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Abstract—Self-calibration using pure rotation is a well-known technique and has

been shown to be a reliable means for recovering intrinsic camera parameters.

However, in practice, it is virtually impossible to ensure that the camera motion for

this type of self-calibration is a pure rotation. In this paper, we present an error

analysis of recovered intrinsic camera parameters due to the presence of

translation. We derived closed-form error expressions for a single pair of images

with nondegeneratemotion; for multiple rotations for which there are no closed-form

solutions, analysis was done through repeated experiments. Among others, we

show that translation-independent solutions do exist under certain practical

conditions. Our analysis can be used to help choose the least error-prone approach

(if multiple approaches exist) for a given set of conditions.

Index Terms—Self-calibration, rotating cameras, error analysis.
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1 INTRODUCTION

SELF-CALIBRATION refers to a collection of camera calibration

techniques that rely only on scene features to extract camera

parameters. As a result, it is a very desirable and practical means

for calibrating the camera. There has been a significant body of

work done in this area, such as that of Maybank and Faugeras’
[10], in which the Kruppa equation was used. Of particular interest

to us is Hartley’s [5], [6] method of self-calibration from pure

rotation based on recovered homographies. An alternative is to

assume planar scenes [15], [16], [19]. More recently, others have

extended the self-calibration problem to recovering variable

intrinsic parameters. By making some assumptions on the camera

intrinsic parameters, recovery is possible using a closed-form

solution [2], [11], [12].
For the case of self-calibration with the assumption of purely

rotating cameras, the effects of possible nonzero translation are

mostly ignored. It is, in practice, impossible to enforce the pure-

rotation assumption under nonlaboratory conditions. The case of

translations is mentioned in [6], but no error analysis was

provided. Stein [13] did consider nonzero translations in his work

and his somewhat brief analysis indicated that translations are

generally bad.
Our work is most similar to that of Hayman and Murray [7],

while our work first appeared in [18]. They analyze the error

caused by nonzero translations to only the focal length. While their

analysis is for zooming cameras, they use the assumption that the

camera is mounted on top of a tripod or on pan-tilt devices, which

provides additional constraints to recover the focal length. Their

work also mentioned that nonlinear solutions provide better

results, while our work mainly focused on linear solutions.

Our analysis shows that the effects of nonzero translations can be

mitigatedunder certain conditions. It also showswhy somemethods

are better than others in computing intrinsic camera parameters. In

particular, we computed the error bounds for some practical special

cases and showed the unexpected results that particular derivations

are independent of certain translational components. In our analysis,

wedonot considerdegeneratemotions, aswasdone in [9], [2], [14]. In

addition, we assume the intrinsic parameters remain the same

throughout the calibration process.

The paper is organized as follows:We start by defining terms and

describing the problem in Section 2. Our analysis of the 1, 2, and 3-

parameter problem is described in Sections 3, 4, and 5, respectively.

(The 4-parameter and 5-parameter analysis and comparison with

perturbation analysis are given in [17]. It is omitted due to space

limitations.) Section 6 discusses the results and limitations of our

analysis, with concluding remarks provided in Section 7.

2 SOME PRELIMINARIES

In this section, we describe the different cases in our analysis, the

problem of self-calibration with pure rotation, and we list our

notations used in the rest of the paper.

2.1 Calibration Matrix

The calibration matrix we use is of the following form:

A ¼
f s x0
0 af y0
0 0 1

2
4

3
5; ð1Þ

where f is the focal length, a is the aspect ratio, s is the image skew,

and ðx0; y0Þ is the principal point.
Our analysis covers the following cases:

1. 1-parameter estimation: f unknown, with a ¼ 1; s ¼ 0;
x0 ¼ y0 ¼ 0;

2. 2-parameter estimation: f and a unknown, with s ¼ 0;
x0 ¼ y0 ¼ 0;

3. 3-parameter estimation: f; x0, and y0 unknown, with
a ¼ 1; s ¼ 0, and f; a, and s unknown, with x0 ¼ y0 ¼ 0;

The 4-parameter case, with s known as zero, and the 5-parameter

case, where all the intrinsics are unknown, are treated in [17].

