Cognitive Computer Vision Colloquium Prague, January 12–13, 2004

Optic Flow Computation with High Accuracy

Joachim Weickert Saarland University Saarbrücken, Germany

joint work with

Thomas Brox Andrés Bruhn Nils Papenberg

partially funded by DFG

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Introduction (1)

The Optic Flow Problem

- given: image sequence $I(\mathbf{x})$ where $\mathbf{x} = (x, y, t)^{\top}$
 - can be Gaussian-smoothed: $I = K_{\sigma} * I_0$
- wanted: displacement field (optic flow) $\mathbf{w} = (u, v, 1)^{\top}$
 - w matches object at location (x, y) at time t to its location (x+u, y+v) at time t+1.

What is Optic Flow Good for?

- extracting motion information e.g. in robotics
- compact coding of image sequences
- related correspondence problems in computer vision:
 e.g. stereo reconstruction and medical image registration

 ▶ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 20 		A	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
	M		1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	2

Introduction (2)

Deformation analysis of plastic foam using an optic flow method. (a) **Top left:** Frame 1 of a deformation sequence. (b) **Top right:** Frame 2. (c) **Bottom left:** Colour-coded displacement field. (d) **Bottom right:** Vector plot of the displacement field.

Introduction (3)

Pair of stereo images.

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
22	

Introduction (4)

Four views of a stereo reconstruction algorithm based on optic flow ideas. Authors: Alvarez/Deriche/Sánchez/Weickert (2002)

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Introduction (5)

Variational Optic Flow Methods

- optic flow as minimiser of a suitable energy functional: data constraints plus smoothness constraints
- clear formalism without hidden model assumptions
- rotationally invariant continuous formulations possible
- create dense flow fields
- first model due to Horn and Schunck (1981), but many improvements in the meantime:
 - modified data and smoothness constraints (Nagel 1983, Cohen 1993, Alvarez et al. 1999, W./Schnörr 2000)
 - theoretical foundation (Snyder 1991, W./Schnörr 2000)
 - efficient numerical algorithms (Glazer 1984, Terzopoulos 1986, Ghosal/Vaněk 1996, Bruhn et al. 2003)

competitive performance

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Open Problems

- further improvements possible ?
- some very good methods use strategies that lack theoretical foundation

Goals

- presentation of an optic flow algorithm with very good performance
- theoretical justification of widely used warping technique

Some Related Work

- L. Alvarez, J. Weickert, and J. Sánchez, IJCV 2000.
- M. Lefébure and L. D. Cohen, *JMIV* 2001.
- E. Mémin and P. Pérez, *ICCV* 1998.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relations to Warping
- Evaluation
- Conclusions

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relations to Warping
- Evaluation
- Conclusions

Variational Model (1)

- Basic assumptions
 - Greyvalue constancy

$$I_{\mathbf{w}} := I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) = 0$$

- Gradient constancy
- Spatio-temporal smoothness
- Robustness

$$I_{x\mathbf{w}} := \partial_x I(\mathbf{x} + \mathbf{w}) - \partial_x I(\mathbf{x}) = 0$$

$$I_{y\mathbf{w}} := \partial_y I(\mathbf{x} + \mathbf{w}) - \partial_y I(\mathbf{x}) = 0$$

$$|\nabla u|^2 + |\nabla v|^2 = 0 \nabla = (\partial_x, \partial_y, \partial_t)^\top$$

$$\Psi\left(s^2\right) \;=\; \sqrt{s^2+\epsilon^2}$$

• Energy to minimise:

$$E(u,v) = \int_{\Omega} \Psi \left(I_{\mathbf{w}}^2 + \gamma \cdot \left(I_{x\mathbf{w}}^2 + I_{y\mathbf{w}}^2 \right) \right) \mathbf{dx} + \alpha \int_{\Omega} \Psi \left(|\nabla u|^2 + |\nabla v|^2 \right) \mathbf{dx}$$

