Structured Regression for Efficient Object Detection

Christoph Lampert www.christoph-lampert.org

Max Planck Institute for Biological Cybernetics, Tübingen

December 3rd, 2009

- [C.L., Matthew B. Blaschko, Thomas Hofmann. CVPR 2008]
 [Matthew B. Blaschko, C.L. ECCV 2008]
- [C.L., Matthew B. Blaschko, Thomas Hofmann. PAMI 2009]

Category-Level Object Localization

Category-Level Object Localization

What objects are present? person, car

Category-Level Object Localization

Where are the objects?

Object Localization \Rightarrow **Scene Interpretation**

A man inside of a car \Rightarrow He's driving.

A man outside of a car \Rightarrow He's passing by.

Algorithmic Approach: Sliding Window

 $\mathbf{f}(\mathbf{y_1}) = \mathbf{0.2}$

 $\mathbf{f}(\mathbf{y_2}) = \mathbf{0.8}$

 $\mathbf{f}(\mathbf{y_3}) = \mathbf{1.5}$

Use a (pre-trained) classifier function $f\colon$

- Place candidate window on the image.
- Iterate:
 - Evaluate f and store result.
 - Shift candidate window by k pixels.
- $\bullet~$ Return position where ${\bf f}$ was largest.

Algorithmic approach: Sliding Window

 $\mathbf{f}(\mathbf{y_1}) = \mathbf{0.2}$

 $\mathbf{f}(\mathbf{y_2}) = \mathbf{0.8}$

 $f(y_3) = 1.5$

Drawbacks:

- single scale, single aspect ratio
 → repeat with different window sizes/shapes
- search on grid

 \rightarrow speed-accuracy tradeoff

• computationally expensive

Assumptions:

- Objects are rectangular image regions of arbitrary size.
- $\bullet\,$ The score of f is largest at the correct object position.

Mathematical Formulation:

$$\mathbf{y}^{\mathsf{opt}} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \ \mathbf{f}(\mathbf{y})$$

Mathematical Formulation:

$$\mathbf{y}^{\mathsf{opt}} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \ \mathbf{f}(\mathbf{y})$$

- How to choose/construct/learn the function f ?
- How to do the optimization efficiently and robustly? (exhaustive search is too slow, $\mathcal{O}(w^2h^2)$ elements).

Mathematical Formulation:

$$\mathbf{y}^{\mathsf{opt}} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \ \mathbf{f}(\mathbf{y})$$

- How to choose/construct/learn the function f ?
- How to do the optimization efficiently and robustly? (exhaustive search is too slow, $\mathcal{O}(w^2h^2)$ elements).

Use the problem's *geometric structure*:

Use the problem's *geometric structure*:

 \bullet finds global maximum $\mathbf{y}^{\mathsf{opt}}$

- Calculate scores for *sets of boxes* jointly.
- If no element can contain the maximum, discard the box set.
- Otherwise, split the box set and iterate.
- → Branch-and-bound optimization

Use the problem's *geometric structure*:

 \bullet finds global maximum $\mathbf{y}^{\mathsf{opt}}$

- Calculate scores for sets of boxes jointly.
- If no element can contain the maximum, discard the box set.
- Otherwise, split the box set and iterate.
- → Branch-and-bound optimization

• Boxes: $[\mathbf{l}, \mathbf{t}, \mathbf{r}, \mathbf{b}] \in \mathbb{R}^4$.

• Boxes: $[l, t, r, b] \in \mathbb{R}^4$. Boxsets: $[L, T, R, B] \in (\mathbb{R}^2)^4$

• Boxes: $[l,t,r,b] \in \mathbb{R}^4$. Boxsets: $[L,T,R,B] \in (\mathbb{R}^2)^4$

Splitting:

• Identify largest interval.

• Boxes: $[l,t,r,b] \in \mathbb{R}^4$. Boxsets: $[L,T,R,B] \in (\mathbb{R}^2)^4$

Splitting:

 \bullet Identify largest interval. Split at center: $R\mapsto R_1\cup R_2.$

• Boxes: $[l,t,r,b] \in \mathbb{R}^4$. Boxsets: $[L,T,R,B] \in (\mathbb{R}^2)^4$

Splitting:

- Identify largest interval. Split at center: $\mathbf{R} \mapsto \mathbf{R}_1 \cup \mathbf{R}_2$.
- New box sets: $[\mathbf{L},\mathbf{T},\mathbf{R_1},\mathbf{B}]$

• Boxes: $[l,t,r,b] \in \mathbb{R}^4$. Boxsets: $[L,T,R,B] \in (\mathbb{R}^2)^4$

Splitting:

