"Bag of lines" models
 for non-central linear cameras

"Bag of lines" models

for non-central linear cameras

Guillaume BATOG

(joint work with X. Goaoc and J. Ponce)

INRIA Nancy Grand-Est project-team VEGAS

RINRIA

Linear cameras

pinhole

Goal

Stereo-vision between
ANY pair of
linear cameras

Goal

Stereo-vision between
ANY pair of
linear cameras

PROBLEMS $\left\{\begin{array}{l}\text { unified model } \\ \text { computations }\end{array}\right.$

Goal

Stereo-vision between

ANY pair of
linear cameras

PROBLEMS

unified model computations

Admissible Map
[Pajdla,02]

OUTLINE

1. Stereo-vision with pinhole cameras

2. The admissible map model
3. Stereo-vision with linear cameras
聚~

Inverse projection

Inverse projection

Inverse projection

Inverse projection

stereo correspondance
intersection of inverse projections

Normalized coordinates

Fundamental \& Essential matrix

Fundamental matrix

$$
\left(\begin{array}{l}
1 \\
u_{1} \\
u_{2}
\end{array}\right)
$$

$u^{T} \mathcal{F} u^{\prime}=0$
3×3 matrix
8 correspondances needed to determine \mathcal{F}

Essential matrix

$$
u^{T} \mathcal{E} u^{\prime}=0
$$

\mathcal{E} depends only on W
6 correspondances needed to determine \mathcal{E}

OUR APPROACH

OUR APPROACH
Camera
bag of lines $+$
retina

OUTLINE

1. Stereo-vision with pinhole cameras

2. The admissible map model
3. Stereo-vision with linear cameras

OUTLINE

"bag of lines" level

1. Stereo-vision with pinhole cameras
2. The admissible map model
3. Stereo-vision with linear cameras
adding the retina

Projective space

$\mathbb{P}^{3}(\mathbb{R}) \sim$ set of lines of \mathbb{R}^{4} passing through the origin

Homogeneous coordinates

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \sim\left[\lambda x_{0}: \lambda x_{1}: \lambda x_{2}: \lambda x_{3}\right]
$$

Intuition in the affine space \mathbb{R}^{3}

$$
\mathbb{P}^{3}(\mathbb{R})=\underset{[1: x: y: z]}{\text { points }}+\underset{[0: u: v: w]}{ }+\begin{gathered}
\text { directions } \\
\end{gathered}
$$

$$
\ell \cap P=\{[\vec{u}]\}
$$

Linear congruences

3D field of view + order 1: $x \stackrel{!}{\mapsto} \ell \underset{\substack{\text { for almost } \\ \text { al } \\ \text { (fit }}}{\substack{\text { pen }}}$ \Rightarrow 2-parameter set of lines

hyperbolic congruence

X-slit

camera
 pencil camera

Projective

 classification
bundle pinhole camera

elliptic congruence linear oblique camera

degenerate congruence (no name)

Linear congruences

3D field of view + order $1 \cdot x \stackrel{!}{\stackrel{ }{n}}$ (for almost all x) \Rightarrow 2-parameter set of lines

Admissible maps

Idea: a linear map A that globally preserves each line of the bag

Admissible maps

Idea: a linear map A that globally preserves each line of the bag
$\Rightarrow \quad A^{2} x=\lambda_{x} A x+\mu_{x} x$
(for almost all x)
$\Rightarrow \quad A^{2}=\lambda A+\mu \mathrm{Id} \quad$ (linear algebra) $A=\left(\begin{array}{l}* * * * \\ * * * * \\ * * * * \\ * * * *\end{array}\right)=\mathbb{R}^{4 \times 4}$
Definition: A has a minimal polynomial π_{A} of degree 2 .