Minimiser has to fulfill the Euler-Lagrange equations

$$\begin{aligned} \alpha \operatorname{div} \left(\Psi'(|\nabla u|^2 + |\nabla v|^2) \nabla u \right) \\ &= \Psi'(I_{\mathbf{w}}^2 + \gamma(I_{x\mathbf{w}}^2 + I_{y\mathbf{w}}^2)) \cdot (I_x I_{\mathbf{w}} + \gamma(I_{xx} I_{x\mathbf{w}} + I_{xy} I_{y\mathbf{w}})) \\ \alpha \operatorname{div} \left(\Psi'(|\nabla u|^2 + |\nabla v|^2) \nabla v \right) \\ &= \Psi'(I_{\mathbf{w}}^2 + \gamma(I_{x\mathbf{w}}^2 + I_{y\mathbf{w}}^2)) \cdot (I_y I_{\mathbf{w}} + \gamma(I_{xy} I_{x\mathbf{w}} + I_{yy} I_{y\mathbf{w}})) \end{aligned}$$

where the indices denote differences or partial derivatives:

$$I_{\mathbf{w}} := I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) \qquad I_{x} := \partial_{x}I(\mathbf{x} + \mathbf{w}) \qquad I_{y} := \partial_{y}I(\mathbf{x} + \mathbf{w})$$
$$I_{xw} := \partial_{x}I(\mathbf{x} + \mathbf{w}) - \partial_{x}I(\mathbf{x}) \qquad I_{xx} := \partial_{xx}I(\mathbf{x} + \mathbf{w}) \qquad I_{yy} := \partial_{yy}I(\mathbf{x} + \mathbf{w})$$
$$I_{yw} := \partial_{y}I(\mathbf{x} + \mathbf{w}) - \partial_{y}I(\mathbf{x}) \qquad I_{xy} := \partial_{xy}I(\mathbf{x} + \mathbf{w})$$

Variational Model (2b)

Minimiser has to fulfill the Euler-Lagrange equations

$$\begin{aligned} \alpha \operatorname{div} \left(\Psi'(|\nabla u|^2 + |\nabla v|^2) \nabla u \right) \\ &= \Psi'(I_{\mathbf{w}}^2 + \gamma(I_{x\mathbf{w}}^2 + I_{y\mathbf{w}}^2)) \cdot (I_x I_{\mathbf{w}} + \gamma(I_{xx} I_{x\mathbf{w}} + I_{xy} I_{y\mathbf{w}})) \\ \alpha \operatorname{div} \left(\Psi'(|\nabla u|^2 + |\nabla v|^2) \nabla v \right) \\ &= \Psi'(I_{\mathbf{w}}^2 + \gamma(I_{x\mathbf{w}}^2 + I_{y\mathbf{w}}^2)) \cdot (I_y I_{\mathbf{w}} + \gamma(I_{xy} I_{x\mathbf{w}} + I_{yy} I_{y\mathbf{w}})) \end{aligned}$$

where the indices denote differences or partial derivatives:

$$I_{\mathbf{w}} := I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) \qquad I_{x} := \partial_{x}I(\mathbf{x} + \mathbf{w}) \qquad I_{y} := \partial_{y}I(\mathbf{x} + \mathbf{w})$$
$$I_{x\mathbf{w}} := \partial_{x}I(\mathbf{x} + \mathbf{w}) - \partial_{x}I(\mathbf{x}) \qquad I_{xx} := \partial_{xx}I(\mathbf{x} + \mathbf{w}) \qquad I_{yy} := \partial_{yy}I(\mathbf{x} + \mathbf{w})$$
$$I_{y\mathbf{w}} := \partial_{y}I(\mathbf{x} + \mathbf{w}) - \partial_{y}I(\mathbf{x}) \qquad I_{xy} := \partial_{xy}I(\mathbf{x} + \mathbf{w})$$
$$S(\mathbf{w}) = D(\mathbf{w})$$

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relations to Warping
- Evaluation
- Conclusions

Problem 1: Local Minima

- energy functional E(u, v) is not convex
- reason: terms involving $I(\mathbf{x} + \mathbf{w})$
- should not be linearised for large displacements
- numerical algorithms may yield suboptimal local minima of E(u, v), if initialisation is not chosen properly

