Human Detection and Tracking in Crowded Scenes Using a Fast Mean Shift Procedure

C. Beleznai¹, T. Schlögl¹, B. Frühstück², H. Bischof³

Advanced Computer Vision GmbH. – ACV, Vienna, Austria

•2Siemens AG Österreich, Programm- und Systementwicklung, Graz, Austria

• ³ICG, Graz University of Technology, Austria

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Contents

1. Introduction

2. Human detection and tracking in crowded scenarios

- state-of-the art
- human detection using mean shift
- fast mean shift computation
- results and evaluation
- 3. Mean shift mode tracking
- 4. Extensions
 - arbitrary camera geometry
 - fast data-driven clustering

5. Concluding remarks

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers Introduction - the company

Kplus Research Areas and Industrial Applications :

- A Visual surveillance and tracking
- B 3-Dimensional Segmentation, Modelling and Reconstruction
- C Statistical methods and learning –

D

Matching

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Human detection and tracking in crowded scenarios

Introduction:

Application: Video surveillance

Objectives:

Robust detection of moving humans by a static camera.

- Detection in occluded situations
- Tracking (short duration of occlusions)

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Human detection and tracking in crowded scenarios

Desired output:

- how many objects,
- approximate location
- consistent motion path

State-of-the-art approaches

- Silhouette analysis (Kuno 1996, Haritaoglu 2001)
- Color-based segmentation / tracking (Elgammal 2001, Comaniciu 2000)
- Particle filter (Kuno 1996, Isard 2001)
- EM clustering (Pece 2000)
- Appearance models (Senior 2001)
- Stochastic segmentation (Zhao 2003)

Colloquium - Oct. 7. 2004, Prague

Ein Unternehmen der Austrian Research Centers

Real-time mean shift-based human localization

- change detection difference between frame and a reference
- no thresholding clustering

- fast mean shift algorithm
- model-based validation

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean shift offset:

$$\Delta_x = \frac{\sum_a K(a-x) w(a) a}{\sum_a K(a-x) w(a)} - x$$

K is a kernel function

w(a) is the weight (intensity) at data point (pixel) a

Concept introduced by:

Fukunaga and Hostetler (1975)Cheng(1995)Comaniciu and Meer(1998)

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean shift clustering

Assumption: Difference image : high intensity ~ high probability of motion

- 1. locating initial points (sample set),
- 2. mean shift procedure until convergence,
- 3. mode grouping

Output: mode, basin of attraction, attraction path, points along attraction path

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Fast Mean Shift Computation

Boxlets - P. Simard et al. (1999)

A fundamental property of convolution operation:

 $(f * g)^n = f^n * g = f * g^n$ g - signal, f - filter Thus: (f'') *f * g. =integral image Convolution can be significantly accelerated, if the 2nd derivative of f is sparse. $\Delta_x = \frac{\sum_a K(a-x) w(a) a}{\sum_a K(a-x) w(a)} - x$ Polynomial Y derivative X derivative (constant) (of X derivative) Colloquium - Oct. 7. 2004, ADVANCED COMPUTER VISION Kompetenzzentren-Programm Prague Ein Unternehmen der Austrian Research Centers

Fast Mean Shift Computation using Integral Images

Kompetenzzentren-Programm

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Fast Mean Shift Computation using Integral Images

3 integral images (SAT) are computed:

Fast computation of integral images

$$I_{int}(x,y) = \sum_{x' \leq x, y' \leq y} I(x',y')$$

$$I_{int}(x, y) = I_{int}(x, y-1) + I_{int}(x-1, y) + I(x, y) - I_{int}(x-1, y-1)$$

Sum of intensities within a region:

 $S_{area} = I_A + I_D - I_B - I_C$

- Simple human model consisting of rectangular regions
- Fast *Hypothesize-and-Test* steps are possible

Integral image

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Model-based validation

- Penalized likelihood criterion
- 1. Model insertion at detected mode
- 2. Cost computation

$$C(\theta_z) = (1 - P(I|\theta_z))e^{\beta Z}$$

using

$$P(I|\theta) = \exp\left(-a \left[1 - \frac{1}{A_{R_{\theta}}} \sum_{x,y \in R_{\theta}} I(x,y)\right] - b \left[\frac{1}{A_{R_{U}}} \sum_{x,y \in R_{U}} I(x,y)\right]\right)$$

- 3. Model insertion at most probable location.
- 4. Insertion stopped upon cost increase

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Evaluating detection results

Ground truth (manual annotation)

Moving humans with more than 50% visibility

One-to-one mapping between ground truth and detection results

Detection experiments (independent processing of each frame)

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Detection experiments (independent processing of each frame)

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Evaluation of detection performance

Two evaluation sequences:

	Sequence	Α	в
	No. of annotated frames	470	879
	Valid humans	6147	5380
blob-based method	Correct detections	3096	2762
	Hit rate	50.3%	51.3%
	False alarm rate	23%	4%
proposed approach	Correct detections	5400	4533
	Hit rate	87.9%	84.3%
	False alarm rate	29%	19%

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Combining mean shift-based detection with tracking

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Tracking experiment: crowded indoor scene

Blob tracking

Mean shift-based detection and tracking

Evaluation of tracking performance:Number of annotated frames:1013Number of unmatched tracks:292 (83.2%)Track integrity:1.4

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Tracking experiment

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Tracking experiment

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean Shift Mode Tracking

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean shift procedure using oriented kernels

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean shift procedure using oriented kernels

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Mean shift procedure using oriented kernels

Colloquium - Oct. 7. 2004, Prague

Ein Unternehmen der Austrian Research Centers

Unconstrained clustering: kernel size – unknown parameter

Distribution: multi-modal, multi-scale patterns

Known: range of scales at which structures appear

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

- 1. Generating sample set with (x_0 , σ_0)
- 2. Mean shift mode seeking
- 3. Estimating local covariance
- 4. Orienting kernel (discrete angles)
- 5. Stop upon convergence

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Scale selection problem: most-stable-over-scales criterion

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Fast mean shift-based clustering - Experiment

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Applied to:

- Clustering regions within cornerness measure map
- Texture similarity measure
- Clustering the output of boosted cascade classifier
- Finding significant modes in 2D color histograms
- Intensity template correlation

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Summary

- Fast mean shift-based clustering: Relying on unfiltered data, number of clusters is unknown
- Efficient combination of low-level information and independent high-level knowledge
- Promising (real-time) performance on challenging data
- Data-driven model selection detecting arbitrary objects

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers

Future Work

- Mean shift-based feature point tracking
- Data association using spatio-temporal reasoning
- Inferring model from clustering

ADVANCED COMPUTER VISION Ein Unternehmen der Austrian Research Centers