2.2 Errors Due to Translation

The idea of self-calibration from pure rotation is to first register the

rotated images to extract their homographies. Using these

homographies, we can then extract the calibration matrix A. The

homography associated with a pair of rotated images is of the

form H ¼ ARA�1, where R is the rotation matrix. All these steps

ignore errors due to image registration (e.g., resampling problems,

photometric variation across images, bad local minimum). In our

analysis, we ignore these errors as well. In theory, for a purely

rotating camera, the estimated calibration matrix Aest is equal to

the actual calibration matrix A.
Suppose that there is now some camera translation t. For the

case of the single plane scenario, we have

H ¼ A Rþ tnT

d

� �
A�1; ð2Þ

where n is the vector of the plane and d is the distance of the

camera center to the plane.
Now, if we were to self-calibrate with the assumption of a

purely rotating camera, we will essentially be force-fitting
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AestðRestÞA�1
est � H ¼ A Rþ tnT

d

� �
A�1; ð3Þ

resulting in errors in the recovered intrinsic parameters, i.e.,

�A ¼ Aest � A 6¼ 03�3.
In the general case of multiple planes in the scene and with

nonzero camera translation, we can greatly simplify our analysis by

assuming the resulting homography from image registration is due

to some effective “average” global plane in the scene with some

parallax, i.e.,

H ¼ A Rþ tne
T

de

� �
A�1: ð4Þ

In our analysis, we use this effective one-plane assumption.

2.3 Additional Notations

The rotation matrix R and homography H are written as

R ¼
r1 r2 r3
r4 r5 r6
r7 r8 r9

2
4

3
5 and H ¼

h1 h2 h3

h4 h5 h6

h7 h8 h9

2
4

3
5:

We also represent R by its rotation axis, i.e., R ¼ �ðrx; ry; rzÞ.
In our analysis, we normalize the camera translationwith respect

to the distance of the scene plane from the camera, i.e., de ¼ 1, giving
t
de
¼ t ¼ ½tx ty tz�T . The effective plane normal is ne ¼ ½nx ny nz�T .
We now start our analysis with the 1-parameter estimation and

then work our way to the most general case.

3 1-PARAMETER ESTIMATION

In this case, our calibration matrix is reduced to

A ¼
f 0 0
0 f 0
0 0 1

2
4

3
5:

For pure rotation, the homography matrix is

H ¼ ARA�1 ¼
r1 r2 fr3
r4 r5 fr6
r7
f

r8
f r9

2
4

3
5:

3.1 Closed-Form Solution

Since R is orthonormal, there are several ways in which we can

extract f , as described in [12]. For example, either

h2
1 þ h2

2 þ h2
3=f

2 ¼ h2
4 þ h2

5 þ h2
6=f

2 ð5Þ
or

h1h4 þ h2h5 þ h3h6=f
2 ¼ 0 ð6Þ

can be used. The solution associated with (6) is

fest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h3h6

h1h4 þ h2h5

s
: ð7Þ

Note that this solution is applicable only if the camera is not

rotated exactly about the x, y, or z-axis.
In the case of pure camera rotation, both (5) and (6) are accurate.

However, with translation, we have

H¼ A Rþ tnT
e

de

� �
A�1 ¼ A Rþ tnT

e

� �
A�1

¼
r1 þ txnx r2 þ txny fðr3 þ txnzÞ
r4 þ tynx r5 þ tyny fðr6 þ tynzÞ

r7þtznx

f
r8þtzny

f r9 þ tznz

2
4

3
5: ð8Þ

It is interesting to note how the translational error components

are distributed according to rows in (7). This could influence our

choice of rows to use to compute f , especially if we have a priori

knowledge of the approximate relative magnitudes of the camera

translation components.