Solution: Initialisation by Coarse-to-Fine Strategy

- downsample problem in a full pyramid
- start with zero displacement at coarsest scale
- solve Euler-Lagrange equations S(w) = D(w)
 - use resulting **flow field** as initialisation at next finer scale

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Problem 2: Solve Euler-Lagrange Equations

- discretise S(w) = D(w) by finite differences
- yields large nonlinear system of equations
- lacksim nonlinearity caused by $I({f x}+{f w})$ and nonlinear penaliser Ψ

Solution

- nonlinear system is simplified by
 - two nested fixed point iterations
 - linearisation of $I(\mathbf{x} + \mathbf{w})$
- leads to large linear system of equations
- can be solved by iterative methods such as SOR

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Algorithmic Aspects (3)

Detailed Structure on the Linear System

Resulting linear system for $du^{k,l+1}$, $dv^{k,l+1}$:

$$\alpha \quad \operatorname{div} \left((\Psi')^{k,l} {}_{Smooth} \nabla (u^k + du^{k,l+1}) \right)$$

$$= \left(\Psi' \right)^{k,l} {}_{Data} \cdot \left(I_x^k \left(I_z^k + I_x^k du^{k,l+1} + I_y^k dv^{k,l+1} \right) \right)$$

$$+ \gamma \left(I_{xx}^k (I_{xz}^k + I_{xx}^k du^{k,l+1} + I_{xy}^k dv^{k,l+1}) + I_{xy}^k (I_{yz}^k + I_{xy}^k du^{k,l+1} + I_{yy}^k dv^{k,l+1}) \right)$$

$$\alpha \quad \operatorname{div} \left((\Psi')^{k,l} {}_{Smooth} \nabla (v^k + dv^{k,l+1}) \right)$$

$$= \left(\Psi' \right)^{k,l} {}_{Data} \cdot \left(I_y^k \left(I_z^k + I_x^k du^{k,l+1} + I_y^k dv^{k,l+1} \right) \right)$$

$$+ \gamma \left(I_{xy}^k (I_{xz}^k + I_{xx}^k du^{k,l+1} + I_{xy}^k dv^{k,l+1}) + I_{yy}^k (I_{yz}^k + I_{xy}^k du^{k,l+1} + I_{yy}^k dv^{k,l+1}) \right)$$

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	
	-

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relations to Warping
- Evaluation
- Conclusions

Warping

- widely used for optic flow computation with large displacements (e.g. Anandan 1989, Black/Anandan 1996, Mémin/Pérez 1998)
- downsample image data
- solve problem at coarse scale
- use this flow field at next finer scale: warp image in order to compensate for this estimated motion
- solve modified problem (with other image data) at finer scale
- continue until finest scale reached
- sum up optic flow contributions from all scales
- successful in practice, but no theoretical justification!

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

We have proven equivalence between

- our numerical method for minimising a simplified energy E(u, v) by coarse-to-fine flow initialisations and nested fixed point iterations
- warping method (nested problems with motion-compensated image data) of Mémin / Pérez

They lead to the same linear system of equations.

This explains the success of warping:

Warping has a sound theory as a numerical algorithm for minimising a single energy functional !

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relations to Warping
- Evaluation
- Conclusions

Evaluation (1)

Sequence

Yosemite Sequence

- Synthetic sequence $(316 \times 252 \times 15)$
- Known ground truth between frame 8 and frame 9

Ground Truth

Computed Flow

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Evaluation (2)

Qualitative Evaluation

4 - 1 ---------/////////// //////////// * * //////////// * * * * * * * * * * * * * * _____ * 1 1 1 1 1 * * * * * * * * * + + + + + + / / / /

Vector plot of the optic flow field for the Yosemite sequence **with** clouds. (a) **Left:** Ground truth. (b) **Right:** Computed flow.

Evaluation (3)

Vector plot of the optic flow field for the Yosemite sequence **without** clouds. (a) **Left:** Ground truth. (b) **Right:** Computed flow.

