On a first-order primal-dual algorithm

Thomas Pock¹ and Antonin Chambolle²

 ¹Institute for Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria
 ²Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France

CMP Colloquium, Prague, 21.10.2010

<ロト (四) (三) (三) (三) 三

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Compi	iter vision	deals wit	h inverse pro	oblems	

- ► In computer vision, we have to determine the model parameters based on observations → inverse problem
- Computer vision problems are typically ill-posed

- ► In computer vision, we have to determine the model parameters based on observations → inverse problem
- Computer vision problems are typically ill-posed

Introduction	A class of problems	The algorithm □□□□□	Performance evaluation	Applications	Conclusion
Regula	rization				

How to infer a physically meaningful solution?

Introduction	A class of problems	The algorithm □□□□□	Performance evaluation	Applications	Conclusion
Regula	rization				

- How to infer a physically meaningful solution?
- Idea is to introduce a certain smoothness assumption on the solution

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Regula	rization				

- How to infer a physically meaningful solution?
- Idea is to introduce a certain smoothness assumption on the solution

This leads to the variational approach:

 $\min_{u} \mathcal{R}(u) + \|Ku - f\|,$

Instead of trying to solve the problem exactly, the variational approach tries to find a tradeoff between data fit and smoothness.

Which regularization for images?

- Images exhibit a high degree of spatial coherence
- Given the intensity of some pixel, it is very likely, that its neighboring pixels have the same intensity

<ロ> <同> <同> <同> < 同> < 同>

Which regularization for images?

- Images exhibit a high degree of spatial coherence
- Given the intensity of some pixel, it is very likely, that its neighboring pixels have the same intensity

It turns out that the so-called total variation (TV) is a good candidate for imaging problems

$$\mathcal{R}(u) = \int_{\Omega} |\nabla u| dx$$

 Introduction
 A class of problems
 The algorithm
 Performance evaluation
 Applications
 Conclusion

 Why to pose the inverse problem as an optimization problem?
 Conclusion
 Conclusion
 Conclusion

- Nature solves optimization problems all the time
- **Example:** Soapfilms, Trees, ...

A class of problems The algorithm Introduction

Performance evaluation

Applications

Conclusion

Why to pose the inverse problem as an optimization problem?

- Nature solves optimization problems all the time
- **Example:** Soapfilms, Trees, ...

Introduction

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Why to pose the inverse problem as an optimization problem?

- Nature solves optimization problems all the time
- Example: Soapfilms, Trees, ...

Introduction

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Why to pose the inverse problem as an optimization problem?

- Nature solves optimization problems all the time
- Example: Soapfilms, Trees, ...

- Many laws of nature are nothing but optimality conditions
- Often expressed in terms of a minimum energy principle

A general mathematical optimization problem it can be written as:

s.t. $f_i(x) \leq 0$, $i = 1 \dots m$ $x \in S$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and S is a subset of \mathbb{R}^n

イロン イボン イヨン イヨン 三日

How to solve this problem?

A general mathematical optimization problem it can be written as:

 $\begin{array}{ll} \min f_0(x) \\ \text{s.t.} \quad f_i(x) \leq 0 \ , \quad i = 1 \dots m \\ x \in \mathcal{S} \ , \end{array}$

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and S is a subset of \mathbb{R}^n

イロン イボン イヨン イヨン 三日

How to solve this problem?

Naive: "Download a commercial package ..."

