next Rayleigh Energy Theorem (Parseval's Theorem)
previous Correlation Theorem
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search


Power Theorem



Theorem: For all $ x,y\in{\bf C}^N$,

$\displaystyle \zbox {\left<x,y\right> = \frac{1}{N}\left<X,Y\right>.}
$

Proof:

\begin{eqnarray*}
\left<x,y\right> &\isdef & \sum_{n=0}^{N-1}x(n)\overline{y(n)}...
...^{N-1}X(k)\overline{Y(k)}
\isdef \frac{1}{N} \left<X,Y\right>.
\end{eqnarray*}

Note that the power theorem would be more elegant ( $ \left<x,y\right>
= \left<X,Y\right>$) if the DFT were defined as the coefficient of projection onto the normalized DFT sinusoid $ {\tilde s}_k(n) \isdeftext
s_k(n)/\sqrt{N}$.

The power theorem is also sometimes called Parseval's theorem [42].


next Rayleigh Energy Theorem (Parseval's Theorem)
previous Correlation Theorem
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)