Evaluation (4)

Quantitative Evaluation

- Comparison to the best results from literature
- Average angular errors (AAE) and standard deviations (STD) for the Yosemite sequence with coluds:

Yosemite with clouds			
Technique	AAE	STD	
Anandan 1989	13.36°	15.64°	
Nagel 1983	10.22°	16.51°	
Horn/Schunck, mod. 1981	9.78°	16.19°	
Uras <i>et al.</i> 1988	8.94°	15.61°	
Alvarez <i>et al.</i> 2000	5.53°	7.40°	
Weickert <i>et al.</i> 2003	5.18°	8.68°	
Mémin/Pérez 1998	4.69°	6.89°	
our method	1.94°	6.02°	

А

2

4

6

8

10

1

3

5

7

9

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

• For the Yosemite sequence **without** clouds, even better results are possible:

Yosemite without clouds			
Technique	AAE	STD	
Black/Anandan 1996	4.56°	4.21°	
Ju <i>et al.</i> 1996	2.16°	2.00°	
Bab-Hadiashar/Suter 1997	2.05°	2.92°	
Lai/Vemuri 1998	1.99°	1.41°	
Mémin/Pérez 1998	1.58°	1.21°	
Weickert <i>et al.</i> 2003	1.46°	1.50°	
Farnebäck 2003	1.14°	2.14°	
our method	0.98°	1.17°	

Evaluation (6)

Robustness under Noise

- Added Gaussian noise with zero mean and different standard deviations σ_n .
- Results for Yosemite sequence with clouds:

σ_n	AAE	STD
0	1.94°	6.02°
10	2.50°	5.96°
20	3.12°	6.24°
30	3.77°	6.54°
40	4.37°	7.12°

• Average angular error for $\sigma_n = 40$ outperforms all other methods with $\sigma_n = 0$!

Evaluation (7)

Frame 8 of the Yosemite sequence with clouds. (a) Left: Original. (b) Right: Gaussian noise with standard deviation $\sigma_n = 40$ added.

Evaluation (8)

Robustness under Parameter Variations

- Three intuitive parameters:
 - $\sigma:$ Gaussian presmoothing of the input data
 - $\alpha :$ weight of smoothness term
 - $\gamma :$ weight of gradient constancy term

Parameter variation for the Yosemite sequence with clouds:

σ	lpha	γ	AAE
0.8	80	100	1.94°
0.4	"	"	2.10°
1.6	"	"	2.04°
0.8	80	100	1.94°
"	40	"	2.67°
,,	160	"	2.21°
0.8	80	100	1.94°
"	"	50	2.07°
,,	"	200	2.03°

Deviations from the optimum by a factor 2 hardly influence the result.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Real-World Data

• Real-world image sequence "Ettlinger Tor" by Nagel $(512 \times 512 \times 50)$

Sequence

Computed Flow

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Outline

Outline

- Variational Model
- Algorithmic Aspects
- Relation to Warping
- Evaluation
- Conclusions

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Summary

novel model

- gradient constancy assumption within energy functional
- combines many successful features in a single functional

hovel theory

- postpone all linearisations to the numerical scheme
- numerical scheme based on two nested iterations
- warping theoretically justified as a special numerical approximation

excellent results

- angular errors belong to smallest in the literature
- robust under parameter variations
- highly robust under noise

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Ongoing Work

- alternative data terms
- correpondence between data and smoothness terms
- igstarrow automatised selection of smoothing parameters σ , lpha
- more efficient numerics: PCG, multigrid, domain decomposition
- novel warpings inspired from suitable numerics ?

