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Spatial Filtering — overview

We have learned

� smoothing

� remove noise

� pattern matching (normalised cross–correlation)
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Spatial Filtering — overview

We have learned

� smoothing

� remove noise

� pattern matching (normalised cross–correlation)

We will learn today

� sharpening

� image derivatives

� edges
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Sharpening

Enhancing differences. So, the kernels involve differences — combine
positive and negative weights.

� unsharp masking

� 1st and 2nd derivatives

http://cmp.felk.cvut.cz
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Unsharp masking

� Often appears in Image manipulation packages (Gimp, ImageMagick)

� Quite powerful it cannot do miracles, though.

Idea: Subtract out the blur.

Procedure:

1. Blur the image

2. Subtract from original

3. Multiply by a weight

4. Combine (add to) with the original

http://cmp.felk.cvut.cz
http://www.gimp.org/
http://www.imagemagick.org/
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Unsharp masking — Mathematically

g = f + α(f − fb)

� f original image
� fb blurred image
� g sharpened result
� α controls the sharpening

What is the unsharp mask?

.
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Unsharp masking — Mathematically

g = f + α(f − fb)

� f original image
� fb blurred image
� g sharpened result
� α controls the sharpening

What is the unsharp mask?

g = 1 ∗ f + α(1 ∗ f −B ∗ f)

.
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Unsharp masking — Mathematically
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� f original image
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� g sharpened result
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What is the unsharp mask?
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5/40
Unsharp masking — Mathematically

g = f + α(f − fb)

� f original image
� fb blurred image
� g sharpened result
� α controls the sharpening

What is the unsharp mask?

g = 1 ∗ f + α(1 ∗ f −B ∗ f)

= (1 + α(1−B)) ∗ f
= U ∗ f

where U is the desired unsharp mask.
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Unsharp masking — Blur image
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Unsharp masking — Subtract from original

− =
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Unsharp masking — Adding to the original

+ =
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Unsharp masking — Result
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Unsharp masking — unsharp mask U

U = 1 + α(1−B)
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Unsharp masking — unsharp mask U

U = 1 + α(1−B)
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We may combine only masks not the whole images!
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Unsharp masking — Subtract from original

− =
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Unsharp masking — Adding to the original

+ =
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Unsharp masking — Result
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Unsharp masking — Problems with noise
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Unsharp masking — Problems lossy JPG
compression

http://cmp.felk.cvut.cz
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Unsharp masking — revisited

� Often appears in Image manipulation packages (Gimp, ImageMagick).

� It may help in practice. Low-cost lenses blur the image.

� Quite powerful it cannot do miracles, though.

� It also emphasises noise and JPG artifacts.

http://cmp.felk.cvut.cz
http://www.gimp.org/
http://www.imagemagick.org/
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Image derivatives

� Measure local image geometry

� Differential geometry a branch of mathematics built around

� We can use convolution to compute them
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Image derivatives

� Measure local image geometry

� Differential geometry a branch of mathematics built around

� We can use convolution to compute them

� First derivative — local changes to the signal. (from physics: speed is
derivative of a position with respect to time)

� Second derivative — changes to change (from physics: acceleration is
. . . )

http://cmp.felk.cvut.cz
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Derivative — reminder from calculus

Consider a 1D signal f(x)

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

http://cmp.felk.cvut.cz
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Derivative — reminder from calculus

Consider a 1D signal f(x)

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

However, for sampled (discrete) signals, the smallest difference h is one. So,

d

dx
f(x) ≈ f(x+ 1)− f(x)

1

This called forward difference

http://cmp.felk.cvut.cz
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Backward difference

Remind that the limit limh→0

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

must exist for both limh→0+ and limh→0−
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20/40
Backward difference

Remind that the limit limh→0

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

must exist for both limh→0+ and limh→0−

So going from negative side of h

d

dx
f(x) = lim

h→0

f(x)− f(x− h)
h

Sampled variant
d

dx
f(x) ≈ f(x)− f(x− 1)

1

http://cmp.felk.cvut.cz
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Kernels for derivatives