A general mathematical optimization problem it can be written as:

 $\begin{array}{ll} \min f_0(x) \\ \text{s.t.} \quad f_i(x) \leq 0 \ , \quad i = 1 \dots m \\ x \in \mathcal{S} \ , \end{array}$

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and S is a subset of \mathbb{R}^n

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"

A general mathematical optimization problem it can be written as:

 $\begin{array}{ll} \min f_0(x) \\ \text{s.t.} \quad f_i(x) \leq 0 \ , \quad i = 1 \dots m \\ x \in \mathcal{S} \ , \end{array}$

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and S is a subset of \mathbb{R}^n

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"

"Optimization problems are unsolvable" [Nesterov '04]

Complexity bounds for global optimization (1)

• Consider the problem class C_0 [Nesterov '04]

 $\min_{x\in\mathcal{B}_n}f(x)\;,$

where \mathcal{B}_n is the *n*-dimensional unit box defined by

 $\mathcal{B}_n = \{ x \in \mathbb{R}^n : 0 \le x_i \le 1, \ i = 1...n \}$

イロン イヨン イヨン イヨン

Complexity bounds for global optimization (1)

• Consider the problem class C_0 [Nesterov '04]

 $\min_{x\in\mathcal{B}_n}f(x)\;,$

where \mathcal{B}_n is the *n*-dimensional unit box defined by

 $\mathcal{B}_n = \{ x \in \mathbb{R}^n : 0 \le x_i \le 1, \ i = 1...n \}$

► What is the lower complexity bound to find an *ε* - approximate solution?

Complexity bounds for global optimization (2)

A remark on Lipschitz continuity: A function f(x) is called Lipschitz continuous on \mathcal{B}_n if

 $|f(x) - f(y)| \le L ||x - y||_{\infty}, \ \forall x, y \in \mathcal{B}_n,$

where the constant L is an upper bound to the maximum steepness of $f(\boldsymbol{x})$

イロン イボン イヨン イヨン 三日

Complexity bounds for global optimization (2)

A remark on Lipschitz continuity: A function f(x) is called Lipschitz continuous on \mathcal{B}_n if

 $|f(x) - f(y)| \le L ||x - y||_{\infty}, \ \forall x, y \in \mathcal{B}_n,$

where the constant L is an upper bound to the maximum steepness of $f(\boldsymbol{x})$

► Theorem [Nesterov '04]

For $\frac{1}{2}L > \varepsilon > 0$, the complexity of a zero-order method to find an ε - approximate solution of the problem class C_0 is at least

$$\left(\left\lfloor\frac{L}{2\varepsilon}\right\rfloor\right)^n$$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- ▶ Consider a general optimization problem with n = 10 unknowns and a moderate Lipschitz constant of L = 2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- \blacktriangleright Consider a general optimization problem with n=10 unknowns and a moderate Lipschitz constant of L=2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$
- ▶ Results in at least 10^{20} function calls, that is, $31\,250\,000$ years on a workstation!

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- ▶ Consider a general optimization problem with n = 10 unknowns and a moderate Lipschitz constant of L = 2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$
- ▶ Results in at least 10²⁰ function calls, that is, 31 250 000 years on a workstation!
- If we change n to n+1 the estimate is multiplied by $1/\varepsilon=100$ and hence would take much longer

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- \blacktriangleright Consider a general optimization problem with n=10 unknowns and a moderate Lipschitz constant of L=2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$
- ▶ Results in at least 10²⁰ function calls, that is, 31 250 000 years on a workstation!
- ▶ If we change n to n+1 the estimate is multiplied by $1/\varepsilon = 100$ and hence would take much longer
- \blacktriangleright Contrary, if we change ε to 8% we would need only two weeks

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- \blacktriangleright Consider a general optimization problem with n=10 unknowns and a moderate Lipschitz constant of L=2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$
- ▶ Results in at least 10²⁰ function calls, that is, 31 250 000 years on a workstation!
- ▶ If we change n to n+1 the estimate is multiplied by $1/\varepsilon = 100$ and hence would take much longer
- \blacktriangleright Contrary, if we change ε to 8% we would need only two weeks
- Complexity bounds for higher order methods (gradient descend, Newton, ...) are not much better

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	le				

- ▶ Consider a general optimization problem with n = 10 unknowns and a moderate Lipschitz constant of L = 2
- \blacktriangleright We require an accuracy of let's say $\varepsilon=1\%$
- ▶ Results in at least 10²⁰ function calls, that is, 31 250 000 years on a workstation!
- ▶ If we change n to n+1 the estimate is multiplied by $1/\varepsilon = 100$ and hence would take much longer
- \blacktriangleright Contrary, if we change ε to 8% we would need only two weeks
- Complexity bounds for higher order methods (gradient descend, Newton, ...) are not much better
- Comparison to NP-hard problems: Hard combinatorial problems need 2ⁿ arithmetic operations (only)!

