"Bag of lines" models for non-central linear cameras

"Bag of lines" models for non-central linear cameras

Guillaume BATOG (joint work with X. Goaoc and J. Ponce)

INRIA Nancy Grand-Est project-team VEGAS

Veraces

Linear cameras

Stereo-vision between *ANY* pair of linear cameras

Stereo-vision between *ANY* pair of linear cameras

PROBLEMS { unified model computations

Stereo-vision between *ANY* pair of linear cameras

PROBLEMS

unified model computations

Admissible Map [Pajdla,02]

OUTLINE

- 1. Stereo-vision with pinhole cameras
- 2. The admissible map model
- 3. Stereo-vision with linear cameras

Fundamental & Essential matrix

Fundamental matrix $u^T \ \mathcal{F} \ u' = 0$ $3 \times 3 \text{ matrix}$ 8 correspondances needed to determine \mathcal{F}

Essential matrix $u^T \mathcal{E} u' = 0$ \mathcal{E} depends only on W6 correspondances needed to determine \mathcal{E}

OUR APPROACH

Camera

bag of lines +

retina

OUTLINE

- 1. Stereo-vision with pinhole cameras
- 2. The admissible map model
 - 3. Stereo-vision with linear cameras

"bag of lines" level **OUTI INF** 1. Stereo-vision with pinhole cameras 2. The admissible map model 3. Stereo-vision with linear cameras adding the retina

Projective space

 $\mathbb{P}^3(\mathbb{R}) ~\sim \quad \text{set of lines of } \mathbb{R}^4 \\ \text{passing through the origin} \\ \label{eq:passing_eq}$

Homogeneous coordinates

 $\ell \cap P = \{ [\vec{u}] \}$

 $[x_0:x_1:x_2:x_3] \sim [\lambda x_0:\lambda x_1:\lambda x_2:\lambda x_3]$

Intuition in the affine space \mathbb{R}^3

Linear congruences

3D field of view + order 1: $x \stackrel{!}{\mapsto} \ell_{all x}^{\text{(for almost})}$ \Rightarrow 2-parameter set of lines

hyperbolic congruence X-slit camera

parabolic congruence

> pencil camera

elliptic congruence linear oblique camera

Projective classification

bundle pinhole camera

degenerate congruence (no name)

Linear congruences

<u>Idea:</u> a linear map A that globally preserves each line of the bag

<u>Idea:</u> a linear map A that globally preserves each line of the bag

$$\Rightarrow \quad A^2 x = \lambda_x A x + \mu_x x$$
(for almost all x)

$$\Rightarrow A^2 = \lambda A + \mu \mathrm{Id}$$
 (linear algebra)

<u>Definition</u>: A has a minimal polynomial π_A of degree 2.

<u>Idea:</u> a linear map A that globally preserves each line of the bag

$$\Rightarrow \quad A^2 x = \lambda_x A x + \mu_x x$$
(for almost all x)

$$\Rightarrow \quad A^2 = \lambda A + \mu \mathrm{Id}$$
 (linear algebra)

<u>Definition</u>: A has a minimal polynomial π_A of degree 2. $\Rightarrow \quad \mathcal{L} = \{x \lor Ax \text{ for } x \text{ not an eigenvector}\}\$ has order 1. <u>Ambiguity locus</u> \subseteq Union of eigenspaces of \mathcal{L} of A

π_A	Eigenspaces	Reduced form of A	\mathcal{L}
$(X - \alpha) \left(X - \beta \right)$	plane + point	$\begin{bmatrix} \alpha I_3 & 0 \\ \hline 0 & \beta \end{bmatrix}$	
$(X - \alpha) (X - \beta)$	2 lines	$\begin{bmatrix} \alpha I_2 & 0 \\ \hline 0 & \beta I_2 \end{bmatrix}$	
$(X - \alpha)^2$	plane	$\begin{bmatrix} \alpha I_2 & 0 \\ 0 & \alpha & 0 \\ 0 & \lambda & \alpha \end{bmatrix}$	W.
$(X - \alpha)^2$	1 line	$\begin{bmatrix} \alpha & 0 & \\ \lambda & \alpha & 0 \\ \hline 0 & & \alpha & 0 \\ 0 & & \mu & \alpha \end{bmatrix}$	- A management
$\Delta < 0$	Ø	$\begin{bmatrix} \alpha & -\beta & & 0 \\ \beta & \alpha & & 0 \\ \hline 0 & & \alpha & -\beta \\ & \beta & \alpha \end{bmatrix}$	

Geometric model (linear congruences)

Analytical model (admissible maps)

Application: Ray-tracing (using pbrt)

Application: Ray-tracing (using pbrt)

float GenerateRay(Sample &s,Ray *r) {

OUTLINE

- 1. Stereo-vision with pinhole cameras
- 2. The admissible map model
- 3. Stereo-vision with linear cameras
 2 key ingredients:
 * inverse projection
 - * normalized coordinates

 \mathcal{X}

 $\forall x \text{ non-ambiguous } x \longmapsto x \lor Ax \in \mathcal{L}$ where A is an admissible map for \mathcal{L}

