Mathematical Morphology

A mathematical tool for the extraction and analysis of discrete quantized image structure.

- Does not change image representation. (It is a system of transformations from the space of discrete quantized images onto itself.)

- Implemented as set-theoretic operations with structuring elements.

- Fast algorithms (quasi-parallel processing), many applications, mainly microscopy image processing.
Binary Mathematical Morphology

Motivation example: pre-processing for hand-written character recognition

Representation of image and the structuring element

- image = a set of labeled vertices (pixels)
- a regular rectangular (or hexagonal) grid in the space of dimension n (here $n = 2$)
- binary (integer) values

- we will assume zero values behind image edges
- binary morphology is based on set-theoretic operations with images
Mathematical Morphology: Notation

X, Y – discrete quantized image

B, E, L – structural element

$D(B)$ – domain of structural element B

X^c – complement of set X

X_h – translation of set X by vector h

$X \oplus B$ – dilation (of X by B)

$X \ominus B$ – erosion

$X \circ B$ – opening

$X \bullet B$ – closing

$\beta(X)$ – morphological gradient of X

$X \otimes B$ – Serra transform (hit-or-miss)

$X \oslash B$ – thinning
Translation X_h

\[X_h(p) = X(p - h), \quad p \in X \subset \mathbb{Z}^2 \]

Example:

$h = (1, 2)$
Binary Dilation \(X \oplus B \)

\[
X \oplus B = \bigcup \{ y, B(y) = 1 \} X_y
\]

Example:

- Locus of all non-zero image pixels translated by the set of vectors defined by the structuring element.
Binary Dilation Example

\[X \oplus B \]

Travis Turner
Dept. of Neuropsychiatry
10th Floor, Gates Bldg., H.U.P.
Philadelphia, PA 19104-42838
United States of America
Dilation Properties

Observation: decomposability of element B

1. $X \oplus B = B \oplus X$

2. $X \ominus (B \oplus D) = (X \ominus B) \ominus D$ decomposable element

3. $X \ominus (B \cup D) = (X \ominus B) \cup (X \ominus D)$

4. $X \ominus B \not\supseteq X$ dilation is not ‘inflation’

5. \ldots
Binary Erosion \(X \ominus B \)

\[
X \ominus B = \bigcap \{y, B(y) = 1\} X_{-y}
\]

Example:

\[
X \ominus B = X_{(0,0)} \cap X_{(-1,0)}
\]

- Erosion: Locus of (non-zero) image pixels to which structuring element \(B \) can be inserted
Binary Erosion Example

\[X \ominus B \]

\[(X \ominus B) \oplus B \neq X \]
Erosion Properties

1. \(X \ominus B \neq B \ominus X \)

\[
\begin{array}{c}
\text{\includegraphics[width=2cm]{image1.png}} \ominus \text{\includegraphics[width=2cm]{image2.png}} = \text{\includegraphics[width=2cm]{image3.png}} \\
\text{\includegraphics[width=2cm]{image4.png}} \ominus \text{\includegraphics[width=2cm]{image5.png}} = \text{\includegraphics[width=2cm]{image6.png}}
\end{array}
\]

2. \(X \ominus (B \oplus D) = (X \ominus B) \ominus D \) decomposable element

3. \(X \ominus (B \cup D) = (B \ominus X) \cap (D \ominus Y) \)

4. If \((0, 0) \in B\) then \(X \ominus B \subseteq X \)

\[
\begin{array}{c}
\text{\includegraphics[width=2cm]{image7.png}} \ominus \text{\includegraphics[width=2cm]{image8.png}} = \text{\includegraphics[width=2cm]{image9.png}} \quad \text{counter-example}
\end{array}
\]