白 ト イヨト イヨト

Introduction

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Convex versus non-convex

Non-convex problems

- Often give more accurate models
- In general no chance to find the global minimizer
- Result strongly depends on the initialization
- Dilemma: Wrong model or wrong algorithm?

Introduction

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Convex versus non-convex

Convex problems

- Convex models often inferior
- Any local minimizer is a global minimizer
- Result is independent of the initialization
- Note: Convex does not mean easy!

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
A class	s of probler	ns			

Let us consider the following class of structured convex optimization problems [Chambolle, Pock '10]

 $\min_{x\in X}F(Kx)+G(x)\;,$

- K: X → Y is a linear and continuous operator from a Hilbert space X to a Hilbert space Y.
- ► F, G are "simple" convex, proper, l.s.c. functions, and hence easy to compute prox operator:

$$(1 + \tau \partial F)^{-1}(z) = \arg \min_{x} \frac{\|x - z\|^2}{2\tau} + F(x)$$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
A class	of probler	ns			

Let us consider the following class of structured convex optimization problems [Chambolle, Pock '10]

 $\min_{x\in X}F(Kx)+G(x)\;,$

- K: X → Y is a linear and continuous operator from a Hilbert space X to a Hilbert space Y.
- ► *F*, *G* are "simple" convex, proper, l.s.c. functions, and hence easy to compute prox operator:

$$(1 + \tau \partial F)^{-1}(z) = \arg \min_{x} \frac{\|x - z\|^2}{2\tau} + F(x)$$

It turns out that many low-level vision problems can be cast in this framework.

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion		
Primal, dual, primal-dual							

Recall the convex conjugate:

$$F^*(p^*) = \max_p \langle p, p^* \rangle - F(p) ,$$

we can transform our initial problem [Rockafellar '70]

 $\min_{x \in X} F(Kx) + G(x) \quad (\mathsf{Primal})$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion	
Primal, dual, primal-dual						

Recall the convex conjugate:

$$F^*(p^*) = \max_p \langle p, p^* \rangle - F(p) ,$$

we can transform our initial problem [Rockafellar '70]

 $\min_{x \in X} F(Kx) + G(x) \quad (\mathsf{Primal})$

 $\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + G(x) - F^*(y) \quad \text{(Primal-Dual)}$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion	
Primal, dual, primal-dual						

Recall the convex conjugate:

$$F^*(p^*) = \max_p \langle p, p^* \rangle - F(p) ,$$

we can transform our initial problem [Rockafellar '70]

 $\min_{x \in X} F(Kx) + G(x) \quad (\mathsf{Primal})$

 $\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + G(x) - F^*(y) \quad (\mathsf{Primal-Dual})$

$$\max_{y \in Y} - (F^*(y) + G^*(-K^*y)) \quad (\mathsf{Dual})$$

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Primal	, dual, prin	nal-dual			

Recall the convex conjugate:

$$F^*(p^*) = \max_p \langle p, p^* \rangle - F(p) ,$$

we can transform our initial problem [Rockafellar '70]

 $\min_{x \in X} F(Kx) + G(x) \quad (\mathsf{Primal})$

 $\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + G(x) - F^*(y) \quad (\mathsf{Primal-Dual})$

$$\max_{y \in Y} - (F^*(y) + G^*(-K^*y)) \quad (\mathsf{Dual})$$

Allows to compute the so-called primal-dual gap:

 $\mathcal{G}(x,y) = [F(Kx) + G(x)] + [F^*(y) + G^*(-K^*y)],$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion		
Optimality conditions							

