RANSAC – Robust Fitting

Tomáš Pajdla 21 April 2007

Example

There is a line ...

Example

There is a line ...

 $Y = \{\mathbf{x}_i\}_{i=1}^{M}$... a set of points on the line l is measured with Gaussian noise $N(\mathbf{0}, \sigma)$

Example

There is a line ...

 $X = \{\mathbf{x}_i\}_{i=1}^N$... other points, unrelated to the line.

Task

Find a line and its points from data contaminated by mesurements unrelated to the line.

Assumptions

1. σ is known

2. The largest subset of X of points for which there is a line which is closer than 1.65 σ to all the points contains points that were measured on the line l.

Problem formulation

Find the maximal subset I of the given set X

such that

there is a line which is closer than 1.65σ to all points in I.

Notation

 $l\ldots$ line

X ...all data

I ... inliers = points closer to l than a threshold

 $O = X \setminus I.$. . outliers

Exhaustive Search

Exhaustive Search

 $I = \arg\max_{S \subseteq X} (\text{the number of inliers in } X \text{ for the best line fit to } S)$

does not work:

There is 2^N candidate subsets S to be tested

... infeasible for useful N's

Two (a minimal sample of) good points (points measured on the line l) generate a line which is close to l.

Not all pairs of "good" points are good due to noise ...

... but many are.

There is "only"
$${N \choose 2} = \frac{N(N-1)}{2}$$
 pairs of distinct points.

Exhaustive Minimal Sampling

Exhaustive Minimal Sampling

$$I = \arg\max_{\{x_1,x_2\} \subseteq X}$$
 ($\#$ inliers in X for the line through $\{x_1,x_2\}$)

needs to examine "only" $\frac{N(N-1)}{2} \ll 2^N$ pairs of distinct points.

Exhaustive Minimal Sampling

The number of samples:
$$\binom{N}{2} = \frac{N(N-1)}{2}$$

... is often still too high.

Exhaustive Minimal Sampling with zero noise

Simplified analysis: assume no noise, i.e. $\sigma = 0$.

The goal is to make as many samples as to be sure not to miss the set Y of points on the line l.

Assume that there is M points in Y on the line l among the total number N of points in X.

One has to try more than

$$\binom{N}{2} - \binom{M}{2}$$

point pairs when drawing samples without repetition, which goest to ∞ for $N \to \infty$.

- 1. d ... the length of the line segment
- 2. K . . . the number of pairs generating a line that has more that 95% of points of X closer than 1.65 σ .
- 3. the shorter the line, the higher the chance to generate a good sample
- 4. for $d \gg \sigma \ldots \frac{K}{N} \approx 0.65$

Relaxation

It is enough to have a high (95%) chance of finding a good estimate of the true line segment l.

65% of samples generate a line that is closer to more than 95% of points in X

Relaxation

Using sufficient number of randomly chosen pairs of points guarrantees average succeess.

Random Minimal Sampling

Random Minimal Sampling

$$I = \arg\max_{\{x_1,x_2\} \subseteq R \subset X} (\ \# \ \text{inliers in} \ X \ \text{for the line through} \ \{x_1,x_2\})$$

needs to examine "only" |R| pairs of distinct points in a randomly chosen subset R of X.

How many random samples should be tried?

Random Minimal Sampling for Robust Line Fitting

The goal is to make k samples to hit at leat one pair of points on the line l with probability larger than p.

Equivalently, we look for k such that the probability of not hitting any pair of points on l is smaller or equal to 1-p

$$\left(1 - \frac{M(M-1)}{N(N-1)}\right)^k \le 1 - p$$

 $rac{M}{N}$... the probability if drawing a good data point

 $\frac{M(M-1)}{N(N-1)}$... the probability of drawing (without repetition) a good pair of data points

 $1 - \frac{M(M-1)}{N(N-1)}$... the probability of drawing a bad pair of data points

 $(1-rac{M(M-1)}{N(N-1)})^k$... the probability of drawing (with repetitions) k bad pairs of data points in a row

Random Minimal Sampling for General Models

For $N \to \infty$ and fixed fraction $\epsilon = \frac{M}{N}$ of good points

$$\lim_{N \to \infty} \frac{M(M-1)}{N(N-1)} = \lim_{N \to \infty} \frac{\epsilon N(\epsilon N - 1)}{N(N-1)} = \epsilon^2$$

which depends only on the fraction of good points and for large N leads to the necessary number of samples

$$k \ge \frac{\log(1-p)}{\log\left(1-\epsilon^2\right)}$$

Random Minimal Sampling for General Models

Generalization for the samples with m points:

$$\lim_{N\to\infty} \frac{M(M-1)\dots(M-m)}{N(N-1)\dots(N-m)} = \lim_{N\to\infty} \frac{\epsilon N(\epsilon N-1)\dots(\epsilon N-m)}{N(N-1)\dots(N-m)} = \epsilon^m$$

and thus for large N we get

$$(1 - \epsilon^m)^k \le 1 - p$$

which leads to

$$k \ge \frac{\log (1 - p)}{\log (1 - \epsilon^m)}$$

How many samples?