Message

- It is advantageous to combine transparent continuous modelling with consistent numerics.
- Good performance and deeper theoretical understanding are not contradictive: They are two sides of the same medal.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

Thanks

Thank you very much!

more informations: www.mia.uni-saarland.de

14 11 17 Ţ Ť ſ Ť Ť 1 Ţ Ť ľ ſ ſ Ť Ţ ľ Ť Ť Ť 7 11 1 アアアアア 1 1111 1 1 1 \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} 7 T 4 V V V V + XXXXXXX 11 1 + + 7 T × + + × × 7 -------- x x 1 1 --------11111 Ļ

$ \rightarrow \rightarrow$	$\begin{array}{c} \bullet \rightarrow \\ \bullet \rightarrow \end{array}$
$ \rightarrow \rightarrow$	$\begin{array}{c} \bullet \rightarrow \\ \bullet \rightarrow \end{array}$
$ \rightarrow \rightarrow$	 → → → →
$\rightarrow \rightarrow $	→ →
\rightarrow	→
	> >
$\leftarrow\leftarrow\leftarrow\leftarrow\leftarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\leftarrow\rightarrow$	
	•
	•
	•
	•
	•
	4
	4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*
	×
///////////////////////////////////////	×
///////////////////////////////////////	×
///////////////////////////////////////	×
///////////////////////////////////////	X
///////////////////////////////////////	X
///////////////////////////////////////	X
	X
*//////////////////////////////////////	
<i>* </i>	, \
	. \

