \qquad ec{p'}_eta^ op ec{x'}_eta = 0 \ ec{p}_eta^ op ec{y}_eta = 0 \qquad \qquad ec{p'}_eta^ op ec{y}_eta = 0$$

Substituting into the equations above, we get

We see that $\vec{p'}_{\beta}$ and $\mathbf{H}^{-\top}\vec{p}_{\beta}$ are solutions of the same set of homogeneous equations. If \vec{x}_{β} , \vec{y}_{β} are independent, then there is $\lambda \in \mathbb{R}$ such that

$$\lambda\,ec{p'}_eta=\mathtt{H}^{- op}\,ec{p}_eta$$

since the solution space is one-dimensional.