- Identify largest interval. Split at center: $\mathbf{R}\mapsto \mathbf{R}_1\cup\mathbf{R}_2.$
- $\bullet \ \text{New box sets:} \quad [\mathbf{L},\mathbf{T},\mathbf{R_1},\mathbf{B}] \text{ and } [\mathbf{L},\mathbf{T},\mathbf{R_2},\mathbf{B}].$

Calculating Scores for Box Sets

Example: Linear Support-Vector-Machine $f(\mathbf{y}) := \sum_{\mathbf{p}_i \in \mathbf{y}} \mathbf{w}_i$.

$$\mathbf{f^{upper}}(\mathbf{Y}) = \underset{\mathbf{p}_i \in \mathbf{y}^{\cap}}{\sum} \underset{\mathbf{w}_i)}{\min(\mathbf{0}, \mathbf{w}_i)} + \underset{\mathbf{p}_i \in \mathbf{y}^{\cup}}{\sum} \underset{\mathbf{w}_i)}{\max(\mathbf{0}, \mathbf{w}_i)}$$

Can be computed in $\mathcal{O}(1)$ using *integral images*.

Calculating Scores for Box Sets

Histogram Intersection Similarity: $f(y) := \sum_{j=1}^{J} \min(h'_j, h^y_j)$.

As fast as for a single box: $\mathcal{O}(\mathbf{J})$ with *integral histograms*.

Evaluation: Speed (on PASCAL VOC 2006)

Sliding Window Runtime:

 \bullet always: $\mathcal{O}(w^2h^2)$

Branch-and-Bound (ESS) Runtime:

- worst-case: $\mathcal{O}(\mathbf{w^2h^2})$
- empirical: not more than $\mathcal{O}(\mathbf{wh})$

Action classification: $(y, t)^{\text{opt}} = \operatorname{\mathbf{argmax}}_{(y,t) \in \mathcal{Y} \times T} f_x(y, t)$

• J. Yuan: Discriminative 3D Subvolume Search for Efficient Action Detection, CVPR 2009.

Localized image retrieval: $(x, y)^{opt} = \operatorname{\mathbf{argmax}}_{y \in \mathcal{Y}, x \in \mathcal{D}} \overline{f_x(y)}$

• C.L.: Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval, ICCV 2009

Hybrid - Branch-and-Bound with Implicit Shape Model

[•] A. Lehmann, B. Leibe, L. van Gool: Feature-Centric Efficient Subwindow Search, ICCV 2009

Generalized Sliding Window

$$\mathbf{y}^{\mathsf{opt}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{f}(\mathbf{y})$$

- How to choose/construct/learn f ?
- How to do the optimization efficiently and robustly?

Traditional Approach: Binary Classifier

Training images:

- $\bullet \ x_1^+, \ldots, x_n^+$ show the object
- $\bullet \ \mathbf{x_1^-}, \ldots, \mathbf{x_m^-}$ show something else

Train a classifier, e.g.

- support vector machine,
- boosted cascade,
- artificial neural network,...

Decision function $\mathbf{f}: \{\mathbf{images}\} \rightarrow \mathbb{R}$

- f > 0 means "image shows the object."
- f < 0 means "image does not show the object."

Traditional Approach: Binary Classifier

Drawbacks:

- Train distribution \neq test distribution
- No control over partial detections.
- No guarantee to even find training examples again.

Object Localization as Structured Output Regression

Ideal setup:

• function

 $q: \{all \ images\} \rightarrow \{all \ boxes\}$

to predict object boxes from images

• train and test in the same way, end-to-end

Object Localization as Structured Output Regression

Ideal setup:

• function

$$g: \{all images\} \rightarrow \{all boxes\}$$

to predict object boxes from images

• train and test in the same way, end-to-end

Regression problem:

• training examples $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$

• x_i are images, y_i are bounding boxes

• Learn a mapping

$$g: \mathcal{X} {\longrightarrow} \mathcal{Y}$$

that generalizes from the given examples:

• $g(x_i) \approx y_i$, for $i = 1, \dots, n$,

Structured Support Vector Machine

SVM-like framework by *Tsochantaridis et al.*:

- Positive definite kernel k : (X × Y) × (X × Y)→ℝ.
 φ : X × Y → H : (implicit) feature map induced by k.
- $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$: loss function
- Solve the convex optimization problem

$$\min_{w,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to margin constraints for $i=1,\ldots,n$:

 $\forall y \in \mathcal{Y} \setminus \{y_i\} : \mathbf{\Delta}(y, y_i) + \langle w, \boldsymbol{\varphi}(x_i, y) \rangle - \langle w, \boldsymbol{\varphi}(x_i, y_i) \rangle \leq \xi_i,$

• unique solution: $w^* \in \mathcal{H}$

I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun: Large Margin Methods for Structured and Interdependent Output Variables, Journal of Machine Learning Research (JMLR), 2005.

