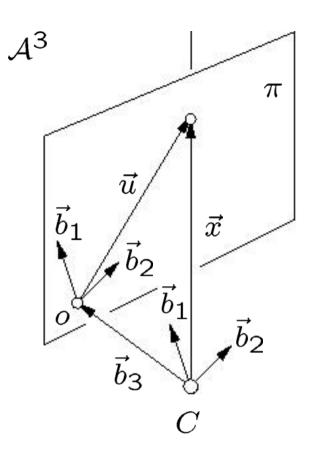


Direction vector of projection ray



Miracle: The coordinates od the direction vector of a projection ray can be constructed by a adding "1" to image coordinates:

We measure in image

$$\vec{u} = u \ \vec{b}_1 + v \ \vec{b}_2 \sim \mathbf{u}_{(\vec{b}_1, \vec{b}_2)} = \begin{pmatrix} u \\ v \end{pmatrix}$$

Coordinate system with origin ${\cal C}$

$$\beta = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$$

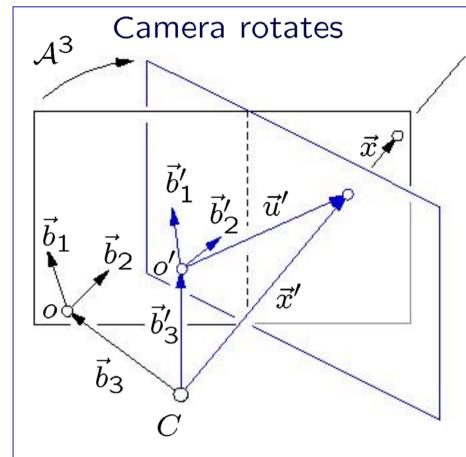
$$S = (C, \beta)$$

$$\vec{b}_3 = \varphi(C, o)$$

Triangle equality

$$\vec{x} = \vec{u} + \vec{b}_3$$

$$\vec{x} = u \ \vec{b}_1 + v \ \vec{b}_2 + 1 \ \vec{b}_3 \sim \mathbf{x}_\beta = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$



Two coordinate systems with the same origin ${\cal C}$

$$\beta = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$$

$$S = (C, \beta)$$

$$\beta' = (\vec{b}_1', \vec{b}_2', \vec{b}_3')$$

$$S' = (C, \beta')$$

Direction vectors of a ray

$$\exists \alpha \in \mathbb{R} : \alpha \, \vec{x}' = \vec{x}$$

We measure

$$\vec{u} = u \ \vec{b}_1 + v \ \vec{b}_2 \sim \mathbf{u}_{(\vec{b}_1, \vec{b}_2)} = \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\vec{u}' = u' \vec{b}_1 + v' \vec{b}'_2 \sim \mathbf{u}'_{(\vec{b}'_1, \vec{b}'_2)} = \begin{pmatrix} u' \\ v' \end{pmatrix}$$

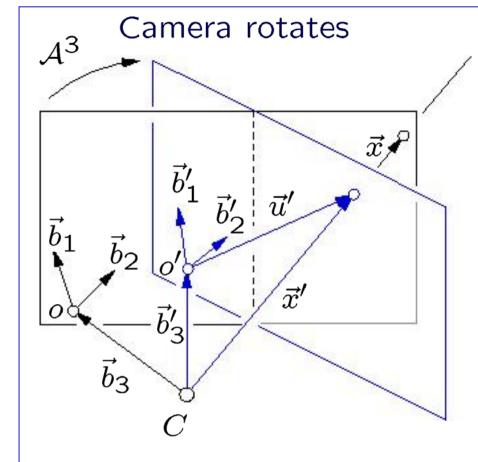
Triangle equality

$$\vec{x} = \vec{u} + \vec{b}_3$$

$$\vec{x}' = \vec{u}' + \vec{b}_3'$$

$$\vec{x} = u \ \vec{b}_1 + v \ \vec{b}_2 + 1 \ \vec{b}_3 \sim \mathbf{x}_\beta = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

$$\vec{x}' = u' \vec{b}_1 + v' \vec{b}_2' + 1 \vec{b}_3' \sim \mathbf{x}_{\beta'}' = \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix}$$



 \exists matrix $\mathbb{H} \in \mathbb{R}^{3\times 3}$, rank $\mathbb{H} = 3$, so that coordinates of the vector \vec{x} in β , β'

$$\mathbf{x}_{\beta'} = \mathtt{H}\,\mathbf{x}_{\beta}$$

Coordinates of the vector \vec{x} , \vec{x}' in β' :

$$\alpha \mathbf{x}'_{\beta'} = \mathbf{x}_{\beta'}$$

and therefore

$$\alpha \mathbf{x}'_{\beta'} = \mathbf{H} \mathbf{x}_{\beta}$$

Columns of H are coordinates of basic vectors of β , $\vec{b}_1, \vec{b}_2, \vec{b}_3$, in basis β'

$$\mathbf{H} = \begin{pmatrix} | & | & | \\ \mathbf{b}_{1\beta'} & \mathbf{b}_{2\beta'} & \mathbf{b}_{3\beta'} \\ | & | & | \end{pmatrix}$$

Wrapping up:

 $\exists H \in \mathbb{R}^{3 \times 3}$, rank H = 3, so that

$$\forall (u, v) \stackrel{corr}{\leftrightarrow} (u', v') \ \exists \alpha \in \mathbb{R}$$
:

$$\alpha \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = \mathbf{H} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

 $\exists H \in \mathbb{R}^{3 \times 3}$, rank H = 3, so that $\forall (u, v) \stackrel{corr}{\leftrightarrow} (u', v') \exists \alpha \in \mathbb{R}$:

$$\alpha \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = \mathbf{H} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