Admissible maps

Idea: a linear map A that globally preserves each line of the bag
$\Rightarrow \quad A^{2} x=\lambda_{x} A x+\mu_{x} x$
(for almost all x)
$\Rightarrow \quad A^{2}=\lambda A+\mu \mathrm{Id} \quad$ (linear algebra) $A=\left(\begin{array}{l}* * * * \\ * * * * \\ * * *\end{array}\right)=\mathbb{R}^{4 \times 4}$

Definition: A has a minimal polynomial π_{A} of degree 2 .
$\Rightarrow \quad \mathcal{L}=\{x \vee A x$ for x not an eigenvector $\}$ has order 1 .

Ambiguity locus

$$
\text { of } \mathcal{L}
$$

Union of eigenspaces of A

Admissible maps

π_{A}	Eigenspaces	Reduced form of A	\mathcal{L}
$(X-\alpha)(X-\beta)$	plane + point	$\left[\begin{array}{c\|c}\alpha I_{3} & 0 \\ \hline 0 & \beta\end{array}\right]$	
$(X-\alpha)(X-\beta)$	2 lines	$\left[\begin{array}{c\|c}\alpha I_{2} & 0 \\ \hline 0 & \beta I_{2}\end{array}\right]$	
$(X-\alpha)^{2}$	plane	$\left[\right.$$\alpha I_{2}$ 0 0 α 0 λ $\alpha$$]$	
$(X-\alpha)^{2}$	1 line	$\left[\right.$$\alpha$ 0 0 λ α 0 α 0 μ $\alpha$$]$	
$\Delta<0$	\emptyset	$\left[\begin{array}{cc\|c}\alpha & -\beta & 0 \\ \beta & \alpha & 0 \\ \hline 0 & \left.\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]\end{array}\right.$	

Geometric model

(linear congruences)
\sqrt{V}

Analytical model

(admissible maps)

Application：Ray－tracing（using pbrt）

class LinearCamera ：public Camera \｛
〈 LinearCamera Constructor〉
float GenerateRay（Sample \＆s，Ray＊r）；
Transform AdMap；
Transform RasterToWorld；
Vector vview；
〈Other Attributes 〉\};

Application: Ray-tracing (using pbrt)

float GenerateRay (Sample \&s,Ray *r) \{
Point pras = Point (sample.imageX, sample.imageY,0);
Point pret = RasterToWorld(pras);
ray->o = pret;
ray->d = Normalize(AdMap(pret)-pret);
if (Dot (ray->d, vview) < 0) ray->d = -(ray->d);
〈Setting Ray Time and Endpoints 〉\};

OUTLINE

1. Stereo-vision with pinhole cameras
2. The admissible map model
3. Stereo-vision with linear cameras 2 key ingredients: * inverse projection * normalized coordinates

Inverse projection

$\forall x$ non-ambiguous $\quad x \longmapsto x \vee A x \in \mathcal{L}$ where A is an admissible map for \mathcal{L}

$$
\begin{gathered}
x \vee A x=\left[\xi_{0}: \xi_{1}: \xi_{2}: \xi_{3}: \xi_{4}: \xi_{5}\right] \\
x=\sum_{i} u_{i} y^{i} \text { Inverse projection } \\
x_{y^{0} \times{ }^{\circ} y^{1} y^{2}} \quad \pi_{i}:\left(u_{i}\right) \longmapsto\left(\xi_{i}\right)
\end{gathered}
$$

Inverse projection

$$
\begin{gathered}
\pi_{i}(u)=\left(\sum_{i=0}^{2} u_{i} y^{i}\right) \vee\left(\sum_{i=0}^{2} u_{i} A y^{i}\right) \\
\pi_{i}(u)=\sum_{i=0}^{2} \frac{u_{i}^{2}}{2} \zeta^{i i}+\sum_{0 \leq i<j \leq 2} u_{i} u_{j} \zeta^{i j} \\
\text { where } \zeta^{i j}=y^{i} \vee A y^{j}+y^{j} \vee A y^{i} \\
\widetilde{\mathcal{P}}=\left[\zeta^{00}, \zeta^{01}, \zeta^{02}, \zeta^{11}, \zeta^{12}, \zeta^{22}\right] \\
(6 \times 6 \text { matrix }) \\
\mu(u)=\left(u_{0}^{2}, u_{0} u_{1}, u_{0} u_{2}, u_{1}^{2}, u_{1} u_{2}, u_{2}^{2}\right)^{T} \\
\quad(6 \text {-vector })
\end{gathered}
$$