We focus on the primal-dual formulation:

$$\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + G(x) - F^*(y)$$

We assume, there exists a saddle-point $(\hat{x}, \hat{y}) \in X \times Y$ which satisfies the Euler-Lagrange equations

 $\begin{cases} K\hat{x} - \partial F^*(\hat{y}) \ \ni \ 0\\ K^*\hat{y} + \partial G(\hat{x}) \ \ni \ 0 \end{cases}$

Example for a saddle-point of a convex-concave function , $\sum_{n=1}^{\infty} \sqrt{n}$

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion

First-order versus second-order methods

First order methods

- Some even work in case of non-smoothness
- Need only first order derivatives
- More iterations but the cost of one iteration is low
- Second order methods
 - Need some smoothness in the function
 - Need first and second order derivatives and need to invert the Hessian matrix
 - Fewer iterations but the cost and memory per iterations is huge

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion

First-order versus second-order methods

First order methods

- Some even work in case of non-smoothness
- Need only first order derivatives
- More iterations but the cost of one iteration is low
- Second order methods
 - Need some smoothness in the function
 - Need first and second order derivatives and need to invert the Hessian matrix
 - Fewer iterations but the cost and memory per iterations is huge
- What do we call an iteration?

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Conver	rgence rate	S			

$$\mu = \lim_{n \to \infty} \frac{\|x^{n+1} - \hat{x}\|}{\|x^n - \hat{x}\|}$$

sublinear convergence linear convergence superlinear convergence

$$\begin{array}{ll} \text{if} & \mu = 1 \\ \text{if} & \mu \in (0,1) \\ \text{if} & \mu = 0 \end{array} \end{array}$$

Introduction	A class of problems	The algorithm □□□□□	Performance evaluation	Applications	Conclusion
Conve	rgence rate	S			

$$\mu = \lim_{n \to \infty} \frac{\|x^{n+1} - \hat{x}\|}{\|x^n - \hat{x}\|}$$

sublinear convergence if $\mu = 1$ linear convergence if $\mu \in (0, 1)$ superlinear convergence if $\mu = 0$

Lower bound for black-box oriented first-order methods: $O(1/\sqrt{N})$ [Nemirovski '83]

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Conver	gence rate	S			

$$\mu = \lim_{n \to \infty} \frac{\|x^{n+1} - \hat{x}\|}{\|x^n - \hat{x}\|}$$

 $\begin{array}{ll} \text{sublinear convergence} & \text{if} & \mu = 1 \\ \text{linear convergence} & \text{if} & \mu \in (0,1) \\ \text{superlinear convergence} & \text{if} & \mu = 0 \\ \end{array}$

- Lower bound for black-box oriented first-order methods: O(1/\sqrt{N})[Nemirovski '83]
- ► Lower bound for any first-order method exploiting the structure of the problem: *O*(1/*N*) [Nesterov '04]

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Conver	gence rate	S			

$$\mu = \lim_{n \to \infty} \frac{\|x^{n+1} - \hat{x}\|}{\|x^n - \hat{x}\|}$$

 $\begin{array}{ll} \text{sublinear convergence} & \text{if} & \mu = 1 \\ \text{linear convergence} & \text{if} & \mu \in (0,1) \\ \text{superlinear convergence} & \text{if} & \mu = 0 \\ \end{array}$

- Lower bound for black-box oriented first-order methods: $O(1/\sqrt{N})$ [Nemirovski '83]
- ► Lower bound for any first-order method exploiting the structure of the problem: O(1/N) [Nesterov '04]
- Note that this does not mean that there does not exist some other first order algorithm which is faster on a sub-class of problems

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Standa	rd approad	ches			

- Classical Arrow-Hurwicz method [Arrow-Hurwicz, '58]
- Proximal-point algorithm [Martinet '70, Rockafellar '76]
- Douglas-Rachford splitting [Mercier,Lions '79]
- Extragradient-methods [Korpelevich '76, Popov '80]
- Nesterov's smoothing method [Nesterov '03]

Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Forward-backward splitting

► Consider the problem min_x f₁(x) + f₂(x), where f₁(x) is a convex function and f₂(x) is a convex function with L-Lipschitz continuous gradient ∇f₂, i.e.