Suppose we go ahead and use (7) to compute f . The solution

now contains an error that is independent of tz, i.e.,

fest ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr3 þ txnzÞðr6 þ tynzÞ

q

s
;

q ¼ ðr1 þ txnxÞðr4 þ tynxÞ þ ðr2 þ txnyÞðr5 þ tynyÞ:

Noting that r1r4 þ r2r5 ¼ �r3r6 and ignoring second and higher

order terms involving tx and ty, we get

fest
f

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ txq1 þ tyq2

p
;

where

q1 ¼
nz

r3
þ r4nx

r3r6
þ r5ny

r3r6

� �
and q2 ¼

nz

r6
þ r2ny

r3r6
þ r1nx

r3r6

� �
:

From the above expression, the absolute relative error is

computed as

f � fest
f

����
���� � 1

2
jðtxq1 þ tyq2Þj �

1

2

jtxj þ jtyj
jr3r6j

� �
:

As mentioned before, this method is independent of tz and

should be used if tz is known to dominate. We can use similar

reasoning to choose different rows or columns to compute f under

different conditions of t and ne.

3.2 Special Configurations

Let us now consider two special cases of the 1-parameter

estimation case that are either commonly assumed or used in

practice, namely, the fronto-parallel plane and panning motion.

3.2.1 Fronto-Parallel Plane

If the scene plane is fronto-parallel, i.e., ne ¼ ½0 0 1�T , the

homography matrix reduces to

H ¼
r1 r2 fðr3 þ txÞ
r4 r5 fðr6 þ tyÞ
r7
f

r8
f r9 þ tz

2
4

3
5:

Note that the first and second columns are independent of the

translation! In theory, under this condition, we can compute f

exactly from these vectors using

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h1h2 þ h4h5

h7h8

s
ð9Þ

or f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2 þ h2

5 � h2
1 � h2

4

h2
7 � h2

8

s
; ð10Þ

noting that, when the rotation angle is quite small, h7 and h8 are

very close to zero, which will produce unstable results. It suggests

using a large rotation angle for calibration.

We can also analyze the error bound of (5) and (6). For (6), by

ignoring second and higher order terms for tx and ty, we get

fest ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr3 þ txÞðr6 þ tyÞ

r1r4 þ r2r5

s
� f 1þ 1

2

tx
r3

þ ty
r6

� �� �
:
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For (5),

fest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3 � h2

6

h2
4 þ h2

5 � h2
1 � h2

2

s
� f 1þ r3tx � r6ty

r23 � r26

� �
: ð11Þ

If R ¼ �ð0; 1; 0Þ, (11) reduces to

fest � f

f
� tx

sin �
: ð12Þ

This suggests that larger rotations are more favorable. How-

ever, we have ignored the registration error, which depends on the

amount of overlap and overlapping texture. If � ¼ 15�, for

example, the error is expected to be nearly 4tx.

In fact, it is not uncommon for the scene plane to be nearly fronto-

parallel or distant to the camera. Our analysis provides interesting

insights in these cases.

3.2.2 Panning Motion

In many applications, the camera motion is that of controlled

panning. Letting c� ¼ cos �; s� ¼ sin �; t ¼ ½tx 0 tz�T ,

R ¼ �ð0; 1; 0Þ ¼
c� 0 s�

0 1 0

�s� 0 c�

2
64

3
75; and

H ¼
c� þ txnx txny fðs� þ txnzÞ

0 1 0
�s�þtznx

f
tzny

f c� þ tznz

2
64

3
75:

In this case, we have a closed-form exact solution. As we know,

h2=h8 ¼ ftx=tz;
so

h7 ¼
�s� þ tznx

f
¼ �s�

f
þ h8txnx

h2
¼ �s�

f
þ h8ðh1 � c�Þ

h2
:

Similarly,

h9 ¼ c� þ
h8ðh3 � fs�Þ

h2
;

from which we can solve f using

w1 ¼ h3h8 � h2h9; w2 ¼ h2h7 � h1h8

� ¼ cos�1 �ðw1w2þh2h8Þ
w1h8þw2h2

� �
; f ¼ h3h8�h2h9þh2 cos �

h8 sin �
:

(

However, for (5), ignoring second and higher order terms in tx,

fest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3 � h2

6

h2
4 þ h2

5 � h2
1 � h2

2

s
� f 1þ 1

s�
txnz þ

txnx

tan �

� �� �
:

Note that this method is only dependent on tx and that the error

increases quickly when the rotation angle � decreases.

If n ¼ ½0 0 1�T , the error reduces to (12).