Image is 2D function f(x, y). Derivatives may also be along y− direction

http://cmp.felk.cvut.cz
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Forward difference — x direction
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Backward difference — x direction
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Central difference — x direction
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Central difference — x and y direction
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Second derivatives

Forward
d

dx
f(x) ≈ f(x+ 1)− f(x)

Backward
d

dx
f(x) ≈ f(x)− f(x− 1)

http://cmp.felk.cvut.cz
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Second derivatives

Forward
d

dx
f(x) ≈ f(x+ 1)− f(x)

Backward
d

dx
f(x) ≈ f(x)− f(x− 1)

Difference of differences

d2

dx2
f(x) ≈ (f(x+ 1)− f(x))− (f(x)− f(x− 1))

= f(x+ 1)− 2f(x) + f(x− 1)
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26/40
Second derivatives

Forward
d

dx
f(x) ≈ f(x+ 1)− f(x)

Backward
d

dx
f(x) ≈ f(x)− f(x− 1)

Difference of differences

d2

dx2
f(x) ≈ (f(x+ 1)− f(x))− (f(x)− f(x− 1))

= f(x+ 1)− 2f(x) + f(x− 1)

+1 -1 ∗ +1 -1 = +1 -2 +1

http://cmp.felk.cvut.cz


27/40
Second derivatives — derivative of derivative
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2D derivatives

Differentiate in one dimension, ignore the other
∂
∂x

∂
∂y

∂2

∂x2
∂2

∂y2

0 0 0
-1 0 +1
0 0 0

0 -1 0
0 0 0
0 +1 0

0 0 0
+1 -2 +1
0 0 0

0 +1 0
0 -2 0
0 +1 0

http://cmp.felk.cvut.cz
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2D derivatives with smoothing

Differentiate in one dimension and smooth in the other

-1 0 +1 ∗
1
1
1

=
-1 0 +1
-1 0 +1
-1 0 +1

http://cmp.felk.cvut.cz


29/40
2D derivatives with smoothing

Differentiate in one dimension and smooth in the other

-1 0 +1 ∗
1
1
1

=
-1 0 +1
-1 0 +1
-1 0 +1
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The Gradient

∇f(x, y) =

 ∂f∂x
∂f
∂y


� Magnitude

‖∇f(x, y)‖ =

√(
∂f

∂x

)2

+
(
∂f

∂y

)2

,

is steepness in

� direction
ψ = atan

(
∂f

∂x
,
∂f

∂y

)
,

A way to do the edge detection. Edge direction is perpendicular to ψ.

http://cmp.felk.cvut.cz
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The Laplacian

∇2f(x, y) =
∂2f

∂x2
+
∂2f

∂y2

� Sum of second derivatives in x and y directions.

� Sort of an overall curvature.

http://cmp.felk.cvut.cz
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The Laplacian

∇2f(x, y) =
∂2f

∂x2
+
∂2f

∂y2

� Sum of second derivatives in x and y directions.

� Sort of an overall curvature.

With kernels:
0 0 0

+1 -2 +1
0 0 0

+
0 +1 0
0 -2 0
0 +1 0

=
0 +1 0
1 -4 1
0 +1 0

http://cmp.felk.cvut.cz
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What is an edge?
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Partial derivatives

Extrema of partial derivatives are good candidates for edges.
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Laplacian

Places where the Laplacian changes from positive to negative are also good
potential edges.

http://cmp.felk.cvut.cz
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Laplacian for sharpenning
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... truncated to <0,255>
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Laplacian for sharpenning – input

Original image
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Laplacian for sharpenning – gradients

x−gradient  ∂ I/∂ x
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Laplacian for sharpenning – Laplacian

Laplacian:  ∇ = ∂
2
 I/∂ x

2
 + ∂

2
 I/∂ y

2
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Laplacian for sharpenning – result

Sharpened image, C=0.5
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Laplacian for sharpenning – side by side

Original image Sharpened image, C=0.5
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Sharpened image, C=0.5
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Sharpened image, C=0.5
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