 $\|\nabla f_2(x) - \nabla f_2(y)\| \le L \|x - y\|, \forall x, y \in \mathsf{dom}(f_2)$

It can be shown that a minimizer can be characterized by the fixed point equation [Combettes, Pesquet '05]

$$x = (I + \tau \partial f_1)^{-1} (x - \tau \nabla f_2(x))$$

▶ Note: This is exactly the case for our saddle-point formulation $\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + G(x) - F^*(y)$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
The al	gorithm				

- ▶ Initialization: Choose $\tau, \sigma > 0$, $\theta \in [0, 1]$, $(x^0, y^0) \in X \times Y$ and set $\bar{x}^0 = x^0$.
- Iterations $(n \ge 0)$: Update x^n, y^n, \bar{x}^n as follows:

$$\begin{cases} y^{n+1} = (I + \sigma \partial F^*)^{-1} (y^n + \sigma K \bar{x}^n) \\ x^{n+1} = (I + \tau \partial G)^{-1} (x^n - \tau K^* y^{n+1}) \\ \bar{x}^{n+1} = x^{n+1} + \theta (x^{n+1} - x^n) \end{cases}$$

The algorithm has been first presented in a less general setting where G, F^* are restricted to indicator functions, by [Pock, Cremers, Bischof, Chambolle, ICCV'09]

Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Convergence of the algorithm

Theorem [Chambolle, Pock '10] Let L = ||K|| choose $\theta = 1$, $\tau \sigma L^2 < 1$ and let (x^n, \bar{x}^n, y^n) be defined as in Algorithm 1.

- (a) If the dimension of the spaces X and Y is finite, then there exists a saddle-point (\hat{x}, \hat{y}) such that $x^n \to \hat{x}$ and $y^n \to \hat{y}$ as $n \to \infty$.
- (b) If we let $x_N = (\sum_{n=1}^N x^n)/N$ and $y_N = (\sum_{n=1}^N y^n)/N$, one has for all (x,y)

$$\begin{aligned} [\langle Kx_N, y \rangle - F^*(y) + G(x_N)] - [\langle Kx, y_N \rangle - F^*(y_N) + G(x)] \\ &\leq \frac{1}{N} \left(\frac{\|y - y^0\|^2}{2\sigma} + \frac{\|x - x^0\|^2}{2\tau} \right) \end{aligned}$$

Moreover, the weak cluster points (x_N, y_N) are saddle points

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Conve	rgence rate	s			

The algorithm gives optimal convergence rates on different subclasses by optimal choices on τ , σ , and θ .

- Completely non-smooth problem: O(1/N) for the gap
- \blacktriangleright Objective function sum of a smooth and a non-smooth function: $O(1/N^2)$ for the error $\|x-x^*\|^2$
- \blacktriangleright Objective function completely smooth: $O(\omega^N),\,\omega<1$ for the error $\|x-x^*\|^2$

Proofs can be found in [Chambolle, Pock '10]

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Paralle	l computin	ıg?			

- The algorithm basically alternates updates of the primal and the dual variables.
- For most images, x and y are defined on a regular grid.

- Each iteration of the algorithm can be done fully in parallel
- The processor of my dreams would look like this:

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Paralle	l computin	ıg?			

- The algorithm basically alternates updates of the primal and the dual variables.
- ▶ For most images, x and y are defined on a regular grid.

- Each iteration of the algorithm can be done fully in parallel
- The processor of my dreams would look like this:
 - One simple processor for each pixel

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Paralle	l computin	g?			

- The algorithm basically alternates updates of the primal and the dual variables.
- For most images, x and y are defined on a regular grid.

