An Optimal Sequence of Learned Motion Estimators

Karel Zimmermann1, Jiří Matas1,
Tomáš Svoboda1,2

1: Center for Machine Perception
2: Center for Applied Cybernetics
Czech Technical University
Prague, Czech Republic
Introduction

Tracking objectives:

- Fast
- Accurate
- Robust
State-of-the-art: Tracking by gradient optimization

- **Minimize dissimilarity:** \(t = \arg \min_t \sum (I(x + t) - J(x))^2 \)

- **Drawbacks:**
 - Convergence to a local minimum
 - Unknown basin of attraction
 - Criterial function
State-of-the-art: Tracking by regression

There is an inverse relation approximated by mapping

\[\Phi : \text{intensities around a point} \rightarrow \text{motion} \]
State-of-the-art: Tracking by regression

◆ **Linear motion regression:** \(t = H(I(x) - J(x)) \)

◆ **Non-linear motion regression:** \(RVM \)

Our approach

- **Sequential motion regression:** \(t = \varphi_h\left(\ldots I(x + \varphi_1(I(x))) \right) \)

- We are looking for a sequence of predictors \(\Phi = [\varphi_1, \varphi_2, \ldots \varphi_h] \) with the lowest complexity.
 - How many iterations \(h \) are required?
 - How many pixels are necessary for each iteration?
 - What neighbouring pixels are used?
- **Range** r the set of admissible motions.
- **Complexity** c cardinality of support set.
- **Uncertainty region** λ the region within which all the estimations lie.
Optimal sequence of optimal predictors

- **Predictors** $\phi_i(c, r, \lambda)$ lie in a subspace of the (c, r, λ)-space.
- **Optimal sequence of predictors** is a sequence $\Phi = [\varphi_1, \varphi_2, \ldots, \varphi_h]$ with the lowest total complexity $\sum c_i$ given:
 - range r_1 of the first predictor
 - uncertainty region λ_h of the last predictor.
 - $r_{i+1} \geq \lambda_i$, $i = 1, \ldots, h - 1$.
An optimal sequence

- Only those predictors lying on the λ-lower bound of the set of achievable predictors can create an optimal sequence $\hat{\Theta}$.
- Given (c, r), minimax task is solved to find the predictor with the smallest uncertainty region.
- Color codes the size of the uncertainty region.
Searching for an optimal sequence.

- Dynamic programming searches for an optimal sequence of predictors.
- The algorithm searches for the cheapest path to a sufficiently small uncertainty region.
- In each state either complexity is increased or the next iteration initialized.
Greedy LSQ selection (red) of an efficient support set.

Much better than 1%-quantile (green) achievable by randomized sampling.
Online selection of an active predictor set

a) $w=0$ b) $w=0.1$ c) $w=0.5$ d) $w=1$

- Greedy online selection.
- Trade-off between abilities of local predictors and coverage of an object.
- Strong features may not provide good tracking results.
Probability of successful tracking as a function of number of ransac iterations and predictors.

We maximize the probability, given a time, we are allowed to spent with the motion estimation in the actual frame,
Motion blur, fast motion, views from acute angles and other image distortions.
Experiments: 3D fast blured tracking

a) slow motion
b) fast blured motion
c) close view
Experiments: Results on sequences 2000-7000 frames.

<table>
<thead>
<tr>
<th>object</th>
<th>processing</th>
<th>loss-of-locks</th>
<th>mean-error</th>
</tr>
</thead>
<tbody>
<tr>
<td>mouse pad minmax</td>
<td>18.9fps</td>
<td>13/6935</td>
<td>[1.3%, 1.8%, 1.5%, 1.6%]</td>
</tr>
<tr>
<td>mouse pad sift</td>
<td>0.5fps</td>
<td>281/6935</td>
<td>[1.6%, 1.2%, 1.5%, 1.4%]</td>
</tr>
<tr>
<td>towel minmax</td>
<td>21.8fps</td>
<td>5/3229</td>
<td>[3.0%, 2.2%, 1.4%, 1.9%]</td>
</tr>
<tr>
<td>phone minmax</td>
<td>16.8fps</td>
<td>20/1799</td>
<td>[1.2%, 1.8%, 2.6%, 1.9%]</td>
</tr>
</tbody>
</table>

- Data captured at 22.7fps frame-rate.

- Comparison to SIFT detector.
Experiments: Comparison with KLT.

- Much lower complexity and substantially smaller error rate.
- If the number of iteration is constant than error rate is independent of the range.
Experiments: Application to a face detector.

<table>
<thead>
<tr>
<th></th>
<th>memory accesses</th>
<th>summations</th>
<th>multiplications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Detector</td>
<td>25</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Align + Det</td>
<td>6.5</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusion

◆ Drawbacks:
 - Learning required.
 - Predictor range is limited by the size of the object.

◆ Advantages:
 - Very fast motion estimation (30µs per predictor).
 - Ability to cover arbitrary cases (bluring, change of appearance).
 - Automatic setup of tracking procedure.
Support set
Object of interest
Reference point
Local motion
$$\Phi \left(\begin{array}{c} \text{image} \\ \text{image} \end{array} \right) = \left(\begin{array}{c} 0,0 \\ 12,7 \end{array} \right)^T$$

$$\Phi \left(\begin{array}{c} \text{image} \\ \text{image} \end{array} \right) = \left(\begin{array}{c} -14,2 \\ -9,18 \end{array} \right)^T$$

$$\Phi \left(\begin{array}{c} \text{image} \\ \text{image} \end{array} \right) = \left(\begin{array}{c} 14,0 \\ -16,14 \end{array} \right)^T$$

$$\Phi \left(\begin{array}{c} \text{image} \\ \text{image} \end{array} \right) = \left(\begin{array}{c} 16,14 \\ -12,7 \end{array} \right)^T$$
\(\Phi = (\phi_1, \phi_2, \phi_3) \)

Ranges

New position

Motion

\(t_1 = \hat{\phi}_1 \)

\(t_2 = \hat{\phi}_2 \)

\(t_3 = \hat{\phi}_3 \)

Old position
Inachievable estimators

Achievable estimators \(\omega \)

\(\lambda \)-lower bound

\(\lambda \) - uncertainty region

\(r \) - range

\(c \) - complexity
The graph illustrates the relationship between the range (r), complexity (c), and uncertainty region (λ). It distinguishes between achievable and inachievable estimators. The achievable estimators are represented by the red surface, while the inachievable estimators are shown by the blue surface. The λ-lower bound is marked with an arrow pointing towards the achievable estimators.
A graph showing the log of error against range in pixels for different methods: LP+DP, KLT, and LP.
Detection

Alignment + Detection

Detection Detection Detection Detection Detection
false positive detection rate [%]
detector +−4%
predictor+detector +−10% (5 iter)