Fundamental matrix

Image coordinates u and u^{\prime} are in stereo correspondance

$$
\pi_{i}(u) \odot \pi_{i}\left(u^{\prime}\right)=0
$$

$\xi=\left[\xi_{0}: \xi_{1}: \xi_{2}: \xi_{3}: \xi_{4}: \xi_{5}\right]^{T}$
$\xi \odot \xi^{\prime}=\xi^{T} \cdot\left(\xi^{\prime}\right)^{*}$
$\xi^{*}=\left[\xi_{3}: \xi_{4}: \xi_{5}: \xi_{0}: \xi_{1}: \xi_{2}\right]^{T}$
side-operator

$$
\ell \cap \ell^{\prime} \neq \varnothing \quad \Leftrightarrow \quad \xi \odot \xi^{\prime}=0
$$

Fundamental matrix

Image coordinates u and u^{\prime} are in stereo correspondance

$$
\pi_{i}(u) \odot \pi_{i}\left(u^{\prime}\right)=0
$$

$\mu(u)^{T} \widetilde{\mathcal{P}}^{T}\left(\widetilde{\mathcal{P}}^{\prime}\right)^{*} \mu\left(u^{\prime}\right)=0$
6×6 fundamental matrix 35 correspondances needed

Normalized coordinates

Idea: the bag of lines is spanned by at most 4 lines

- express π_{i} in that "base" of lines

Normalized coordinates

Idea: the bag of lines is spanned by at most 4 lines

- express π_{i} in that "base" of lines

X-slit camera

$$
\begin{aligned}
& \left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\text { basis of the camera } \\
& \left(p^{0}, p^{1}, p^{2}\right)=\text { basis of the retina } \\
& \begin{cases}\zeta^{0}=p^{0} \vee p^{3} & \text { basis of } \\
\zeta^{1}=p^{1} \vee\left(p^{0}+p^{3}\right) & \text { the bag of } \\
\zeta^{2}=p^{2} \vee p^{3} & \text { lines } \\
\zeta^{3}=p^{1} \vee p^{2} & \text { and }\end{cases}
\end{aligned}
$$

Normalized coordinates

Idea: the bag of lines is spanned by at most 4 lines

- express π_{i} in that "base" of lines

X-slit camera

$$
\begin{aligned}
& \left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\text { basis of the camera } \\
& \left(p^{0}, p^{1}, p^{2}\right)=\text { basis of the retina } \\
& \begin{cases}\zeta^{0}=p^{0} \vee p^{3} & \text { basis of } \\
\zeta^{1}=p^{1} \vee\left(p^{0}+p^{3}\right) & \text { the bag of } \\
\zeta^{2}=p^{2} \vee p^{3} & \text { lines }\end{cases}
\end{aligned}
$$

$$
A_{\mathrm{s}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
2 & 0 & 0 & -1
\end{array}\right) \quad \widetilde{P}_{\mathrm{s}} \times \mu_{\mathrm{s}}(u)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
u_{0}{ }^{2} \\
u_{0} u_{1} \\
u_{0} u_{2} \\
u_{1} u_{2}
\end{array}\right)
$$

Normalized coordinates

Pencil camera

$$
\widetilde{P}_{\mathrm{s}} \times \mu_{\mathrm{s}}(u)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \times\left(\begin{array}{c}
u_{0}{ }^{2} \\
u_{0} u_{1} \\
u_{0} u_{2} \\
u_{2}{ }^{2}
\end{array}\right)
$$

$\widetilde{\mathcal{P}}_{\mathrm{s}}$ and μ_{s} depend only on the type of the camera.