- Each iteration of the algorithm can be done fully in parallel
- The processor of my dreams would look like this:
 - One simple processor for each pixel
 - Each processor has a small amount of local memory

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Paralle	l computin	g?			

- The algorithm basically alternates updates of the primal and the dual variables.
- For most images, x and y are defined on a regular grid.

- Each iteration of the algorithm can be done fully in parallel
- The processor of my dreams would look like this:
 - One simple processor for each pixel
 - Each processor has a small amount of local memory
 - Each processor can inter-change data with its neighboring processors

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Paralle	l computin	ıg?			

- The algorithm basically alternates updates of the primal and the dual variables.
- For most images, x and y are defined on a regular grid.

- Each iteration of the algorithm can be done fully in parallel
- The processor of my dreams would look like this:
 - One simple processor for each pixel
 - Each processor has a small amount of local memory
 - Each processor can inter-change data with its neighboring processors
- We have to think parallel from scratch!

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
ROF d	enoising				

Consider the ROF model for image denoising

$$\min_{u} \|\nabla u\|_{2,1} + \frac{\lambda}{2} \|u - g\|_2^2$$

Is the sum of a non-smooth and a sum function

(a) Clean

(b) Noisy

(c) Denoised

Example image used in the performance evaluation

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Compa	rison				

	λ	= 16	$\lambda = 8$		
	$\varepsilon = 10^{-4}$ $\varepsilon = 10^{-6}$		$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-6}$	
PD	108 (1.95s)	937 (14.55s)	174 (2.76s)	1479 (23.74s)	
AHZC	65 (0.98s)	634 (9.19s)	105 (1.65s)	1001 (14.48s)	
FISTA	107 (2.11s)	999 (20.36s)	173 (3.84s)	1540 (29.48s)	
NEST	106 (3.32s)	1213 (38.23s)	174 (5.54s)	1963 (58.28s)	
ADMM	284 (4.91s)	25584 (421.75s)	414 (7.31s)	33917 (547.35s)	
PGD	620 (9.14s)	58804 (919.64s)	1621 (23.25s)	_	
CFP	1396 (20.65s)		3658 (54.52s)	_	

- Arrow Hurwicz method performs best but can not be shown to converge within $O(1/N^2)$.
- ▶ PD performs slightly worse but still better than established $O(1/N^2)$ methods such as FISTA and Nesterov.

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Conver	rgence				

ъ

Convergence of the top-performing methods for ROF model

The $TV - L^1$ model is given by

```
\min_{u} \|\nabla u\|_{2,1} + \lambda \|u - g\|_1 \; .
```

This problem is completely non-smooth.

(a) Clean image (b) Noisy image (c) ROF

(d) TV- L^1

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ○○○

Example image used in the performance evaluation

Intro	οdι	ıcti	on

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Comparison

	$\lambda = 1.5$		
	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$	
PD	187 (15.81s)	421 (36.02s)	
ADMM	385 (33.26s)	916 (79.98s)	
EGRAD	2462 (371.13s)	8736 (1360.00s)	
NEST	2406 (213.41s)	15538 (1386.95s)	

- PD performs best, ADMM reasonable well
- Nesterov's smoothing method seems to perform quite worse
- \blacktriangleright Paradoxically, it seems that for this example, our algorithm converges with $O(1/N^2)$ for the function value

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Conver	gence				

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Huber	denoising				

The Huber model is given by

$$\min_{u} \|\nabla u\|_{\alpha} + \frac{\lambda}{2} \|u - g\|^2 .$$

where

$$F(y) = \|y\|_{\alpha} = \sum_{i,j} |\vec{y}_{i,j}|_{\alpha}$$

and

$$|\vec{p}|_{\alpha} = \begin{cases} rac{|p|^2}{2lpha} & \text{if } |p| \le lpha \\ |p| - rac{lpha}{2} & ext{else.} \end{cases}$$

This model is smooth in both terms.