Structured Support Vector Machine

• w^* defines *compatiblity* function

$$F(x,y)\!=\!\langle w^*, \boldsymbol{\varphi}(x,y)\rangle$$

• best prediction for x is the most compatible y:

$$g(x) := \operatorname*{argmax}_{y \in \mathcal{Y}} F(x, y).$$

• evaluating $g: \mathcal{X} \to \mathcal{Y}$ is like generalized Sliding Window:

- for fixed x, evaluate quality function for every box $y \in \mathcal{Y}$.
- for example, use previous branch-and-bound procedure!

Joint Image/Box-Kernel: Example

Joint kernel: how to compare one (image,box)-pair (x, y) with another (image,box)-pair (x', y')?

could also be large.

Loss Function: Example

Loss function: how to compare two boxes y and y'?

$$\begin{split} \boldsymbol{\Delta}(y,y') &:= 1 - \textit{area overlap between } y \text{ and } y' \\ &= 1 - \frac{\operatorname{area}(y \cap y')}{\operatorname{area}(y \cup y')} \end{split}$$

Structured Support Vector Machine

• S-SVM Optimization: $\min_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ subject to for $i=1,\ldots,n$:

 $\forall y \in \mathcal{Y} \setminus \{y_i\}: \ \mathbf{\Delta}(y, y_i) + \langle w, \boldsymbol{\varphi}(x_i, y) \rangle - \langle w, \boldsymbol{\varphi}(x_i, y_i) \rangle \leq \xi_i,$

Structured Support Vector Machine

• S-SVM Optimization: $\min_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ subject to for $i=1,\ldots,n$:

 $\forall y \in \mathcal{Y} \setminus \{y_i\}: \ \mathbf{\Delta}(y, y_i) + \langle w, \boldsymbol{\varphi}(x_i, y) \rangle - \langle w, \boldsymbol{\varphi}(x_i, y_i) \rangle \leq \xi_i,$

- Solve via constraint generation:
- Iterate:
 - Solve minimization with working set of contraints
 - ▶ Identify $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{\Delta}(y, y_i) + \langle w, \boldsymbol{\varphi}(x_i, y) \rangle$
 - Add violated constraints to working set and iterate
- Polynomial time convergence to any precision arepsilon
- Similar to bootstrap training, but with a margin.

Evaluation: PASCAL VOC 2006

Example detections for VOC 2006 bicycle, bus and cat.

Precision-recall curves for VOC 2006 bicycle, bus and cat.

- Structured regression improves detection accuracy.
- New best scores (at that time) in 6 of 10 classes.

Why does it work?

Learned weights from binary (center) and structured training (right).

- Both methods assign positive weights to object region.
- Structured training also assigns negative weights to features surrounding the bounding box position.
- Posterior distribution over box coordinates becomes more peaked.

aeroplane

bicycle

bird

boat

bottle

bus

chair

cow

diningtable

dog

1

horse

motorbike

person

pottedplant

sheep

sofa

train

Image segmentation with connectedness constraint:

CRF segmentation

connected CRF segmentation

Object Localization is a step towards image interpretation.

Conceptual approach instead of *algorithmic*:

- Branch-and-bound evaluation:
 - ► don't slide a window, but solve an argmax problem, ⇒ higher efficiency
- Structured regression training:
 - ► solve the prediction problem, not a classification proxy. ⇒ higher localization accuracy
- Modular and kernelized:
 - easily adapted to other problems/representations, e.g. image segmentations

springer.com

Paper submission: * Feb 26, 2010

Estimate Online Publication: * Fall, 2010

Special Issue Structured Prediciton and Inference

Matthew B. Blaschko

Christoph H. Lampert

University of Oxford M blaschko@robots.ox.ac.uk cl

Max Planck Institute for Biological Cybernetic chl@tuebingen.mpg.de

Topics of interest include, but are not limited to:

- Training for structured output learning
 - Probabilistic vs. max-margin training
 - Generative vs. discriminative training
 - Semi-supervised or unsupervised learning
 - Dealing with label noise
- Inference methods for structured output learning
 - Exact vs. approximate inference techniques
 - Pixel, voxel, and superpixel random field optimization
 - Priors and higher order clique optimization
 - Approaches that scale to large amounts of training and test data
- Computer vision applications of structured output learning
 - Segmentation
 - Stereo reconstruction
 - Relationship between scene components
 - Hierarchical models