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For the center of the radial distortion c

L(‖c‖) = L(0) = 1
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Depends on the center of radial distortion c, distortion function L, and on
the distance of the image point to the center of radial distortion r = ‖p‖

For the center of the radial distortion c

L(‖c‖) = L(0) = 1

The distortion function is non-negative on the camera field of view (FOV)
L(r) > 0, for r ∈ [0, rmax]
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Properties of Radial Distortion

Depends on the center of radial distortion c, distortion function L, and on
the distance of the image point to the center of radial distortion r = ‖p‖

For the center of the radial distortion c

L(‖c‖) = L(0) = 1

The distortion function is non-negative on the camera field of view (FOV)
L(r) > 0, for r ∈ [0, rmax]

L(r) as function of distortion

p′ = L(r)p

L′(r) as function of undistortion

p = L′(r)p′
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Radial Distortion Properties of radial distortion

Properties of Radial Distortion

Depends on the center of radial distortion c, distortion function L, and on
the distance of the image point to the center of radial distortion r = ‖p‖

For the center of the radial distortion c

L(‖c‖) = L(0) = 1

The distortion function is non-negative on the camera field of view (FOV)
L(r) > 0, for r ∈ [0, rmax]

L(r) as function of distortion

p′ = L(r)p

L′(r) as function of undistortion

p = L′(r)p′

Radial distortion calibration

Radial distortion calibration is the estimation of c and L, assuming other
camera properties stay the same.
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Radial Distortion Radial distortion calibration

Radial Distortion Calibration
Distortion model L(r)

Polular choice: polynomial and rational functions (OpenCV, ...)

L(r , k) =
f (r , k)

g(r , k)
=

1 + k1r + k2r2 + k3r3

1 + k4r + k5k2 + k6r3
, k ∈ R

6.
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Radial Distortion Calibration
Distortion model L(r)

Polular choice: polynomial and rational functions (OpenCV, ...)

L(r , k) =
f (r , k)

g(r , k)
=

1 + k1r + k2r2 + k3r3

1 + k4r + k5k2 + k6r3
, k ∈ R

6.

Radial distortion calibration as a part of camera calibration

qij = RiXj + ti ,
pij = (qx

ij , q
y
ij)

⊤/qz
ij ,

p′
ij = L(‖pij‖ , k)pij ,

eij = (uij , 1)⊤ − K(p′
ij , 1)⊤.







⇒

min C(K, Ri , ti , k) =
∑

i,j ‖eij‖
2

1. Initial parameter estimation
2. Local optimization (L-M)
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=

1 + k1r + k2r2 + k3r3

1 + k4r + k5k2 + k6r3
, k ∈ R

6.

Radial distortion calibration as a part of camera calibration

qij = RiXj + ti ,
pij = (qx

ij , q
y
ij)

⊤/qz
ij ,

p′
ij = L(‖pij‖ , k)pij ,

eij = (uij , 1)⊤ − K(p′
ij , 1)⊤.







⇒

min C(K, Ri , ti , k) =
∑

i,j ‖eij‖
2

1. Initial parameter estimation
2. Local optimization (L-M)

Radial distortion calibration as a part of homography estimation

qi = Hxi ,
pi = (qx

i , q
y
i )⊤/qz

i ,
p′

i = L(‖pi‖ , k)pi ,
ei = ui − (p′

i + c).







⇒

min H(H, c, k) =
∑

i ‖ei‖
2

1. Initial parameter estimation
2. Local optimization (L-M)
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Camera calibration min C(K, Ri , ti , k) with rational model L(r) = f (r)
g(r)
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Homography estimation min H(H, c, k) with rational model L(r) = f (r)
g(r)
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Full FOV       �
Limited FOV

Zero-crossing problem

Lf (r) =
1+1.59 r−0.13 r2−0.00872 r3

1+1.6 r+1.13 r2+0.681 r3
=

−0.00872

0.681

(r−131)(r+0.698±0.622i)

(r+1.15)(r+0.514±1.07i)

Ll(r) =
1−0.218 r−0.145 r2−0.048 r3

1−0.227 r+0.191 r2−0.244 r3
=

−0.0478

−0.244

(r−1.682)(r+2.35±2.63i)