		→ →		→ -	▶ →			→ -	→ -	→ -	→	→	→	→	→	▶ →	•	•	▶ →	••					→			→	→	→	→		→ ·	→
	→ -	→ →	•	→ -	→		→ -	→ -	→ -	→ -	→	▶ —	▶ —	▶ —	▶ —	▶ →	▶ →	▶ —	▶ →	- →	·	·		·>	→				\rightarrow			→	→ ·	→
	→ ·	→ →	·	→ -	→ →		→ -	→ -	→ -	→ -	→	▶	▶	▶ —	▶	▶ →	▶ →	-	▶ →						→								→ ·	→
		→ →	·	→ -	→	-	→ -		→ -	→ -	→	▶	▶ —	▶ —	▶ —	▶ →	▶ →	▶ —	▶ →						\rightarrow			→					→ ·	
		→ →	·	→ –	→		→ -	→ -	→ -	→ -	→	▶ —	▶ —	▶ —	▶ —	▶ →	▶ →	• –	▶ →		·				→			→				-	→ ·	→
	ר ל	⊾ →		→ -	→	→	→ -	→ -	→ -	→ -	→	▶ —	▶ —	▶ —	▶ —	▶ →	▶ →	- →	▶ →	·					\rightarrow			→	→			-	→ ·	→
	+ +	+	← ◄	-	•	◄ `	• •			-	-		•		◄	-	4	•	4	4	4	4	►	+	\rightarrow		-	→		→	→	→	→)	•
	← ←	•	• •	+	ب	• •	+ 4	4	4	4	-	4	◄	-	•	•	◄	•	-	◄	4	◄	◄	4	◄	4	•	4	•	•	▲	4	¥ 4	L.
4	-+-	•	- ←	+	+ +	- →	- +	4	4	4	4	4	◄	◄	◄	•	◄	4	◄	•	◄	◄	4	4	◄	-	4	▲	<u>۲</u>	•			• •	-
+	-+-		- +-	+	+ •	- 4	- +	*	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	◄	4	•	•	►	Y .	•		• 1		-
+			-+-	≁.	- +	- +	- +	*	*	*	4	4	4	4	4	4	4	4	4	4	4	4	4	▲	•	*	►	¥	◀ -	•	•	•		•
+				-	- +	- *	- 🖌	*	*	*	*	*	4	4	4	4	4	4	4	4	4	4	•	•	•	•	¥	¥	◀	•	•	•		
+				-	<u> </u>			*	*	*	×	*	*	4	4	A	•	4	A	A	A	▲	•	•	•	Y	۲	¥	٩	•	•	•	• •	•
-		<u></u>					~	~	*	×	×	*	*	*	•	A	•	A	▲	A	•	•	•	•	۲	¥	¥	۷	4	•	•	4 -	4 1	▲
							~	~	*	×	*	¥	*	*		▲	▲		▲	▲	•	•	•	►	۲	¥	¥	¥	٩	•	•	•	•	4
			/						x	*	×	*	¥	¥	¥			•	*	*	•	•	•	۲	۷	¥	¥	¥	4	٩	•	4 -	4 3	4
~	//	//								4	*	¥	¥	¥	¥	¥	*	•		•	►	►	۲	۲	¥	¥	¥	4	٩	◀	٩	◀ :	4 7	4
_							/	1		1	2	4	¥	¥	¥	¥	*	•	►	•	►	►	۲	¥	¥	¥	¥	٩	٩	∢	٩	٩	4 7	4
			//					/	1	1	1		*	¥	¥	¥	¥	۴	۲	*	•	۲	¥	¥	¥	¥	•	٩	•	∢	۲	4	x :	*
× _			, , 								1	1		*	¥	¥	¥	¥	*	۲	*	*	*	¥	¥	¥	*	4	۲	۲	۲	4	x :	×
*			× /	× ×	< ¥	/	· /	/				1	1	4	4	4	+	+	¥	+	*	*	¥	¥	¥	*	*	*	*	4	4	¥	X :	×
*			× /	× ×		, ×	× /	*	*	*	•		1	1	1			Ļ	¥	¥	ŧ	ŧ	¥	¥	¥	+	¥	*	¥	¥	¥	X	× '	X
			//	× ×		, ×	, * ,	*	*	*	*	¥ /	•	J	1	J	Ţ	1		Ļ	Ŧ	Ŧ	Ŧ	Ŧ	t	ł	¥	¥	4	7	7	2	N 1	
			, ۲	× ×		, * ,	, * ,	*	*	*	*	*	¥ /	•	Ţ	r J	J	Ţ	1	Ţ	Ţ	Ţ	L	T .	7	7	7	7	7	7		, ,	х '	, ,
	× ×		, ⁻ /	××		, * ,	, * ,	*	*	*	*	*	*	¥ /	₽ 	•	•	1	Ţ	1	Ţ	T T	L L	L	1	ľ	ľ	L L	ì	ì	ì	λ.	<u> </u>	Ì
	× ,		, × ,	, k , k		۲,	, * ,	¥ ,	*,	+	*	¥ 	¥ 1	¥ 1	¥ 1	₽ 	¥ 	¥ 	•	•	•	T L	۲ L	T L	۲ ۱	۲ ۱	1	1	•	•	۹ ۱			
	×	/ /	ر کم	× ب ×			, , ,	4,	4	+,	*	¥	¥	¥ 1	¥ 1	¥ 1	*	* 1	*	*	♥ 	▼ 	▼ 	▼ \	▼ \	•	▼ \	₹ \	₹	₹ \		◄ ∖	¥ \ '	* \
			ر کمر	م کم	[,	,	, <i>t</i> ,	¥,	4,	4,	4	+	4	¥	+	+	+	+	+	+	* 	+ 1	* 	* \	↓	*	*	*	*	* \	₩ \	∛ ∖	`¥ ∖ '	*
\checkmark			ر کمر	¥ر 🖌	[,]	,	, × ,	4,	4,	4,	4	¥,	4	¥,	ŧ	4	ŧ	ŧ	+	+	↓	+	↓ \	♦	\	*	*	*	¥۲ \	۰ ۱	∖	_¥ ∖	_¥ ∖ '	A
/		/ /		/ /	/ /	` /	1	1	1	1	1	4	¥	¥	¥	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ł	ł	ł	ł	ł	ł	ł	ł	A	A	Å	Å	X

	•
	•
	•
	•
	A
	•
	•
	•
<t< td=""><td>*</td></t<>	*
</</td <td>4</td>	4
	×
	×
///////////////////////////////////////	×
///////////////////////////////////////	×
///////////////////////////////////////	X
///////////////////////////////////////	X
///////////////////////////////////////	X
	X
	X
	7
	7
	\