$$
\widetilde{P}_{\mathrm{s}} \times \mu_{\mathrm{s}}(u)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \times\left(\begin{array}{c}
u_{0}{ }^{2} \\
u_{0} u_{1} \\
u_{0} u_{2} \\
u_{1}{ }^{2}+u_{2}{ }^{2}
\end{array}\right)
$$

Linear oblique camera

Normalized coordinates

Also for pinhole cameras!

$$
\widetilde{P}_{\mathrm{s}} \times \mu_{\mathrm{s}}(u)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \times\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right)
$$

Normalized coordinates

Calibration

\star position of the camera in the world $\rightarrow W$

\star position of the captor lattice in the retina $\rightarrow K$
retina coordinates

$$
\text { in }\left(p^{0}, p^{1}, p^{2}\right)
$$

invertible
3×3 matrix
physical / pixel coordinates

Normalized coordinates

Calibration

\star position of the camera in the world $\rightarrow W$

* position of the captor lattice in the retina $\rightarrow K$

$$
\begin{aligned}
& \text { retina coordinates } \\
& \text { in }\left(p^{0}, p^{1}, p^{2}\right)
\end{aligned}
$$

$\xrightarrow{3 \times 3 \text { matrix } \rightarrow}$| physical / pixel |
| :---: |
| coordinates |

$$
\pi_{i}(u)=\left(\Lambda^{2} W\right) \widetilde{\mathcal{P}}_{\mathrm{s}} \times \mu_{\mathrm{s}}\left(K^{-1} u\right)
$$

$\Lambda^{2} W$ is a 6×6 matrix encoding the action of W on lines.

Essential matrix

Image coordinates u and u^{\prime} are in stereo correspondance

$$
\pi_{i}(u) \odot \pi_{i}\left(u^{\prime}\right)=0
$$

$$
\mu_{\mathrm{s}}\left(K^{-1} u\right)^{T} \quad \widetilde{\mathcal{P}}_{\mathrm{s}}^{T} \Lambda^{2} W^{T}\left(\Lambda^{2} W^{\prime}\right)^{*}\left(\widetilde{\mathcal{P}}_{\mathrm{s}}^{\prime}\right)^{*} \quad \mu_{\mathrm{s}}\left(K^{\prime-1} u^{\prime}\right)=0
$$

4×4 essential matrix
15 correspondances needed

Euclidean framework

Exactly the same machinery

Only 6 correspondances needed to build \mathcal{E}

Need orthonormal normalized basis $\left(p^{0}, p^{1}, p^{2}, p^{3}\right)$

Induce more involved intrinsic parameters

Linear
Congruences
Grassmannian Sections

Admissible Maps

6×6 fundamental matrix (uncalibrated case) 4×4 essential matrix (calibrated case) between $A N Y$ pair of linear cameras

FURTHER QUESTIONS

What are the positions of the retina that minimize the distorsions of the image?

Do algebraic line congruences suggest interesting imaging devices? Can they admit analogues of admissible maps?

[Pajdla et al.]

Can we get clear pictures from our pencil camera?

Thank you!

[1] J. Ponce, What is a Camera?, CVPR'09
[2] G. B., X. Goaoc, J. Ponce, Admissible Linear Map Model for Linear Cameras, CVPR'10
[3] The "linear camera" model (in preparation)

Pencil camera

Synthesis

	projective linear camera	euclidean linear camera	euclidean pinhole camera
extrinsic parameters	15	6	6
intrinsic parameters	6	12	5
fundamental matrix	27		7

Linearity on lines

Geometric axiomatisation
 [Veblen\&Young,1910] for linear dependance

Initialisation

two lines

line pencil

regulus
ℓ depends linearly on $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ iff
Heredity $\exists L \rightarrow \ell_{k+1} \rightarrow \cdots \rightarrow \ell_{k+n}=\ell$
where \rightarrow is a line pencil/regulus construction.

Exemples

degenerate regulus

bundle
(Need 2 line pencil steps)