(r−1.678)(r+0.449±1.5i)
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Full FOV       �
Limited FOV

Zero-crossing problem – correction

Lf (r) =
1+1.59 r−0.13 r2−0.00872 r3

1+1.6 r+1.13 r2+0.681 r3
=

−0.00872

0.681

(r−131)(r+0.698±0.622i)

(r+1.15)(r+0.514±1.07i)

Ll(r) =
1+0.111 r+0.0546 r2−0.00805 r3

1+0.118 r+0.342 r2−0.0144 r3
=

−0.00805

−0.0144

(r+7.25)(r−0.231±0.4.13i)

(r−24.2)(r+0.228±1.68i)



Camera calibration min C(K, Ri , ti , k) with polynomial model
L(r) = f (r) = 1 + rk1 + r2k2 + r3k3
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Rational model       �
Polynomial model



.



.



0 1 2 3 4 5

0

1

2

3

 

 

Rational model       �
Polynomial model
Constrained model



Stable radial distortion calibration Problem of stabilizing radial distortion function L

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet
provide sufficient fitting power for wide range or distortions.

− Several extrapolation issues arise, mainly for wide angle cameras.
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→ Enforcing prior knowledge about the overall shape of L.
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Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet
provide sufficient fitting power for wide range or distortions.

− Several extrapolation issues arise, mainly for wide angle cameras.

Solution

→ Enforcing prior knowledge about the overall shape of L.

Minimization constrained by polynomials non-negative on an interval

min f (x) =⇒
min f (x)

subject to pi(yi , x) ≥ 0 for yi ∈ [ai , bi ], i = 1, . . . , n.
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Stable radial distortion calibration Problem of stabilizing radial distortion function L

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet
provide sufficient fitting power for wide range or distortions.

− Several extrapolation issues arise, mainly for wide angle cameras.

Solution

→ Enforcing prior knowledge about the overall shape of L.

Minimization constrained by polynomials non-negative on an interval

min f (x) =⇒
min f (x)

subject to pi(yi , x) ≥ 0 for yi ∈ [ai , bi ], i = 1, . . . , n.

Stabilized radial distortion calibration example

min C(K, Ri , ti , k) =⇒
min C(K, Ri , ti , k)

subject to f (r) − 1 ≥ 0 for r ∈ [0, rmax],
g(r) − 1 ≥ 0 for r ∈ [0, rmax].
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Stable radial distortion calibration Markov-Lukacs Theorem

Representation of polynomials

Univariate polynomials

An univariate polynomial p(x) ∈ Rn [x] of degree n ∈ N is a real function

p(x) = pnxn + pn−1xn−1 + · · · + p1x + p0 = p⊤ψn(x),

where p = (p0, p1, . . . , pn)⊤ ∈ R
n+1 and ψn(x) is the canonical basis

ψn(x) = (1, x, x2, . . . , xn)⊤.
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p(x) = pnxn + pn−1xn−1 + · · · + p1x + p0 = p⊤ψn(x),

where p = (p0, p1, . . . , pn)⊤ ∈ R
n+1 and ψn(x) is the canonical basis

ψn(x) = (1, x, x2, . . . , xn)⊤.

Gram matrix associated with a polynomial

Let q(x) ∈ R2n [x]. A symmetric matrix Q ∈ R
n′×n′

, where n′ = n + 1, is
called Gram matrix associated with q(x) and the basis ψn(x) if

q(x) = ψ⊤

n (x) Qψn(x).
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Representation of polynomials

Univariate polynomials

An univariate polynomial p(x) ∈ Rn [x] of degree n ∈ N is a real function

p(x) = pnxn + pn−1xn−1 + · · · + p1x + p0 = p⊤ψn(x),

where p = (p0, p1, . . . , pn)⊤ ∈ R
n+1 and ψn(x) is the canonical basis

ψn(x) = (1, x, x2, . . . , xn)⊤.

Gram matrix associated with a polynomial

Let q(x) ∈ R2n [x]. A symmetric matrix Q ∈ R
n′×n′

, where n′ = n + 1, is
called Gram matrix associated with q(x) and the basis ψn(x) if

q(x) = ψ⊤

n (x) Qψn(x).