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

Comparison

Comparison between the ROF model and the Huber-ROF model

	$\lambda = 5, \alpha = 0.05$		
	$\varepsilon = 10^{-15}$		
PD	187 (3.85s)		
NEST	248 (5.52s)		

► PD performs quite well in comparison to a restarted variant of Nesterov's O(1/N²) method.

Linear convergence of PD and NEST for the Huber-ROF model. Note that after approximately 200 iterations, PD reaches machine

 Introduction
 A class of problems
 The algorithm
 Performance evaluation
 Applications
 Conclusion

 General structural sparsity
 Conclusion
 Conclusion
 Conclusion
 Conclusion

- \blacktriangleright It is well known that ℓ_1 norm minimization leads to sparse solutions
- Total variation is probably the most simple example of structural sparsity
- \blacktriangleright Straight foward to replace ∇ by a better model, e.g. a wavelet or curvelet transform Ψ

$$\min_{u \in X} \|\Psi u\|_1 + \frac{\lambda}{2} \|u - g\|_2^2 \,,$$

A class of problems

The algorithm

Performance evaluation

Applications

・ロン ・四と ・日と ・日と

크

Conclusion

TV versus wavelet denoising

Noisy image

A class of problems

The algorithm

Performance evaluation

Applications

・ロン ・四と ・日と ・日と

크

Conclusion

TV versus wavelet denoising

TV denoising

A class of problems

The algorithm

Performance evaluation

Applications

・ロト ・回ト ・ヨト ・ヨト

크

Conclusion

TV versus wavelet denoising

DTCWT denoising

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

TV versus curvelet inpainting

Original image

A class of problems

The algorithm

Performance evaluation

Applications

Conclusion

TV versus curvelet inpainting

80 % lost lines

A class of problems

The algorithm

Performance evaluation

Applications

イロト イヨト イヨト イヨト

크

Conclusion

TV versus curvelet inpainting

TV inpainting

A class of problems

The algorithm

Performance evaluation

Applications

イロト イヨト イヨト イヨト

크

Conclusion

TV versus curvelet inpainting

Curvelet inpainting

Introduction A class of problems The algorithm Performance evaluation Applications Conclusion

Computing minimal Partitions

▶ The "continuous" Potts model

$$\min_{E_l} \left\{ \frac{1}{2} \sum_{l=1}^k \operatorname{Per}(E_l; \Omega) + \sum_{l=1}^k \int_{E_l} f_l(x) \, dx \right\},\,$$

such that
$$\bigcup_{l=1}^{k} E_l = \Omega$$
, $E_s \cap E_t = \emptyset \ \forall s \neq t$,

- Minimizes the total interface length (area) of the partitioning subject to some given external fields f_l
- Convex representation using labeling functions θ_l

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Convex	relaxation]			

Different choices have been proposed

 The most straight-forward relaxation has been proposed in [Zach, Gallup, Frahm, Niethammer '08]

$$\mathcal{J}_1(\theta) = \frac{1}{2} \sum_{l=1}^k \int_{\Omega} |D\theta_l|$$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion				
Convex relaxation									

Different choices have been proposed

 The most straight-forward relaxation has been proposed in [Zach, Gallup, Frahm, Niethammer '08]

$$\mathcal{J}_1(\theta) = \frac{1}{2} \sum_{l=1}^k \int_{\Omega} |D\theta_l|$$

 A tighter relaxation using a local envelope approach has been proposed in [Chambolle, Cremers, Pock '08]

$$\mathcal{J}_{2}(\theta) = \int_{\Omega} \Psi(D\theta),$$

$$\Psi(p) = \sup_{q} \left\{ \sum_{l=1}^{k} \langle p_{l}, q_{m} \rangle : |q_{l} - q_{m}| \le 1, \ 1 \le l < m \le k \right\}$$

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion			
Comparison								

A comparison using the "triple-junction" problem

Input

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	les				

The "4-label" problem

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Examp	les				

The "4-label" problem

(ロ) (四) (注) (注) (注) (注)