4 2-PARAMETER ESTIMATION

For the 2-parameter case,

A ¼
f 0 0
0 af 0
0 0 1

2
4

3
5; and H ¼ ARA�1 ¼

r1 r2=a fr3
ar4 r5 afr6
r7=f r8=af r9

2
4

3
5:

4.1 Closed-Form Solution

Fromtheorthogonality constraints ½r1 r2 r3�½r4 r5 r6�T ¼ 0and

½r1 r4 r7�½r2 r5 r8�T ¼ 0, we have

h1h4

a þ ah2h5 þ h3h6

af2
¼ 0

ah1h2 þ h4h5

a þ af2h7h8 ¼ 0:

(

Hence, we have a closed-form solution (choosing only real and

positive solutions). Its error could be written as in the previous

section.

4.2 Special Configuration

As before, we consider the two special cases.

4.2.1 Fronto-Parallel Plane

If ne ¼ ½0 0 1�T , then

H ¼
r1 r2=a fðr3 þ txÞ
ar4 r5 afðr6 þ tyÞ
r7=f r8=af r9 þ tz

2
4

3
5:

We still have first and second column vectors independent of

the translation. Again, we get the exact solution.

4.2.2 Panning Motion

With camera panning, we have

H ¼
c� þ txnx

txny

a fðs� þ txnzÞ
0 1 0

�s�þtznx

f
tzny

af c� þ tznz

2
4

3
5:

It is interesting that h1; h3; h7; h9; h2=h8 are just the same as in

1-parameter estimation and that these parameters are sufficient to

solve f . As a result, we have an exact solution for f , but not for a.

This verifies the claim of [2].

5 3-PARAMETER ESTIMATION

For 3-parameter estimation,

A ¼
f 0 x0

0 f y0

0 0 1

2
64

3
75; and

H ¼

r1 þ r7x0
f r2 þ r8x0

f fr3 þ r9x0 � r1x0 � r2y0 � r7x
2
0þr8x0y0

f

r4 þ r7y0
f r5 þ r8y0

f fr6 þ r9y0 � r4x0 � r5y0 � r7x0y0þr8y
2
0

f

r7
f

r8
f r9 � r7x0þr8y0

f

2
6664

3
7775:

5.1 Closed-Form Solution

First, we impose the constraint detðHÞ ¼ 1. Since HA ¼ AR, we get

HAATHT ¼ ARRTAT ¼ AAT . Taking the inverse [2], we have

H�TA�TA�1H�1 ¼ A�TA�1. Let

B ¼ f2A�TA�1 ¼
1 0 b1
0 1 b2
b1 b2 b3

2
4

3
5; G ¼ H�T ¼

g1 g2 g3
g4 g5 g6
g7 g8 g9

2
4

3
5;

where b1¼ �x0; b2 ¼ �y0; b3 ¼ f2þ x20 þy20. Linearizing GBGT ¼ B,

we haveG0b ¼ 0, where

G0 ¼

2g1g3 2g2g3 g23 g21 þ g22 � 1

g3g4 þ g1g6 g3g5 þ g2g6 g3g6 g1g4 þ g2g5

g3g7 þ g1g9 � 1 g3g8 þ g2g9 g3g9 g1g7 þ g2g8

2g4g6 2g5g6 g26 g24 þ g25 � 1

g6g7 þ g4g9 g6g8 þ g5g9 � 1 g6g9 g4g7 þ g5g8

2g7g9 2g8g9 g29 � 1 g27 þ g28

2
666666664

3
777777775

and

b ¼ ½b1 b2 b3 1�T :
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From three independent rows, we can get a closed-form solution,

which is too long to write out in full here. Once b1; b2; and b3 are

computed,we can obtain f; x0; and y0 with a closed-form solution as

well as the error function. The degenerate configurations, which are

described in [2], are beyond the scope of this paper.
When we have more homographies, we just stack them up to

yield (similar to [6])

G0
Mb ¼ 0

from which we could solve B and then solve the intrinsic

parameter matrix A.

5.2 Special Configurations

As the number of unknowns increases, even the special config-

urations become significantly more complicated.