Non-negative polynomials

A polynomial p(x) ∈ Rn [x] is p(x) ≥ 0 for ∀x, iff there exists a Gram

matrix Q assoc. with p(x) such that Q � 0, i.e., Q is positive semidefinite.

J.Heller, D.Henrion, T.Pajdla Stable Radial Distortion Calibration April 9, 2015 32 / 45



Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem
Computationaly efficient characterization of polynomials non-negative on an interval

Let α < β, p(x) ∈ R[x] and deg p(x) = 2n. Then p(x) ≥ 0 for all
x ∈ [α, β] if and only if

p(x) = s(x) + (x − α)(β − x)t(x),

where s(x) = ψ⊤

n (x) Sψn(x), t(x) = ψ⊤

n−1(x) Tψn−1(x), such that
S, T � 0 (S, T, are positive semidefinite Gram matrices of s(x) and t(x)).
If deg p(x) = 2n + 1, then p(x) ≥ 0 for all x ∈ [α, β] if and only if

p(x) = (x − α)s(x) + (β − x)t(x),

where s(x) = ψ⊤

n (x) Sψn(x), t(x) = ψ⊤

n (x) Tψn(x), such that S, T � 0.

NB: Even though M-L theorem is an equivalence, we will only use it as an implication:

as long as we will have matrices S, T � 0, M-L theorem guarantees that p(x) constructed

using these matrices will be nonnegative on a given interval.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the rational model L(r) = f (r)/g(r)

f (r) ≥ 1 and g(r) ≥ 1 for r ∈ [0, r̄ ]
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the rational model L(r) = f (r)/g(r)

f (r) ≥ 1 and g(r) ≥ 1 for r ∈ [0, r̄ ]

Constraint f (r) ≥ 1

According to M-L theorem, f (r) − 1 ≥ 0 for r ∈ [0, r̄ ] iff

f (r)−1 = k1r +k2 r2 +k3 r3 = rψ1(r)⊤S1ψ1(r)+(r̄ −r)ψ1(r)⊤T1ψ1(r),

where S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(

t11 t12

t12 t13

)

� 0.
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Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the rational model L(r) = f (r)/g(r)

f (r) ≥ 1 and g(r) ≥ 1 for r ∈ [0, r̄ ]

Constraint f (r) ≥ 1

According to M-L theorem, f (r) − 1 ≥ 0 for r ∈ [0, r̄ ] iff

f (r)−1 = k1r +k2 r2 +k3 r3 = rψ1(r)⊤S1ψ1(r)+(r̄ −r)ψ1(r)⊤T1ψ1(r),

where S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(

t11 t12

t12 t13

)

� 0.

After expanding and comparing coefficients

k1 = s11 − t11 + 2r̄ t12,
k2 = 2s12 − 2t12 + r̄ t13,
k3 = s13 − t13,
0 = r̄ t11(⇒ t11 = 0).
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Constraint g(r) ≥ 1

According to M-L theorem, g(r) − 1 ≥ 0 for r ∈ [0, r̄ ] iff

g(r)−1 = k4r +k5 r2+k6 r3 = rψ1(r)⊤S2ψ1(r)+(r̄ −r)ψ1(r)⊤T2ψ1(r),

where S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

t21 t22

t22 t23

)

� 0.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Constraint g(r) ≥ 1

According to M-L theorem, g(r) − 1 ≥ 0 for r ∈ [0, r̄ ] iff

g(r)−1 = k4r +k5 r2+k6 r3 = rψ1(r)⊤S2ψ1(r)+(r̄ −r)ψ1(r)⊤T2ψ1(r),

where S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

t21 t22

t22 t23

)

� 0.

