Image preprocessing in spatial domain Sharpening, image derivatives, Laplacian, edges Revision: 1.3, dated: May 6, 2010

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering **Center for Machine Perception**, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

Spatial Filtering — overview

- We have learned
 - smoothing
 - remove noise
 - pattern matching (normalised cross-correlation)

Spatial Filtering — overview

- We have learned
 - smoothing
 - remove noise
 - pattern matching (normalised cross-correlation)
- We will learn today
 - sharpening
 - image derivatives
 - edges

Sharpening

Enhancing differences. So, the kernels involve differences — combine positive and negative weights.

- unsharp masking
- 1st and 2nd derivatives

Unsharp masking

- Often appears in Image manipulation packages (Gimp, ImageMagick)
- Quite powerful it cannot do miracles, though.
- Idea: Subtract out the blur.

Procedure:

- 1. Blur the image
- 2. Subtract from original
- 3. Multiply by a weight
- 4. Combine (add to) with the original

$$g = f + \alpha (f - f_b)$$

- \bullet f original image
- f_b blurred image
- \bullet g sharpened result
- α controls the sharpening

What is the unsharp mask?

$$g = f + \alpha (f - f_b)$$

- \bullet f original image
- f_b blurred image
- \bullet g sharpened result
- α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$

$$g = f + \alpha (f - f_b)$$

- \bullet f original image
- f_b blurred image
- \bullet g sharpened result
- α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$
$$= (\mathbf{1} + \alpha (\mathbf{1} - B)) * f$$

$$g = f + \alpha(f - f_b)$$

- \bullet f original image
- f_b blurred image
- \bullet g sharpened result
- α controls the sharpening

What is the unsharp mask?

$$g = \mathbf{1} * f + \alpha (\mathbf{1} * f - B * f)$$
$$= (\mathbf{1} + \alpha (\mathbf{1} - B)) * f$$
$$= U * f$$

where U is the desired unsharp mask.

Unsharp masking — Blur image

Ð

m p

Unsharp masking — Subtract from original

Unsharp masking — Adding to the original

Unsharp masking — Result

Unsharp masking — unsharp mask U

 $U = \mathbf{1} + \alpha(\mathbf{1} - B)$

Unsharp masking — unsharp mask U

 $U = \mathbf{1} + \alpha(\mathbf{1} - B)$

-0.0044 -0.0053 -0.0061 -0.0067 -0.0071 -0.0073 -0.0071 -0.0067 -0.0061 -0.0053 -0.0044-0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 -0.0053 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0061 -0.0073 -0.0083 -0.0073 -0.0061 -0.0067 -0.0080 -0.0092 -0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067 -0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071 -0.0073 -0.0087 -0.0100 -0.0110 -0.0117 1.9880 -0.0117 -0.0110 -0.0100 -0.0087-0.0073 -0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071 -0.0067 -0.0080 -0.0092-0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067 -0.0061 -0.0073 -0.0083 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0061 -0.0073 -0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 -0.0053 -0.0044 -0.0053 -0.0061 -0.0067 -0.0071 -0.0073 -0.0071 -0.0067 -0.0061 -0.0053 -0.0044

We may combine only masks not the whole images!

Unsharp masking — Subtract from original

Unsharp masking — Adding to the original

m p

13/40

Unsharp masking — Result

Unsharp masking — **Problems with noise**

Unsharp masking — Problems lossy JPG compression

TH

I.

1 1

Unsharp masking — revisited

- Often appears in Image manipulation packages (Gimp, ImageMagick).
- It may help in practice. Low-cost lenses blur the image.
- Quite powerful it cannot do miracles, though.
- It also emphasises noise and JPG artifacts.

Image derivatives

- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them

Image derivatives

- Measure local image geometry
- Differential geometry a branch of mathematics built around
- We can use convolution to compute them

- First derivative local changes to the signal. (from physics: speed is derivative of a position with respect to time)
- Second derivative changes to change (from physics: acceleration is
 ...)

