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EEE 598C: Statistical Pattern Recognition
Lecture Note 2: Neyman/Pearson Decision Theory

We consider the two-category classification problem, in which there are two states of na-
ture and , and two possible actions and ; is the action of choosing . For the
Neyman/Pearson approach to decision theory, we assume that the conditional densities

and are known, but we do not use any prior probabilities nor do we use a
loss function.

We define two types of errors:

A false alarm is when we choose action when is the true state of nature.
We denote as the probability of a false alarm.

A missed detection is when we choose action when is the true
state of nature. We denote as the probability of a missed detection, and as
the probability of a correct detection.

The terminology for these two types of errors comes from detection problems, in which
is the state of nature in which an object of interest (ie. target, signal, etc.) is absent, and
is the state of nature in which the object is present.

As in the Bayesian Decision theory case, our decision rule divides the space of
possible observations into two regions:

The probability of false alarm can be expressed as

(1)

1



Z

8<
:

2

2

2

1

2

1

2

R

� �

�

j

j
j
j

j

�

j
j �

R

R f j j g

R

j p

j p

�

x x

x
x

x x x

Exercise 1 X
X

x

x

x

x
x
x
x
x

2 Proof of Neyman-Pearson Lemma
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Receiver Operating Curve

Suppose that under , is Gaussian with mean one and variance one, and that under
, is Gaussian with mean negative one and variance one:

1. Find the likelihood ratio test.

2. How would you choose for a given ?

3. How would you compute ?

The probability of correct detection can be expressed as

A (ROC) is a plot of as a function of .
A Neyman/Pearson test is guaranteed to maximize subject to the constraint that

. It takes the form of a likelihood ratio test:

Choose if

where is a threshold chosen to mee the constraint.

Note that this result need not be interpreted in terms of detection; a Neyman Pearson test
minimizes the probability of one type of missclassification error subject to the constraint
that the other type of missclassification errror is no larger than .

The threshold is chosen to obtain the desired as follows: given and the likeli-
hood ratio test, can be written as

is given in terms of by (1). We can use this relationship to determine the value of
.

For this section, we represent the decision rule using a function defined as

(2)
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Consider the decision rule of (2) with chosen to give . There is no
decision rule such that and .
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Note that this is actually a somewhat simplified version of the lemma that only applies when the set
has measure zero for all ; when this condition does not hold, then the

Neyman-Pearson optimal decision rule may be a . In a random decision rule, there are
values of for which one would choose with a given probability and with probability .

where takes a value of one when we choose and a value of zero when we choose .
This representation of a decision rule has the advantage that the probabilities of false alarm
and detection can be represented in terms of expected values of :

where we have used the fact that is one when and zero when .
In the proof of the Neyman Pearson lemmma, we will consider the decision rule

given in (2) and another decision rule ; we will denote probabilities of detection and false
alarm for these two decision rules as , , , and , to denote the fact
that these probabilities depend on the decision rule used.

We now state the Neyman-Pearson lemma :

Proof: Let be a decision rule with

The following identity holds for any decision rule :

(3)

This can be seen by considering all possible values of : for those values for which ,
, since , and ; similarly, for those values

for which , and . Multiplying out (3) and
writing the result in terms of probabilities of detection and false alarms, we get

where the first inequality follows from the assumption that , and
the second inequality follows from (3). Thus, , and is a decision rule
that maximizes the probability of detection for a given probability of false alarm. .

So likelihood ratio tests are both Bayes optimal and Neyman-Pearson optimal.

3