	← ◀	+ +	+				+											◄	◄	◄	◄	◄	•												
	+ •	- +	+ •	• •	⊦ ◄		•	4	-	-	4	-	-	•	◄	◄	◄	◄	◄	◄	◄	◄	◄	◄	◄	•	•	◄		A	4	◄	4	▼	•
	← ←	- +		- 4	- +	• •	•	4	4	4	4	-	-	•	4	•	◄	◄	•	4	-	4	4	4	4	4	4	4	▲	۲	¥	4	A	•	•
		-		- +	- +	• •	-	+	+	4	4	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	۸	۸	۲	¥	•	4	•	•	•
4		-		- +-	- +-		*	*	4	*	*	4	4	4	4	4	4	4	4	4	4	4	4	4	•	۸	*	۲	¥	٩	•	•	•	▲	A
4				- +-	-	-	-	~	*	*	*	*	*	4	4	4	4	4	4	4	4	4	4	*	٨		*	¥	¥	۲	•	4	4	4	A
*				-	-	-	~	~		*	*	×	*	*	▲	4	▲	4	4	4	▲	A	*	*	•	►	۲	¥	¥	٩	٩	٩	4	4	•
*			<u></u>		-	-	~	~	×	*	×	×	×	*	*	4			•	▲	▲	٨		*	۲	►	۲	¥	۲	۲	٩	•	4	4	•
*	//		<u></u>		-	~	~	~	~	×	×	×	¥	×	¥			▲	•	*	۸	*	•	*	۲	۲	¥	¥	۲	٩	٩	٩	•	٩	•
*	//		<u> </u>	~		~	1	1	~	×	×	×	¥	¥	¥	¥	*	*	*		•	•	۲	۲	۲	٧	¥	¥	۲	٩	٩	٩	•	4	4
*	//		<u>/</u>					1	1	1	1	¥	¥	¥	¥	¥	¥		*	•	۲	*	۲	۲	۲	٧	¥	¥	۲	٩	٩	٩	٩	٩	*
*	//					· 🖌	1	1	1	1	1	4	¥	¥	¥	¥	¥	¥	۶	۲	۲	۲	۲	۲	¥	¥	¥	۷	۲	٩	•	٩	۲	۲	*
*	//				/	<	1	1	1	1	1	1	¥	¥	¥	¥	¥	¥	۴	۲	۲	۲	۲	¥	¥	¥	¥	۷	٩	٩	۲	۲	۲	۲	×
×	//	<u>/</u>				· 🖌	1	1	1	1	1	1	¥	¥	¥	¥	¥	¥	¥	۶	۶	۲	۲	۲	¥	¥	۲	4	4	۲	۲	۲	۲	×	×
×	//	<u>/</u> ,				/	1	1	1	1	1	1	4	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	*	*	۲	4	۲	×	×	×
×	//	<u>/</u> ,	//	/	/	/	1	1	1	1	1	1	1	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	ł	¥	¥	¥	¥	¥	X
×	//	<hr/>			/	/	1	1	1	1	1	1	4	4	¥	¥	¥	¥	¥	¥	¥	ŧ	¥	¥	¥	¥	ł	ł	ł	¥	¥	Å	¥	Å	X
	//				/	/		1	1	1	1	1	1	4	¥	¥	¥	¥	¥	¥	ŧ	ŧ	ŧ	¥	ł	ł	ł	ł	ł	A	Å	Å	Å	X	X
	//							1	1	1	1	1	1	1	¥	¥	ł	¥	ł	ŧ	ŧ	ŧ	¥	ŧ	ł	ł	ł	ł	ł	ł	Å	Å	X	Å	X
	//		//						/	1	1	1	1	1	4	¥	ł	¥	ţ	ţ	ł	ţ	ţ	ţ	ł	ł	ł	ł	ł	Å	Y	Å	Y	X	X
_	//	\mathbb{Z}							/	1	1	1	1	1	Ļ	Ļ	ţ	ţ	ţ	ţ	ł	ţ	ţ	ţ	ţ	ł	ł	ł	ł	ł	7	7	7	X	7
	//									1		1	1	1	ł	Ļ	ţ	ţ	ţ	ţ	ł	ţ	ţ	ţ	ł	ł	ł	ł	1	1	Y	Y	1	7	7
×	11	~ /*	/	/	/ ⁻ /	'	·	1	· /	·/	·/	·/	1	1	1									1	1	1	1	1	1	\		\ \	\		\

