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Motivation
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Two projections of a rigid 3D scene

C1

C2

� The projections are clearly different.

� Can the difference tell something about the camera positions?

� and about the scene structure?
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Two projections of a rigid 3D scene

C1

C2

� The projections are clearly different.

� Can the difference tell something about the camera positions?

� and about the scene structure?

It can! (to both)
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Can we find a relation between corresponding

projections regardless of the scene structure?

http://cmp.felk.cvut.cz
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Back project the ray
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Project the camera center to the second image
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The correponding projection must lie on
a specific line
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Derivation of the Fundamental matrix
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We already know: e2 = P2C1

Projection to the camera 2: u2
9 = P2(λP1+u1

9 + C1)

Line is a cross product of the points lying on it: e2 × u2
9 = l29

Putting together: e2 × (P2λP1+u1
9 + P2C1) = l29

Clearly e2 × P2C1 = 0, then: e2 × λP2P1+u1
9 = l29

But we also know l29
>u2

9 = 0 since the point u2
9 must lie on the line l29.

http://cmp.felk.cvut.cz
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Derivation of the Fundamental matrix, cont.

e2 × λP2P1+u1
9 = l29

But we also know l29
>u2

9 = 0 since the point u2
9 must lie on the line.

Introducing a small matrix trick [e]× =

 0 −e3 e2

e3 0 −e1

−e2 e1 0


we may rewrite the cross product as a matrix multiplication

l29 =
(
[e2]×λP2P1+

)
u1

9

Inserting into l29
>u2

9 = 0 yields:

u1
9
>
(
[e2]×λP2P1+

)
︸ ︷︷ ︸

F

>
u2

9 = 0

u2
9
>
Fu1

9 = 0
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Epipolar geometry revisited
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i = 0 holds for any corresponding pair u1
i ,u

2
i .

F does not depend on the scene structure, only on cameras.

All epipolar lines intersect in epipoles.
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Epipolar geometry—overview

video: 3D sketch of Epipolar geometry

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/../Videos/epipgeom.avi
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Epipolar geometry—what is it good for
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Epipolar geometry—what is it good for
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Epipolar geometry—what is it good for
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Epipolar geometry—what is it good for
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Fundamental matrix, so what . . .

Motion and 3D structure is where?
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Essential matrix

For the Fundamental matrix we derived

u1
i
>
(
[e2]×P

2P1+
)

︸ ︷︷ ︸
F

>
u2

i = 0

u denote point coordinates in pixels. Let coincide the world system with the

coordinate system of the first camera.

u1 = K1
[
I 0

]
X u2 = K2

[
R t

]
X

Remind the normalized image coordinates x = K−1u. We can define

normalized cameras x = P̂X and insert the equation above.

x1
i
>
(
[x2

e]×P̂
2(P̂1)

+
)

︸ ︷︷ ︸
E

>
x2

i = 0

where E is the Essential matrix
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Essential matrix — cont’d

E = [x2
e]×P̂

2(P̂1)
+

= [x2
e]×

[
R t

] [
I 0

]+
= [x2

e]×R

x2
e = P̂2C1

=
[
R t

] [
0
1

]
= t

E = [t]×R

E comprises the motion between cameras!

after simple manipulation, we see E = K2>FK1

http://cmp.felk.cvut.cz
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3D scene reconstruction—Linear method

A scene point X is observed by two cameras P1 and P2. Assume we know its

projections [uj, vj]>

u = PX, u = p>1 X
p>3 X

, u(p>3 X)− p>1 X = 0, the same derivation for v and for

both cameras: 
u1p1

3
> − p1

1
>

v1p1
3
> − p1

2
>

u2p2
3
> − p2

1
>

v2p2
3
> − p2

2
>

 [
X

]
=

[
0

]

Set of linear homogeneous equations. A standard LSQ solution1 may be

used.

Not an optimal solution. It minimizes algebraic not geometric error. More

methods can be found in [3, Chapter 12]

1http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/
constrained_lsq.pdf

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
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Errors in reconstruction

2

� the bigger angle between rays the better reconstruction, however . . .

� also the more difficult image matching

2Sketch borrowed from [2]

http://cmp.felk.cvut.cz
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Problems with image matching

Good for matching, bad for reconstruction
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Problems with image matching

Good for recontruction, bad for matching
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Estimation of F or E from corresponding point
pairs

u2
i
>
Fu1

i = 0

for any pair of matching points. Each matching pair gives one linear

equation

u2u1f11 + u2v1f12 + u2f13 . . . = 0

which may be rewritten an a vector inner product

[u2u1, u2v1, u2, v2u1, v2v1, v2, u1, v1, 1]f = 0

A set of n pairs forms a set of linear equations

Af =

 u2
1u

1
1 u2

1v
1
1 u2

1 v2
1u

1
1 v2

1v
1
1 v2

1 u1
1 v1

1 1
... ... ... ... ... ... ... ... ...

u2
nu1

n u2
nv1

n u2
n v2

nu1
n v2

nv1
n v2

n u1
n v1

n 1

 f = 0

http://cmp.felk.cvut.cz


24/35
Estimation of F—normalized 8-point algorithm

Solution of

Af =

 u2
1u

1
1 u2

1v
1
1 u2

1 v2
1u

1
1 v2

1v
1
1 v2

1 u1
1 v1

1 1
... ... ... ... ... ... ... ... ...

u2
nu1

n u2
nv1

n u2
n v2

nu1
n v2

nv1
n v2

n u1
n v1

n 1

 f = 0

is a standard LSQ solution3

Point normalization

Consider a point pair u1 = [150, 250, 1]>,u2 = [250, 350, 1]>. It is clear

that row elements in A are unbalanced.

a> = [106, 106, 103, 106, 106, 103, 103, 103, 100]

This influences the numerical stability. Solution: normalization of the point

coordinates before computation.
3http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/

constrained_lsq.pdf

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
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Estimation of F—normalized 8-point algorithm

Transform the coordinates of points so that the centroid is at the origin of

coordinates nad RMS distance is equal to
√
2.

û1 = T1u1 and û2 = T2u2, where Ti are 3× 3 normalizing matrices

including translation nad scaling.

Compute F̂ by using the standard LSQ method, û2>F̂û1 = 0 . Denormalize

the solution F = T2>F̂T1

Historical remarks

The linear algorithm for estimation epipolar geometry (calibrated

case—essential matrix) was suggest in [5]. The normalization for the

uncalibrated case (fundamental matrix) was introduced in [4].

http://cmp.felk.cvut.cz


26/35
Point normalization
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Zero motion

we derived

E = [t]×R

what happens if t = 0?
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Common t = 0 case—Image Panoramas
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What are the differences in images
general motion

http://cmp.felk.cvut.cz
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What are the differences in images
general motion

� objects in different depths make occlusions

� the mapping is certainly not 1:1

http://cmp.felk.cvut.cz
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What are the differences in images
rotation

http://cmp.felk.cvut.cz
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What are the differences in images
rotation

� no occlusions

� the mapping may be 1:1

http://cmp.felk.cvut.cz
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Mapping between images
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End
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