5.2.1 Fronto-Parallel Plane

It is difficult to find an exact solution in this case. However, since

ne ¼ ½0 0 1�T , the terms suggest that it is desirable to put more

weight on the first two columns in parameter estimation, since

they are theoretically independent of translation.

5.2.2 Panning Motion

With camera panning,

H ¼
c�þtxnxþ

tznx�s�
f x0 txnyþ

tzny
f x0 fðs�þtxnzÞþtznzx0�txnxy0þ

s�x0�tznxy0
f x0

�s�þtznx
f y0 1þtzny

f y0 y0ð�1þc�þtznzÞþ
s�x0�tznxy0

f y0

�s�þtznx
f

tzny
f c�þtznzþ

s�x0�tznxy0
f

2
64

3
75;

where nxy0 ¼ nxx0 þ nyy0. By inspection, we can easily see that

y0 ¼ h4=h7. In addition, if the angle � is known,

txnx ¼ h1 � c� � h7x0; tznx ¼ fh7 þ s�;

txny ¼ h2 � h8x0; tzny ¼ fh8;

txnz ¼ ðh3 � h7x
2
0 þ h1x0 � h9x0 þ h2y0 � h8x0y0 � fs�Þ=f;

and tznz ¼ h9 þ h7x0 þ h8y0 � c�, which lead to

tx
tz

¼ h1 � c� � h7x0
fh7 þ s�

¼ h2 � h8x0
fh8

¼ ðh3 � h7x
2
0 þ h1x0 � h9x0 þ h2y0 � h8x0y0 � fs�Þ=f

h9 þ h7x0 þ h8y0 � c�
:

f and x0 can then be found from the following equations:

h1h8 � h8c� � h2h7 h8s�

h8s� h2h7 þ h8c� � h1h8

	 

f

x0

	 


¼
h2s�

h3h8 � h2h9 þ h2c�

	 

:

5.3 Experiments

If ne is randomized and rotation angle is 15�, we obtain the error

graph shown in Figs. 1a, 1e, and 1f for f; x0, and y0 separately. As

indicated in Section 2.3, the magnitude of the translation t is

normalizedwith respect to the distance of the scene plane to the first

camera.

These error graphs show that camera translation can have a

dramatic effect on the accuracy of the intrinsic parameters. For

example, in Figs. 1e and 1f, the error standard deviation is more

than 100 percent even though jtj is only 0.1. However, we expect

that using different homographies will improve the stability of this

method, even though it does not provide closed-form solutions [6].

The error graph in Figs. 1a, 1e, and 1f shows the effect of using

different numbers of homographies on the standard deviation of

the error in f , x0, and y0 under independently random rotations

and random translations. As we can see, in general, the results
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Fig. 1. Three-parameter estimation results (t: translation, �: rotation, �err: error standard deviation). Effect of: (a) jtj on �err of f, (b) number of homographies on ��2
err of f,

(c) jtj, and � on �err of f, (d) jtj and � on mean error of f, (e) jtj on �err of x0, and (f) jtj on �err of y0. Each data point is based on 200 randomized trials in all cases, except

(b) on 1,000 randomized trials.



become more stable with a higher number of homographies. It is

interesting to note that, for estimating f , the error standard

deviation for the case of two homographies is smaller than that of

five homographies. The reason of this behavior would be an

interesting topic for future research.
For a translation twith a fixed magnitude, we would expect the

error variance �err to vary with the number of homographies Nh

according to the statistical sampling relation

�err /
1ffiffiffiffiffiffiffi
Nh

p or
1

�2err
/ Nh:

This relationship is verified in Fig. 1b.

Camera rotation appears to be a significant factor in accuracy

and stability. Fig. 1c shows the graph of error and translation for

different rotation angles. The error standard deviation decreases

with increasing angle. The graph in Fig. 1d shows how the mean

error of f changes with different translations and rotation angles.

While the mean error is more significant with jtj, its degradation is

more dramatic with the decrease in rotation angle. It is interesting

to see that the average value of results is not the right answer for

jtj 6¼ 0. This is because overestimation and underestimation of f are

not symmetric with respect to the sign of t. For example, if

n ¼ ½0 0 1�T , R ¼ 15�ð0:1; 0:9747; 0:2Þ, t ¼ ½0:01 0:02 � 0:01�T ,
�f
f ¼ 0:0157; with the same plane vector and rotation,

t ¼ ½�0:01 � 0:02 0:01�T , �f
f ¼ 0:0004, i.e., they are both over-

estimated. In fact, experiments show that the mean of f is usually

underestimated. We obtained similar results for the other two

parameters.

