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Tomáš Svoboda, svoboda@cmp.felk.cvut.cz

Czech Technical University in Prague, Center for Machine Perception

http://cmp.felk.cvut.cz

Last update: November 26, 2007

http://cmp.felk.cvut.cz/~svoboda
http://cmp.felk.cvut.cz


2/22
Importance in Computer Vision

� Firstly published in 1981 as an image registration method [3].

� Improved many times, most importantly by Carlo Tomasi [5, 4]

� Free implementation(s) available1.

� After more than two decades, a project2 at CMU dedicated to this

single algorithm and results published in a premium journal [1].

� Part of plethora computer vision algorithms.

1http://www.ces.clemson.edu/∼stb/klt/
2http://www.ri.cmu.edu/projects/project 515.html

http://cmp.felk.cvut.cz
http://www.ces.clemson.edu/~stb/klt/
http://www.ri.cmu.edu/projects/project_515.html
http://www.ces.clemson.edu/~stb/klt/
http://www.ri.cmu.edu/projects/project_515.html
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Tracking of dense sequences — camera motion

I J
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Tracking of dense sequences — object motion

I J
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Alignment of an image (patch)

Goal is to align a template image T (x) to an input image I(x). x column

vector containing image coordinates [x, y]>. The I(x) could be also a small

subwindow withing an image.

http://cmp.felk.cvut.cz
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Original Lucas-Kanade algorithm I

Goal is to align a template image T (x) to an input image I(x). x column

vector containing image coordinates [x, y]>. The I(x) could be also a small

subwindow withing an image.

Set of allowable warps W(x;p), where p is a vector of parameters. For

translations

W(x;p) =
[

x + p1

y + p2

]
W(x;p) can be arbitrarily complex

The best alignment minimizes image dissimilarity∑
x

[I(W(x;p))− T (x)]2

http://cmp.felk.cvut.cz
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Original Lucas-Kanade algorithm II

∑
x

[I(W(x;p))− T (x)]2

is a nonlinear optimization! The warp W(x;p) may be linear but the pixels

value are, in general, non-linear. In fact, they are essentially unrelated to x.

It is assumed that some p is known and best increment ∆p is sought. The

the modified problem ∑
x

[I(W(x;p + ∆p))− T (x)]2

is solved with respect to ∆p. When found then p gets updated

p← p + ∆p

http://cmp.felk.cvut.cz
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Original Lucas-Kanade algorithm III

∑
x

[I(W(x;p + ∆p))− T (x)]2

linearized by performing first order Taylor expansion∑
x

[I(W(x;p)) +∇I
∂W
∂p

∆p− T (x)]2

∇I = [∂I
∂x, ∂I

∂y] is the gradient image3 computed at W(x;p). The term ∂W
∂p is

the Jacobian of the warp.

3As a vector it should have been a column wise oriented. However, for sake of clarity of equations row

vector is exceptionally considered here.

http://cmp.felk.cvut.cz
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Original Lucas-Kanade algorithm IV

Derive ∑
x

[I(W(x;p)) +∇I
∂W
∂p

∆p− T (x)]2

with respect to ∆p

2
∑
x

[
∇I

∂W
∂p

]> [
I(W(x;p)) +∇I

∂W
∂p

∆p− T (x)
]

setting equality to zero yields

∆p = H−1
∑
x

[
∇I

∂W
∂p

]>
[T (x)− I(W(x;p))]

where H is the Hessian matrix

H =
∑
x

[
∇I

∂W
∂p

]>[
∇I

∂W
∂p

]

http://cmp.felk.cvut.cz


10/22
The Lucas-Kanade algorithm—Summary

Iterate:

1. Warp I with W(x;p)

2. Warp the gradient ∇I with W(x;p)

3. Evaluate the Jacobian ∂W
∂p at (x;p) and compute the steepest descent

image ∇I ∂W
∂p

4. Compute the Hessian H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]
5. Compute ∆p = H−1

∑
x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

6. Update the parameters p← p + ∆p

until ‖∆p‖ ≤ ε

http://cmp.felk.cvut.cz
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Example of convergence

video

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/klt_iterations_demo.avi
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Example of convergence

Convergence video: Initial state is within the basin of attraction

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/india_klt_good.avi
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Example of divergence

Divergence video: Initial state is outside the basin of attraction

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/india_klt_bad.avi
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What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑
x

[
∇I

∂W
∂p

]>
[T (x)− I(W(x;p))]

where H is the Hessian matrix

H =
∑
x

[
∇I

∂W
∂p

]>[
∇I

∂W
∂p

]

The stability of the iteration is mainly influenced by the inverse of Hessian.

We can study its eigenvalues. Consequently, the criterion of a good feature

window is min(λ1, λ2) > λmin (texturedness).

http://cmp.felk.cvut.cz
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What are good features (windows) to track?

Consider translation W(x;p) =
[

x + p1

y + p2

]
. The Jacobian is then

∂W
∂p =

[
1 0
0 1

]

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]
=

∑
x

[
1 0
0 1

][
∂I
∂x
∂I
∂y

]
[∂I
∂x, ∂I

∂x]
[

1 0
0 1

]

=
∑

x

 (
∂I
∂x

)2 ∂I2

∂x∂y

∂I2

∂x∂y

(
∂I
∂y

)2


The image windows with varying derivatives in both directions.

Homeogeneous areas are clearly not suitable. Texture oriented mostly in one

direction only would cause instability for this translation.

http://cmp.felk.cvut.cz
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What are the good points for translations?

The Hessian matrix

H =
∑
x

 (
∂I
∂x

)2 ∂I2

∂x∂y

∂I2

∂x∂y

(
∂I
∂y

)2


Should have large eigenvalues. We have seen the matrix already, where?

http://cmp.felk.cvut.cz
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What are the good points for translations?

The Hessian matrix

H =
∑
x

 (
∂I
∂x

)2 ∂I2

∂x∂y

∂I2

∂x∂y

(
∂I
∂y

)2


Should have large eigenvalues. We have seen the matrix already, where?

Harris corner detector [2]!

http://cmp.felk.cvut.cz
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Experiments - no occlusions

video

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/no_occlusion.avi
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Experiments - occlusions

video

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/without_diss.avi
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Experiments - occlusions with dissimilarity

video

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/with_diss.avi
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Experiments - object motion

video

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/human.avi
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End
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