5. \((X \oplus B) \ominus B \neq X \)

\[
\begin{array}{c}
\text{\includegraphics[width=2cm]{image10.png}} \oplus \text{\includegraphics[width=2cm]{image11.png}} = \text{\includegraphics[width=2cm]{image12.png}} \\
\text{\includegraphics[width=2cm]{image13.png}} \ominus \text{\includegraphics[width=2cm]{image14.png}} = \text{\includegraphics[width=2cm]{image15.png}} \neq \text{\includegraphics[width=2cm]{image16.png}}
\end{array}
\]
6. \((X \ominus B) \oplus B \neq X\)

\[
\begin{array}{c}
\begin{array}{c}
\mathbb{C} \ominus \mathbb{D}
\end{array}
\oplus
\begin{array}{c}
\mathbb{D}
\end{array}
= \\
\begin{array}{c}
\mathbb{C}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\mathbb{E} \ominus \mathbb{D}
\end{array}
\oplus
\begin{array}{c}
\mathbb{D}
\end{array}
= \\
\begin{array}{c}
\mathbb{F}
\end{array}
\neq \\
\begin{array}{c}
\mathbb{G}
\end{array}
\end{array}
\]

7. \ldots
Morphological Opening and Closing

\[X \circ B = (X \ominus B) \oplus B \] opening

\[X \bullet B = (X \oplus B) \ominus B \] closing

\[B \]

Mathematical Morphology

R. Šára
Properties of Opening and Closing

1. idempotence

\[(X \circ B) \circ B = X \circ B\]
\[(X \bullet B) \bullet B = X \bullet B\]

2. antiextensivity of opening

\[X \circ B \subseteq X\]

3. extensivity of closing

\[X \subseteq X \bullet B\]

4. \ldots
Morphological Gradient $\beta(X)$

$$\beta(X) = X \setminus (X \ominus S_{3,3})$$

Example:

![Grids showing X, $X \ominus S_{3,3}$, and $\beta(X)$ with $S_{3,3}$]

Remarks

- interior boundary
- 4-connectivity
- exterior boundary: $\beta^*(X) = (X \oplus S_{3,3}) \setminus X$
Morphological Gradient Example

\[X \]

\[\beta(X) \]

\[\beta^*(X) \]
Serra Transform (Hit-or-Miss)

\[X \otimes B = (X \ominus B_1) \cap (X^c \ominus B_2) \]

correlation with two constraints

\[B = \{B_1, B_2\}, \quad B_1 \cap B_2 = \emptyset \]

1. \(X \ominus B_1 \) – locus of object pixels similar to \(B_1 \)
2. \(X^c \ominus B_2 \) – locus of background pixels similar to \(B_2 \)

• not every pair \(B \) gives \(X \otimes B \neq \emptyset \)

Example: detection of “endpoints” from the left:

\[B = \begin{array}{c|c|c} \times \times & \circ \circ & \times \times \\ \hline \times \times & \circ \circ & \times \times \\ \end{array} : \quad B_1 = \begin{array}{c|c|c} \circ \circ & \times \times \\ \times \times & \circ \circ \\ \hline \times \times & \circ \circ \\ \end{array}, \quad B_2 = \begin{array}{c|c|c} \times \times & \circ \circ \\ \times \times & \circ \circ \\ \hline \times \times & \circ \circ \\ \end{array} \]

\[X \]

\[X \otimes B \]
Sequential Thinning

\[X \ominus B = X \setminus (X \otimes B) \]

\[X \ominus \{B_i\}_{i=1}^n = X \ominus B_1 \ominus B_2 \ominus \cdots \ominus B_n \]

- the result is order-dependent!