Derivative — reminder from calculus

Consider a 1D signal f(x)

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative — reminder from calculus

Consider a 1D signal f(x)

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

However, for sampled (discrete) signals, the smallest difference h is one. So,

$$\frac{d}{dx}f(x) \approx \frac{f(x+1) - f(x)}{1}$$

This called forward difference

Backward difference

Remind that the limit $\lim_{h\to 0}$

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist for both $\lim_{h\to 0^+}$ and $\lim_{h\to 0^-}$

Backward difference

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist for both $\lim_{h\to 0^+}$ and $\lim_{h\to 0^-}$

So going from negative side of h

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x) - f(x - h)}{h}$$

Sampled variant

$$\frac{d}{dx}f(x) \approx \frac{f(x) - f(x-1)}{1}$$

Kernels for derivatives

Image is 2D function f(x, y). Derivatives may also be along y- direction

Forward difference — x direction

Backward difference — x direction

Central difference — x direction

Central difference — x and y direction

Second derivatives

Forward

 $\frac{d}{dx}f(x) \approx f(x+1) - f(x)$

Backward

 $\frac{d}{dx}f(x) \approx f(x) - f(x-1)$

Forward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$

Backward

$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

Difference of differences

$$\frac{d^2}{dx^2}f(x) \approx (f(x+1) - f(x)) - (f(x) - f(x-1))$$

= $f(x+1) - 2f(x) + f(x-1)$

Forward

$$\frac{d}{dx}f(x) \approx f(x+1) - f(x)$$

Backward

$$\frac{d}{dx}f(x) \approx f(x) - f(x-1)$$

Difference of differences

$$\frac{d^2}{dx^2}f(x) \approx (f(x+1) - f(x)) - (f(x) - f(x-1))$$
$$= f(x+1) - 2f(x) + f(x-1)$$

Second derivatives — derivative of derivative

2D derivatives

Differentiate in one dimension, ignore the other

2D derivatives with smoothing

Differentiate in one dimension and smooth in the other

2D derivatives with smoothing

Differentiate in one dimension and smooth in the other

m p

29/40

The Gradient

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \\ \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\|\nabla f(x,y)\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2},$$

is steepness in

$$\psi = \operatorname{atan}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \;,$$

A way to do the edge detection. Edge direction is perpendicular to $\psi.$

The Laplacian

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Sum of second derivatives in x and y directions.

• Sort of an overall curvature.

The Laplacian

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Sum of second derivatives in x and y directions.

• Sort of an overall curvature.

With kernels:

What is an edge?

Partial derivatives

Extrema of partial derivatives are good candidates for edges.

Laplacian

Places where the Laplacian changes from positive to negative are also good potential edges.

Laplacian for sharpenning

Laplacian for sharpenning – input

Original image

Laplacian for sharpenning – gradients

m p
37/40

Laplacian for sharpenning – Laplacian

Laplacian: $\nabla = \partial^2 I / \partial x^2 + \partial^2 I / \partial y^2$

Laplacian for sharpenning – result

Sharpened image, C=0.5

Laplacian for sharpenning – side by side

6

8

9

Original image

Sharpened image, C=0.5

mask one

mask one

blurring mask

unsharp mask

-0.0044 - 0.0053 - 0.0061 - 0.0067 - 0.0071 - 0.0073 - 0.0071 - 0.0067 - 0.0061 - 0.0053 - 0.0044-0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 -0.0053-0.0061 -0.0073 -0.0083 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0073 -0.0061 -0.0067 -0.0080 -0.0092 -0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067 -0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071 -0.0073 -0.0087 -0.0100 -0.0110 -0.0117 1.9880 -0.0117 -0.0110 -0.0100 -0.0087 -0.0073 -0.0071 -0.0085 -0.0098 -0.0108 -0.0115 -0.0117 -0.0115 -0.0108 -0.0098 -0.0085 -0.0071 -0.0067 -0.0080 -0.0092 -0.0102 -0.0108 -0.0110 -0.0108 -0.0102 -0.0092 -0.0080 -0.0067 -0.0061 -0.0073 -0.0083 -0.0092 -0.0098 -0.0100 -0.0098 -0.0092 -0.0083 -0.0073 -0.0061 -0.0053 -0.0063 -0.0073 -0.0080 -0.0085 -0.0087 -0.0085 -0.0080 -0.0073 -0.0063 -0.0053-0.0044 - 0.0053 - 0.0061 - 0.0067 - 0.0071 - 0.0073 - 0.0071 - 0.0067 - 0.0061 - 0.0053 - 0.0044

x direction

y direction

first x-derivative

0.2 0.15 0.1 0.05 0

Original image

x-gradient $\partial I / \partial x$

100 200 300 400 500

y-gradient $\partial I / \partial y$

100 200 300 400 500

 $\partial^2 I \partial y^2$

 $\partial^2 I / \partial x^2$

100 200 300 400 500

100 200 300 400 500

Laplacian: $\nabla = \partial^2 I \partial x^2 + \partial^2 I \partial y^2$

Sharpened image, C=0.5

Original image

Sharpened image, C=0.5