Introduce symbols for rows of homography H

$$\mathbf{H} = egin{pmatrix} \mathbf{h}_1^{\top} \\ \mathbf{h}_2^{\top} \\ \mathbf{h}_3^{\top} \end{pmatrix}$$

and rewrite the above matrix equation as

$$\alpha u' = \mathbf{h}_1^{\top} \mathbf{x}$$
$$\alpha v' = \mathbf{h}_2^{\top} \mathbf{x}$$
$$\alpha = \mathbf{h}_3^{\top} \mathbf{x}$$

Eliminate α from the first two equations using the third one

$$(\mathbf{h}_3^{\top}\mathbf{x}) u' = \mathbf{h}_1^{\top}\mathbf{x}$$

 $(\mathbf{h}_3^{\top}\mathbf{x}) v' = \mathbf{h}_2^{\top}\mathbf{x}$

move all to the left hand side and reshape it using $\mathbf{x}^{\top}\mathbf{y} = \mathbf{y}^{\top}\mathbf{x}$

$$\mathbf{x}^{\top}\mathbf{h}_1 - (u'\mathbf{x}^{\top})\mathbf{h}_3 = 0$$

 $\mathbf{x}^{\top}\mathbf{h}_2 - (v'\mathbf{x}^{\top})\mathbf{h}_3 = 0$

Introduce notation

$$\mathbf{h} = \begin{pmatrix} \mathbf{h}_1^\top & \mathbf{h}_2^\top & \mathbf{h}_3^\top \end{pmatrix}^\top$$

and express the above two equations in a matrix form

$$\begin{pmatrix} u & v & 1 & 0 & 0 & 0 & -u'u & -u'v & -u' \\ 0 & 0 & 0 & u & v & 1 & -v'u & -v'v & -v' \end{pmatrix} \mathbf{h} = 0$$

Every correspondence $\stackrel{corr}{\leftrightarrow}$ (u',v') brings two rows to a matrix

$$\begin{pmatrix} u & v & 1 & 0 & 0 & 0 & -u'u & -u'v & -u' \\ 0 & 0 & 0 & u & v & 1 & -v'u & -v'v & -v' \end{pmatrix} \mathbf{h} = 0$$

$$\vdots$$

$$\mathbf{h} = 0$$

If ${\tt G}=\lambda\,{\tt H},\;\lambda\neq 0$ then they both determine the same homography since

$$\exists \alpha : \alpha \mathbf{y} = \mathbf{G} \mathbf{x} \Rightarrow \exists \beta : \beta \mathbf{y} = \mathbf{H} \mathbf{x}$$

where $\beta = \frac{\alpha}{\lambda}$

We are therefore looking for one-dimensional subspaces of 3×3 matrices of rank 3. Each such subspace determines one homography. Also note that the zero matrix, 0, does not represent an interesting mapping.

We need therefore at least 4 correspondences in general position to obtain 8 rows in

$$\begin{pmatrix} u & v & 1 & 0 & 0 & 0 & -u'u & -u'v & -u' \\ 0 & 0 & 0 & u & v & 1 & -v'u & -v'v & -v' \end{pmatrix} \mathbf{h} = 0$$

$$\vdots \qquad \qquad \mathbf{h} = 0$$

By general position we mean that the matrix A must have rank 8 to provide a single one-dimensional subspace of its solutions.

The general positions, i.e. rank A = 8, are those when no 3 out of the 4 points are on the same line.

Notice that A can be written in the form

$$\mathbf{A} = \begin{pmatrix} u_1 & v_1 & 1 & 0 & 0 & 0 & -u'_1u_1 & -u'_1v_1 & -u'_1 \\ u_2 & v_2 & 1 & 0 & 0 & 0 & -u'_2u_2 & -u'_2v_2 & -u'_2 \\ & & \vdots & & & & & \\ 0 & 0 & 0 & u_1 & v_1 & 1 & -v'_1u_1 & -v'_1v_1 & -v'_1 \\ 0 & 0 & 0 & u_2 & v_2 & 1 & -v'_2u_2 & -v'_2v_2 & -v'_2 \\ & & \vdots & & & & & \end{pmatrix}$$

which can be rewritten more concisely as

$$\mathtt{A} = egin{pmatrix} \mathbf{x}_1^ op & \mathbf{0} & -u_1' \, \mathbf{x}_1^ op \ \mathbf{x}_2^ op & \mathbf{0} & -u_2' \, \mathbf{x}_2^ op \ & dots \ \mathbf{0} & \mathbf{x}_1^ op & -v_1' \, \mathbf{x}_1^ op \ \mathbf{0} & \mathbf{x}_2^ op & -v_2' \, \mathbf{x}_2^ op \ & dots \end{pmatrix}$$

Computing the homography from 4 points on 2 lines in Matlab

```
% 4 points
>>x = [0 \ 0 \ 1;1 \ 0 \ 1;0 \ 1 \ 1;1 \ 1 \ 1]';
>>y = [1 1 1;1 0 1;0 1 1;0 0 1]';
% the 2-line algorithm
>>A
          = [[x' zeros(size(x')) [-y(1,:)'*ones(1,3)].*(x')]
              [zeros(size(x')) x' [-y(2,:)'*ones(1,3)].*(x')]];
          = reshape(null(A),3,3)';
>>H
% verification
>> e = y - (H*x)./[[1;1;1]*(H(3,:)*x)]
e =
  1.0e-015 *
              0.0481 \quad -0.2220 \quad -0.4441
         0
         0
               0.2220 0.0961 -0.2220
         0
                    0
                               0
```