Note that the minimizer is composed of two "triple-junctions"

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Examp	les				

White/gray matter segmentation of the brain with k = 4 labels

Examples	Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
	Evamo					

Piecewise constant Mumford-Shah segmentation with k = 16 labels

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Examp	les				

The "triple-junction" problem in 3D

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Examp	les				

Disparity estimation using the Potts model, simply use a different data term: $f_l(x) = |I_{\text{left}}(x) - I_{\text{right}}(x + \text{disp}_l)|$

Tsukuba data set, 64 labels, 300 it, 7.7s on a Tesla GPU

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Examp	les				

Disparity estimation using the Potts model, simply use a different data term: $f_l(x) = |I_{\text{left}}(x) - I_{\text{right}}(x + \text{disp}_l)|$

Tsukuba data set, 64 labels, 300 it, 7.7s on a Tesla GPU

Teddy data set, 256 labels, 300 it, 175,6s on a Tesla GPU

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
TV - L^1	optical flo	W			

Optical Flow is an important topic in computer vision [Horn, Schunck, '81]

A typical formulation is given by [Chambolle, Pock '10]

 $\min_{u \in X, v \in Y} \|\nabla v\|_1 + \mu \|\nabla u\|_1 + \lambda \|\rho(u, v)\|_1 ,$

• $u: \Omega \to \mathbb{R}$ models the illumination changes

- $v = (v_1, v_2)^T : \Omega \to \mathbb{R}^2$ is the motion field
- ▶ $\rho(u, v) = I_t + (\nabla I)^T (v v^0) + u$ is the optical flow constraint, explicitly modeling additive illumination changes.

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
TV - L^1	optical flo	W			

Optical Flow is an important topic in computer vision [Horn, Schunck, '81]

A typical formulation is given by [Chambolle, Pock '10]

 $\min_{u \in X, v \in Y} \|\nabla v\|_1 + \mu \|\nabla u\|_1 + \lambda \|\rho(u, v)\|_1 ,$

• $u: \Omega \to \mathbb{R}$ models the illumination changes

- $v = (v_1, v_2)^T : \Omega \to \mathbb{R}^2$ is the motion field
- ▶ $\rho(u, v) = I_t + (\nabla I)^T (v v^0) + u$ is the optical flow constraint, explicitly modeling additive illumination changes.

The problem is completely non-smooth.

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Realti	me implem	entation			

- Optical flow constraint is only valid in a small neighborhood of v_0
- Algorithm has to be integrated into a coarse-to-fine / warping framework
- ► GPU-implementation yields real-time performance (> 30 fps) for 640 × 480 images using a recent Nvidia graphics card

(a) Input

(b) Ground truth

(c) Estimated

motion

(d) Illumination

TV- L^1 optical flow for a sequence of the Middlebury optical flow benchmark

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion
Summ	ary & futu	re work			

- First-order primal-dual algorithm for a class of convex optimization problems
- Easy to implement, easy to parallelize

. . .

- Matches optimal convergence rates on several subclasses
- Preconditioning of the algorithm for badly scaled problems
- Convergence rates on standard problems, e.g. LP, SOCP
- Further exploit the intrinsic parallelism of variational problems
- ► Application to machine learning problems, e.g. SVM, LPBoost,

Introduction	A class of problems	The algorithm □───	Performance evaluation	Applications	Conclusion
Summ	ary & futu	re work			

- First-order primal-dual algorithm for a class of convex optimization problems
- Easy to implement, easy to parallelize
- Matches optimal convergence rates on several subclasses
- Preconditioning of the algorithm for badly scaled problems
- Convergence rates on standard problems, e.g. LP, SOCP
- Further exploit the intrinsic parallelism of variational problems
- Application to machine learning problems, e.g. SVM, LPBoost, ...

Here is a hammer: Find the nails!

Introduction	A class of problems	The algorithm	Performance evaluation	Applications	Conclusion

Thank you for your attention!

