Multimodal Image Retrieval

R. Lienhart, S. Romberg, E. Hörster Multimedia Computing Lab University of Augsburg

Query-by-Example (1)

Query-by-Example (2)

Query-by-Example (3)

Motivation

- Enable search in large-scale community image DBs
- Devise a scheme
 - based on topic models that can
 - handle multiple features from the same or different modalities (e.g., visual words and keywords added by Flickr users (tags))
 - in a stable (good initialization) and
 - still computable way (partition learning task into smaller learning problems with a limited training set size and use these to initialize in a strictly stepwise forward procedure the overall learning problem)
- Closer to current belief in a hierarchical recurrent cortex models of the brain

Motivation (2)

probabilistic Latent Semantic Analysis (pLSA)

→ has been proven to work on <u>unimodal</u> data such as text, image tags, and visual words

But

→ Combing two modes such as visual words and image tags is challenging

Why?

- \rightarrow The obvious approach doesn't work:
 - Subsuming all words of the various modes or features within a mode into one large word set

Outline

- Motivation (with preview)
- Standard pLSA
- Multimodal multilayer pLSA (mm-pLSA)
- Experimental Results
- Conclusion

Outline

- Motivation (with preview)
- Standard pLSA
- Multimodal multilayer pLSA (mm-pLSA)
- Experimental Results
- Conclusion

Basic Technique

pLSA originates from text analysis Thomas Hofmann. *Unsupervised learning by probabilistic Latent Semantic Analysis.* (Mach. Learn., 42(1-2):177–196, 2001).

pLSA used as generic image retrieval technique: Rainer Lienhart and Malcolm Slaney.

pLSA on Large Scale Image Databases.

(ICASSP 2007, Vol IV, pp. 1217-1220)

Term-Document-Matrix

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_j) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

Assumption:

 Words are conditionally independent from the document given the topic

ndent from $= \sum_{k=1}^{K} P(d_i) P(z_k \mid d_i) P(w_j \mid z_k)$ $= P(d_i) \sum_{k=1}^{K} P(z_k \mid d_i) P(w_j \mid z_k)$

 $P(d_i, w_j) = \sum_{k=1}^{K} P(w_j, z_k, d_i)$

ightarrow Once we know the topic we can predict the words that will be observed

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_i) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

Assumption:

- Words are conditionally independent from the document given the topic
- $P(d_i, w_j) = \sum_{k=1}^{K} P(w_j, z_k, d_j)$ = $\sum_{k=1}^{K} P(d_i) P(z_k \mid d_j) P(w_j \mid z_k)$ = $P(d_i) \sum_{k=1}^{K} P(z_k \mid d_j) P(w_j \mid z_k)$
- \rightarrow Once we know the topic we can predict the words that will be observed

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_i) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_i with probability $P(w_i | z_k)$

Assumption:

- Words are conditionally independent from the document given the topic
 - \rightarrow Once we know the topic we can predict the words that will be observed

$$P(d_i, w_j) = \sum_{k=1}^{K} P(w_j, z_k, d_i)$$

= $\sum_{k=1}^{K} P(d_i) P(z_k \mid d_i) P(w_j \mid z_k)$
= $P(d_i) \sum_{k=1}^{K} P(z_k \mid d_i) P(w_j \mid z_k)$

$$P(d_{i}, w_{j}) = \sum_{k=1}^{K} P(w_{j}, z_{k}, d_{i})$$
$$= \sum_{k=1}^{K} P(d_{i}) P(z_{k} \mid d_{i}) P(w_{j} \mid z_{k})$$
$$= P(d_{i}) \sum_{k=1}^{K} P(z_{k} \mid d_{i}) P(w_{j} \mid z_{k})$$

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_j) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

Assumption:

- Words are conditionally independent from the document given the topic
 - \rightarrow Once we know the topic we can predict the words that will be observed

$$P(d_{i}, w_{j}) = \sum_{k=1}^{K} P(w_{j}, z_{k}, d_{j})$$
$$= \sum_{k=1}^{K} P(d_{j}) P(z_{k} \mid d_{j}) P(w_{j} \mid z_{k})$$
$$= P(d_{j}) \sum_{k=1}^{K} P(z_{k} \mid d_{j}) P(w_{j} \mid z_{k})$$

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_j) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

Assumption:

 Words are conditionally independent from the document given the topic

ightarrow Once we know the topic we can predict the words that will be observed

$$P(d_i, w_j) = \sum_{k=1}^{K} P(w_j, z_k, d_i)$$

= $\sum_{k=1}^{K} P(d_i) P(z_k \mid d_i) P(w_j \mid z_k)$
= $P(d_i) \sum_{k=1}^{K} P(z_k \mid d_i) P(w_j \mid z_k)$

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_j) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

$$\begin{array}{c} D \\ P(d_i) \end{array} \begin{array}{c} Z \\ P(z_k \mid d_i) \end{array} \begin{array}{c} W \\ P(w_j \mid z_k) \end{array}$$

Assumption:

 Words are conditionally independent from the document given the topic

 \rightarrow Once we know the topic we can predict the words that will be observed

$$P(d_{i}, w_{j}) = \sum_{k=1}^{K} P(w_{j}, z_{k}, d_{i})$$
$$= \sum_{k=1}^{K} P(d_{i}) P(z_{k} \mid d_{i}) P(w_{j} \mid z_{k})$$
$$= P(d_{i}) \sum_{k=1}^{K} P(z_{k} \mid d_{i}) P(w_{j} \mid z_{k})$$

pLSA introduces a hidden (unobservable) topic layer to explain correlations between documents and the observed words

Generative model for observation of pair (d_i, w_j) :

- Select a document d_i with probability $P(d_i)$
- Pick a latent class z_k with probability $P(z_k | d_i)$
- Generate a word w_j with probability $P(w_j | z_k)$

Assumption:

 Words are conditionally independent from the document given the topic $P(d_{i}, w_{j}) = \sum_{k=1}^{K} P(w_{j}, z_{k}, d_{i})$ = $\sum_{k=1}^{K} P(d_{i}) P(z_{k} | d_{i}) P(w_{j} | z_{k})$ = $P(d_{i}) \sum_{k=1}^{K} P(z_{k} | d_{i}) P(w_{j} | z_{k})$

 \rightarrow Once we know the topic we can predict the words that will be observed

Objective:

Find a model that explains given data

$$P(d_{i}, w_{j}) = P(d_{i}) \sum_{k=1}^{K} P(z_{k} | d_{i}) P(w_{j} | z_{k})$$

$$\begin{array}{c} D \\ P(d_i) \end{array} \xrightarrow{P(z_k \mid d_i)} W \\ P(w_j \mid z_k) \end{array}$$

Likelihood of data:

To find a good explanation, search for the discreate distribution $P(w_j | z_k)$ and $P(z_k | d_j)$ that maximize the likelihood of seeing the training data \rightarrow Maximize Likelihood with EM-Algorithm

$$L = \prod_{i=1}^{N} \prod_{j=1}^{M} P(d_i, w_j)^{n(d_i, w_j)} \to \max$$

$$\Leftrightarrow \ln L = \sum_{i=1}^{N} \sum_{j=1}^{M} \ln \left[P(d_i, w_j)^{n(d_i, w_j)} \right]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{M} n(d_i, w_j) \ln P(d_i, w_j) \to \max$$

pLSA – Model Usage

After model training done: Probability $P(w_i | z_k)$ is known

Document representation derived by pLSA:

Each document d_i is represented by its *topic distribution* $P(z_k | d_i)$

- \rightarrow Compute $P(z_k | d_i)$ for unseen documents
- → Compression of image representation e.g. 1000 to 100,000 visual words → 50 aspects

Find similar documents:

Compare topic distributions $P(\mathbf{z}|d_{query})$ against $P(\mathbf{z}|d_i)$: e.g. L1 or L2-norm in the simplest case.

pLSA – Model Usage

After model training done: Probability $P(w_i | z_k)$ is known

Document representation derived by pLSA:

Each document d_i is represented by its *topic distribution* $P(z_k | d_i)$

- \rightarrow Compute $P(z_k | d_i)$ for unseen documents
- → Compression of image representation e.g. 1000 to 100,000 visual words → 50 aspects

Find similar documents:

Compare topic distributions $P(\mathbf{z} | d_{query})$ against $P(\mathbf{z} | d_i)$: e.g. L1 or L2-norm in the simplest case.

pLSA – Model Usage

After model training done: Probability $P(w_i | z_k)$ is known

Document representation derived by pLSA:

Each document d_i is represented by its *topic distribution* $P(z_k | d_i)$

- \rightarrow Compute $P(z_k | d_i)$ for unseen documents
- → Compression of image representation e.g. 1000 to 100,000 visual words → 50 aspects

Find similar documents:

Compare topic distributions $P(z | d_{query})$ against $P(z | d_i)$: e.g. L1 or L2-norm in the simplest case.