5.4 Another Configuration

For another 3-parameter camera configuration,

A ¼
f s 0

0 af 0

0 0 1

2
64

3
75; and

H ¼
r1 þ r4s

f
r2
a þ r5�r1

af s� r4s
2

af2
fr3 þ r6s

ar4 r5 � r4s
f afr6

r7
f

r8
af � r7s

af2 r9

2
664

3
775:

In this case, we still have a closed-form solution to solve for A.

For special configurations like fronto-parallel plane and panning

motion, it is difficult to find an exact solution, but if � is known

(such as [1], [3]), we can find an exact closed-form solution. Due

to space limitation, we left the details in a longer version of this

paper [17].

6 DISCUSSION

Our analysis on the different multiple parameter estimation cases

has yielded rather interesting results. For example, under certain

conditions (see Table 1), exact solutions can be obtained despite the

presence of translation. Also, in the 1, 2, and 3-parameter estimation

cases with the fronto-parallel plane condition, the first two columns

of the homography are theoretically independent of the camera

translation. This can be used to influence the manner in which the

unknowns are computed, especially if multiple approaches exist.

We have verified that using more homographies produces more

stable and accurate results. In addition, using a bigger rotation angle

is usually better. We should caution, however, that we have ignored

registration effects such as reduction of overlapped image areas,

local texture distribution, and errors in resampling. The inclusion of

these effects to the analysis could be an area for future research.

The complexity of analysis increases dramatically with the

number of parameters to be estimated. Our experiments also

indicated that parameter estimation is more sensitive to transla-

tional errors with more parameters.

In addition to ignoring registration errors, we also made the

assumption of the existence of an effective plane ðne; deÞ. We think

this is a reasonable assumption as the resulting homography

computed from image registration (despite the presence of

residual parallax) can always be interpreted as a 3D plane.

An alternativemeans for investigating the effect of translation on

the intrinsic parameters is through component-wise perturbation

analysis [8]. However, it is unable to provide the same level of in-

depth and detailed insights on the problem as our analysis (which

gives exact solutions in certain cases). In addition, aswe have shown

in a longer version of this paper [17], the perturbation analysis

results in high error bounds, which are not very useful in practice.

7 SUMMARY AND CONCLUSIONS

We have analyzed the error for pure rotation-based self-calibration

in the presence of camera translation. In particular, we considered

three cases, namely, the 1, 2, and 3-parameter estimation problems.

The algorithm and analysis of 4-parameter case is an extension of the

(f; x0; y0) case, and the 5-parameter estimation problems are similar

to the (f; a; s) case. We have a closed-form solution for the 4-

parameter case, while we have no closed-form solution for 5-

parameter case. They are considered in [17]. A summary of results of

our analysis of these cases is given in Table 1. Note that having a

closed-form solution does not necessarilymean that there is an exact

solution. The closed-form solution is a direct function of the

homography matrix entries, which may include error terms due to

camera translation. The exact solution is an error-free solution that is

independent of translation.
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Comparison of Different Parameter Estimation Cases



The special conditions of a fronto-parallel plane and camera

panning is especially interesting, primarily because of the

convenience of camera panning. Our analysis shows that, in some

cases, it is theoretically possible to recover correct solutions in spite

of translation! As a result, our analysis can help the user choose the

least error-prone approach (if multiple approaches exist) for a

given set of conditions.
The other conclusions from our analysis are:

. Camera translation can have a dramatic effect on the
accuracy of the extracted intrinsic parameters. From a
practical point of view, it is desirable to self-calibrate using
distant scenes.

. The larger the rotation, the more accurate and stable the
solution is (ignoring registration issues).

. The greater number of different homographies used the
better.

. Because the overestimation and underestimation of f is not
symmetric with respect to the sign of t, simply taking the
average value of several trials will not improve the result.
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