Example:

\[X \]

\[L_1 \]

\[X \ominus L_1 \]

Golay alphabet:

\[L_1 \]

\[L_2 \]

\[L_3 \]

\[L_4 \]

\[\cdots \]

\[L_8 \]

\[E_1 \]

\[E_2 \]

\[E_3 \]

\[E_4 \]

\[\cdots \]
Sequential Thinning Example

image I

$X = (I < 245)$

$Y = X \circ S_{3,3}$

$Y \ominus \{L_i\}_{i=1}^{8}$, repeat till convergence

our goal: smoothed skeleton (see later)
Skeleton1 Smoothing

Input: skeleton X

1. shortening of endings n-times

 $X_1 = \left(X \ominus \{E_i\}_{i=1}^{4} \right)^{n}_{k=1}$

2. ending point detection

 $X_2 = \bigcup_{i=1}^{4} (X \otimes E_i)$

3. conditional dilation n-times

 $X_3 = \left((X_2 \oplus S_{3,3}) \cap X \right)^{n}_{k=1}$

4. smoothed skeleton

 $Y = X_1 \cup X_3$

1I will call the result of sequential thinning a skeleton even if this is incorrect.
Analogy with Convolution and Correlation

\[(X \oplus B)(x) = \bigcup_{\{y, B(y)=1\}} X_y = \bigcup_{\{y, B(y)=1\}} X(x-y)\]

\[(X \ominus B)(x) = \bigcap_{\{y, B(y)=1\}} X_{-y} = \bigcap_{\{y, B(y)=1\}} X(x+y)\]

\[(X \oplus B)(x) = \max_{y \in D(B)} \left(X(x-y) + B(y) \right)\]

\[(X \ominus B)(x) = \min_{y \in D(B)} \left(X(x+y) - B(y) \right)\]

\[(f \ast g)(x) = \sum_{y \in D(f)} f(y) g(x-y)\]

\[(f \oslash g)(x) = \sum_{y \in D(f)} f^*(y) g(x+y)\]

<table>
<thead>
<tr>
<th></th>
<th>convolution</th>
<th>binary dilation</th>
<th>gray-scale dilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\times</td>
<td>\times</td>
<td>\cup</td>
<td>\max</td>
</tr>
<tr>
<td>\ast</td>
<td></td>
<td>\cup</td>
<td>\max</td>
</tr>
<tr>
<td>\star</td>
<td></td>
<td>\cup</td>
<td>\max</td>
</tr>
<tr>
<td>\ast</td>
<td></td>
<td>\cup</td>
<td>\max</td>
</tr>
<tr>
<td>\star</td>
<td></td>
<td>\cup</td>
<td>\max</td>
</tr>
<tr>
<td>\times</td>
<td>\times</td>
<td>\cap</td>
<td>\min</td>
</tr>
<tr>
<td>\ast</td>
<td></td>
<td>\cap</td>
<td>\min</td>
</tr>
<tr>
<td>\star</td>
<td></td>
<td>\cap</td>
<td>\min</td>
</tr>
<tr>
<td>\times</td>
<td>\times</td>
<td>\cap</td>
<td>\min</td>
</tr>
<tr>
<td>\ast</td>
<td></td>
<td>\cap</td>
<td>\min</td>
</tr>
</tbody>
</table>
Gray-Scale Morphology

\[X^C = C - X, \quad C - \text{maximum element} \text{ (e.g. 255)} \]

\[X_h(p) = X(p - h) \]

\[X \oplus B = \max_{y \in D(B)} X(x - y) + B(y) \]

\[X \ominus B = \min_{y \in D(B)} X(x + y) - B(y) \]

\[X \circ B = (X \ominus B) \oplus B \]

\[X \bullet B = (X \oplus B) \ominus B \]

\[\beta(X) = X - (X \ominus S_{3,3}) \]

\[X \otimes B = \min(X \ominus B_1, X^c \ominus B_2) \]

\[X \odot B = X - (X \otimes B) \]
Gray-Scale Morphology Examples

Example 1: Local maxima/minima detection in image: application of morphological gradient.

Example 2: Segmentation of cell boundaries in the images of human cornea: application of morphological watershed.
Example 3: 100% visual quality inspection of a maximal thermometer capillary application of top hat transform.
Example 4: Granulometry2

X largest square probes

granulometric spectre

2Sorry for this example.