Outline

- Motivation (with preview)
- Standard pLSA
- Multimodal multilayer pLSA (mm-pLSA)
- Experimental Results
- Conclusion

Assume two Modes

pLSA on visual features

pLSA on tags

Cascaded Topic Models (1)

Cascaded Topic Models (2)

Fast Initialization

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_l^{top} with probability $P(z_l^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_l^{top} with probability $P(z_l^{top} | d_j)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept Z_{I}^{top} with probability $P(Z_{I}^{top} | d_{i})$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept Z_{l}^{top} with probability $P(Z_{l}^{top} | d_{i})$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t \mid Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_{I}^{top} with probability $P(z_{I}^{top} | d_{i})$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_l^{top} with probability $P(z_l^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t | Z_k^v)$

Generative model for observation of pair (d_i, w) :

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$

– For each tag word associated with the document:

- Select a latent top-level concept z_l^{top} with probability $P(z_l^{top} | d_i)$
- Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
- Generate a word w_n^t with probability $P(w_n^t | Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_{I}^{top} with probability $P(z_{I}^{top} | d_{i})$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_1^{top} with probability $P(z_1^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t | Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_{I}^{top} with probability $P(z_{I}^{top} | d_{i})$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t | Z_k^v)$

- Select a document d_i with probability $P(d_i)$
- For each visual word in the document:
 - Select a latent top-level concept z_i^{top} with probability $P(z_i^{top} | d_i)$
 - Pick a latent visual topic Z_k^v with probability $P(Z_k^v | Z_l^{top})$
 - Generate a word W_m^v with probability $P(W_m^v | z_k^v)$
- For each tag word associated with the document:
 - Select a latent top-level concept z_l^{top} with probability $P(z_l^{top} | d_j)$
 - Pick a latent tag topic z_p^t with probability $P(z_p^t | z_l^{top})$
 - Generate a word w_n^t with probability $P(w_n^t | z_p^t)$

General mm-pLSA (1)

General mm-pLSA (2)

- EM-Training and EM-Inference
 - See

Rainer Lienhart, Eva Hörster, Stefan Romberg. Multilayer pLSA for Multimodal Image Retrieval. ACM International Conference on Image and Video Retrieval (CIVR 2009), July 8-10, 2009 as well as referenced TR with complete EM-derivation

- Optimizes complete problem
- Best training mode:
 - Use fast initialization to get a good starting point
 - Use full optimization to improve initialization

Outline

- Motivation (with preview)
- Standard pLSA
- Multimodal multilayer pLSA (mm-pLSA)
- Experimental Results
- Conclusion

Real-World Test Database (1)

- 253,460 Flickr images from with at least one of the 23 word on the right as a tag.
- Not cleaned nor postprocessed of images
- 5 random query images from each of the 12 categories → 60 query images in total.

Category #	OR list of tags	# of image
1	wildlife animal animals cat cats	30476
2	dog dogs	26119
3	bird birds	21279
4	flower flowers	28816
5	graffiti	22318
6	sign signs	14488
7	surf surfing	29998
8	night	33999
9	food	19582
10	building buildings	17303
11	goldengate goldengatebridge	24362
12	baseball	12390
	Total # of Images (Note images may have multiple tags)	253,460

Rainer Lienhart and Malcolm Slaney. *pLSA on Large Scale Image Databases.* (ICASSP 2007, Vol IV, pp. 1217-1220)

Real-World Test Database (3)

'Surprising' tags

Evaluation: User Study

Users rate each result for some given query images as similar (1 Pt), somewhat similar (0.5 Pt) or not similar (0 Pt)

User mean: ≈ % of images the user considers as correct result

Overall score: Mean of user means

pLSA - Graffiti

The multi-modal pLSA system clearly outperforms the two base systems

Summary

- The multi-modal pLSA computes a topic model on top of several "base" topic models
- The multi-modal pLSA can easily be extended to other modalities
 - Other/more features
 - Image descriptions / title
- Usage of mm-pLSA model outperformed the visual-based, tagbased and concatenated pLSA model by at least 24%

Thank you