Homography from point pairs

Projective transformation, Collineation

Revision: 1.4, dated: September 18, 2006

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic svoboda@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~svoboda

Where are the homographies?

induced by a world plane to cameras

camera rotating around its center
Sketches borrowed from [2]

Problem

How are the images related?

2D Projective transformation

Sometimes called homography or collineation.
A projective transformation is a special transformation which relates the coordinate system $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ with $\mathbf{u}=\left[u_{1}, u_{2}\right]^{\top}$ by

$$
x_{1}=\frac{a_{11} u_{1}+a_{12} u_{2}+a_{13}}{a_{31} u_{1}+a_{32} u_{2}+a_{33}} \text { and } x_{2}=\frac{a_{21} u_{1}+a_{22} u_{2}+a_{23}}{a_{31} u_{1}+a_{32} u_{2}+a_{33}} .
$$

2D Projective transformation

Sometimes called homography or collineation.
A projective transformation is a special transformation which relates the coordinate system $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ with $\mathbf{u}=\left[u_{1}, u_{2}\right]^{\top}$ by

$$
x_{1}=\frac{a_{11} u_{1}+a_{12} u_{2}+a_{13}}{a_{31} u_{1}+a_{32} u_{2}+a_{33}} \quad \text { and } \quad x_{2}=\frac{a_{21} u_{1}+a_{22} u_{2}+a_{23}}{a_{31} u_{1}+a_{32} u_{2}+a_{33}} .
$$

Such expressions can be written in a compact way as

$$
x_{1}=\frac{\mathbf{A}_{1}\left[\mathbf{u}^{\top}, 1\right]^{\top}}{\mathbf{A}_{3}\left[\mathbf{u}^{\top}, 1\right]^{\top}}, \quad x_{2}=\frac{\mathbf{A}_{2}\left[\mathbf{u}^{\top}, 1\right]^{\top}}{\mathbf{A}_{3}\left[\mathbf{u}^{\top}, 1\right]^{\top}},
$$

where

$$
\mathrm{A}=\left[\begin{array}{l}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\mathbf{A}_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Computation of A from point correspondences

Computation of A from point correspondences arranging equations

Let us have n corresponding point pairs ($\mathrm{x}^{i}, \mathbf{u}^{i}$). We know that for each pair should hold

$$
x_{1}^{i}=\frac{\mathbf{A}_{1}\left[\mathbf{u}^{i^{\top}}, 1\right]^{\top}}{\mathbf{A}_{3}\left[\mathbf{u}^{i^{\top}}, 1\right]^{\top}}, \quad x_{2}^{i}=\frac{\mathbf{A}_{2}\left[\mathbf{u}^{i^{\top}}, 1\right]^{\top}}{\mathbf{A}_{3}\left[\mathbf{u}^{i^{\top}}, 1\right]^{\top}} .
$$

We may manipulate the equations to get

$$
\begin{aligned}
& \mathbf{A}_{3}\left[\mathbf{u}^{i^{\top}} 1\right]^{\top} x_{1}^{i}-\mathbf{A}_{1}\left[\mathbf{u}^{i^{\top}} 1\right]^{\top}=0, \\
& \mathbf{A}_{3}\left[\mathbf{u}^{i^{\top}} 1\right]^{\top} x_{2}^{i}-\mathbf{A}_{2}\left[\mathbf{u}^{i^{\top}} 1\right]^{\top}=0 .
\end{aligned}
$$

Each pair ($\mathrm{x}^{i}, \mathbf{u}^{i}$) creates thus a pair of homogenous equations. Manipulation continues . . .

Computation of A from point correspondences LSQ formulation

We form a vector a from elements of the matrix A :
$\mathbf{a}=\left[\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right]=\left[a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}\right]^{\top}$. Using all correspondences having at hand, the homogeneous equations are written as

$$
\left(\begin{array}{ccccccccc}
u_{1}^{1} & u_{2}^{1} & 1 & 0 & 0 & 0 & -x_{1}^{1} u_{1}^{1} & -x_{1}^{1} u_{2}^{1} & -x_{1}^{1} \\
0 & 0 & 0 & u_{1}^{1} & u_{2}^{1} & 1 & -x_{2}^{1} u_{1}^{1} & -x_{2}^{1} u_{2}^{1} & -x_{2}^{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
u_{1}^{n} & u_{2}^{n} & 1 & 0 & 0 & 0 & -x_{1}^{n} u_{1}^{n} & -x_{1}^{n} u_{2}^{n} & -x_{1}^{n} \\
0 & 0 & 0 & u_{1}^{n} & u_{2}^{n} & 1 & -x_{2}^{n} u_{1}^{n} & -x_{2}^{n} u_{2}^{n} & -x_{2}^{n}
\end{array}\right) \mathbf{a}=\mathbf{C a}=\mathbf{0}
$$

LSQ formulation

$$
\mathbf{a}=\underset{\left\|\mathbf{a}^{*}\right\|=1}{\operatorname{argmin}}\left\|\mathbf{C a}^{*}\right\|^{2}
$$

Solution of the above problem is covered by the constrained_lsq ${ }^{1}$ talk.

Application—Image Panoramas!

If the images are taken by a camera which rotates around its center of projection than they are related by exactly the same transformation we have just described.

Application—Image Panoramas!

Further reading

- The textbook [3] provides readable explanation of the homography and its computation.
- Mathematical book [1] gives you more insight into the matrix manipulation and solution of the constrained LSQ problem.
[1] Gene H. Golub and Charles F. Van Loan. Matrix Computation. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, USA, 3rd edition, 1996.
[2] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK, 2000. On-line resources at:
http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html.
[3] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003.