 $x \lor Ax = [\xi_0 : \xi_1 : \xi_2 : \xi_3 : \xi_4 : \xi_5]$

$$\pi_i:(u_i)\longmapsto(\xi_i)$$

$$\pi_i(u) = \left(\sum_{i=0}^2 u_i y^i\right) \vee \left(\sum_{i=0}^2 u_i A y^i\right)$$

$$\pi_i(u) = \sum_{i=0}^2 \frac{u_i^2}{2} \zeta^{ii} + \sum_{0 \le i < j \le 2} u_i u_j \zeta^{ij}$$

where $\zeta^{ij} = y^i \vee Ay^j + y^j \vee Ay^i$

$$\widetilde{\mathcal{P}} = [\zeta^{00}, \zeta^{01}, \zeta^{02}, \zeta^{11}, \zeta^{12}, \zeta^{22}]$$

$$(6 \times 6 \text{ matrix})$$

$$\pi_i(u) = \widetilde{\mathcal{P}}\,\mu(u)$$

$$\mu(u) = (u_0^2, u_0 u_1, u_0 u_2, u_1^2, u_1 u_2, u_2^2)^T$$
(6-vector)

Fundamental matrix

Image coordinates u and u' are in stereo correspondance

$$\iff \\ \pi_i(u) \odot \pi_i(u') = 0$$

$$\ell \cap \ell' \neq \varnothing \quad \Leftrightarrow \quad \xi \odot \xi' = 0$$

Fundamental matrix

Image coordinates u and u' are in stereo correspondance

$$\pi_i(u) \odot \pi_i(u') = 0$$

$$\mu(u)^T \ \widetilde{\mathcal{P}}^T \ (\widetilde{\mathcal{P}}')^* \ \mu(u') = 0$$

 6×6 fundamental matrix 35 correspondances needed

<u>Idea:</u> the bag of lines is spanned by at most 4 lines

 \longrightarrow express π_i in that "base" of lines

<u>Idea</u>: the bag of lines is spanned by at most 4 lines

 \rightarrow express π_i in that "base" of lines

 $\begin{array}{ll} (p^0,p^1,p^2,p^3) = \text{basis of the camera} \\ (p^0,p^1,p^2) = \text{basis of the retina} \\ \begin{cases} \zeta^0 = p^0 \lor p^3 \\ \zeta^1 = p^1 \lor (p^0 + p^3) \\ \zeta^2 = p^2 \lor p^3 \\ \zeta^3 = p^1 \lor p^2 \end{cases} \begin{array}{ll} \text{basis of the bag of lines} \end{cases}$

<u>Idea</u>: the bag of lines is spanned by at most 4 lines

 \rightarrow express π_i in that "base" of lines

$$\widetilde{P}_{s} \times \mu_{s}(u) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} u_{0}^{2} \\ u_{0}u_{1} \\ u_{0}u_{2} \\ u_{2}^{2} \end{pmatrix}$$

Pencil camera

$\widetilde{\mathcal{P}}_{s}$ and μ_{s} depend only on the type of the camera.

on the type of the camera.

$$\widetilde{P}_{s} \times \mu_{s}(u) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} u_{0}^{2} \\ u_{0}u_{1} \\ u_{0}u_{2} \\ u_{1}^{2} + u_{2}^{2} \end{pmatrix}$$

Linear oblique camera

Also for pinhole cameras!

Calibration

\star position of the camera in the world $\rightarrow W$

 \star position of the captor lattice in the retina \rightarrow K

Calibration

\star position of the camera in the world $\rightarrow W$

 \star position of the captor lattice in the retina \rightarrow K

 $\Lambda^2 W$ is a 6×6 matrix encoding the action of W on lines.

Essential matrix

Image coordinates u and u' are in stereo correspondance

$$\iff \\ \pi_i(u) \odot \pi_i(u') = 0$$

$$\mu_{s}(K^{-1}u)^{T} \quad \widetilde{\mathcal{P}}_{s}^{T} \Lambda^{2}W^{T} (\Lambda^{2}W')^{*} (\widetilde{\mathcal{P}}_{s}')^{*} \quad \mu_{s}(K'^{-1}u') = 0$$
$$4 \times 4 \text{ essential matrix}$$

15 correspondances needed

Euclidean framework

Exactly the same machinery

Only 6 correspondances needed to build ${\cal E}$

Need orthonormal normalized basis (p^0, p^1, p^2, p^3)

Induce more involved intrinsic parameters

 6×6 fundamental matrix (uncalibrated case) 4×4 essential matrix (calibrated case) between ANY pair of linear cameras

FURTHER QUESTIONS

What are the positions of the retina that minimize the distorsions of the image?

Do algebraic line congruences suggest interesting imaging devices? Can they admit analogues of admissible maps?

Can we get clear pictures from our pencil camera?

Thank you!

- [1] J. Ponce, What is a Camera?, CVPR'09
- [2] G. B., X. Goaoc, J. Ponce, Admissible Linear Map Model for Linear Cameras, CVPR'10
- [3] The "linear camera" model (in preparation)

our pencil camera

Synthesis

	projective	euclidean	euclidean
	linear	linear	pinhole
	camera	camera	camera
extrinsic parameters	15	6	6
intrinsic parameters	6	12	5
fundamental matrix	27		7

Linearity on lines

Geometric axiomatisation [Veblen&Young,1910] for linear dependance

Initialisation

two lines

line pencil

regulus

Heredity

 ℓ depends linearly on $L = \{\ell_1, ..., \ell_k\}$ iff $\exists L \rightarrow \ell_{k+1} \rightarrow \cdots \rightarrow \ell_{k+n} = \ell$ where \rightarrow is a line pencil/regulus construction.

Exemples

degenerate regulus

bundle field (Need 2 line pencil steps)