After expanding and comparing coefficients

k4 = s21 − t21 + 2r̄ t22,
k5 = 2s22 − 2t22 + r̄ t23,
k6 = s23 − t23,
0 = r̄ t21(⇒ t21 = 0).
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Cost function

min C(K, Ri , ti , k)
H(H, c, k)

substitution

=⇒

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

where k(s, t) = (s11 − t11 + 2r̄ t12, 2s12 − 2t12 + r̄ t13, s13 − t13,
s21 − t21 + 2r̄ t22, 2s22 − 2t22 + r̄ t23, s23 − t23).
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example I
Non-negativity on a interval constraints to positive semidefinite constraints

Cost function

min C(K, Ri , ti , k)
H(H, c, k)

substitution

=⇒

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

where k(s, t) = (s11 − t11 + 2r̄ t12, 2s12 − 2t12 + r̄ t13, s13 − t13,
s21 − t21 + 2r̄ t22, 2s22 − 2t22 + r̄ t23, s23 − t23).

Constraints

f (r) ≥ 1 and g(r) ≥ 1 for r ∈ [0, r̄ ] =⇒

S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(

0 t12

t12 t13

)

� 0,

S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

0 t22

t22 t23

)

� 0.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the polynomial model L(r) = f (r)

f (r) ≥ 0 and f (r) ≤ 1 for r ∈ [0, r̄ ]
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the polynomial model L(r) = f (r)

f (r) ≥ 0 and f (r) ≤ 1 for r ∈ [0, r̄ ]

Constraint f (r) ≥ 0

According to M-L theorem, f (r) ≥ 0 for r ∈ [0, r̄ ] iff

f (r) = 1+k1r +k2 r2 +k3 r3 = rψ1(r)⊤S1ψ1(r)+(r̄ −r)ψ1(r)⊤T1ψ1(r),

where S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(

t11 t12

t12 t13

)

� 0.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraints on the polynomial model L(r) = f (r)

f (r) ≥ 0 and f (r) ≤ 1 for r ∈ [0, r̄ ]

Constraint f (r) ≥ 0

According to M-L theorem, f (r) ≥ 0 for r ∈ [0, r̄ ] iff

f (r) = 1+k1r +k2 r2 +k3 r3 = rψ1(r)⊤S1ψ1(r)+(r̄ −r)ψ1(r)⊤T1ψ1(r),

where S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(

t11 t12

t12 t13

)

� 0.

After expanding and comparing coefficients

k1 = s11 − t11 + 2r̄ t12,
k2 = 2s12 − 2t12 + r̄ t13,
k3 = s13 − t13,
1 = r̄ t11(⇒ t11 = 1

r̄
).
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraint f (r) ≤ 1

According to M-L theorem, f (r) ≤ 1 for r ∈ [0, r̄ ] iff

1−f (r) = −k1r−k2 r2−k3 r3 = rψ1(r)⊤S2ψ1(r)+(r̄−r)ψ2(r)⊤T1ψ1(r),

where S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

t21 t22

t22 t23

)

� 0.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraint f (r) ≤ 1

According to M-L theorem, f (r) ≤ 1 for r ∈ [0, r̄ ] iff

1−f (r) = −k1r−k2 r2−k3 r3 = rψ1(r)⊤S2ψ1(r)+(r̄−r)ψ2(r)⊤T1ψ1(r),

where S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

t21 t22

t22 t23

)

� 0.

After expanding and comparing coefficients

−k1 = s21 − t21 + 2r̄ t22,
−k2 = 2s22 − 2t22 + r̄ t23,
−k3 = s23 − t23,

0 = r̄ t21.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II
Non-negativity on a interval constraints to positive semidefinite constraints

Constraint f (r) ≤ 1

According to M-L theorem, f (r) ≤ 1 for r ∈ [0, r̄ ] iff

1−f (r) = −k1r−k2 r2−k3 r3 = rψ1(r)⊤S2ψ1(r)+(r̄−r)ψ2(r)⊤T1ψ1(r),

where S2 =

(

s21 s22

s22 s23

)

� 0, T2 =

(

t21 t22

t22 t23

)

� 0.

After expanding and comparing coefficients

−k1 = s21 − t21 + 2r̄ t22,
−k2 = 2s22 − 2t22 + r̄ t23,
−k3 = s23 − t23,

0 = r̄ t21.







⇒







s21 = −2r̄ t22 − 2t12r̄ + s11 − 1
r̄
,

s22 = t12 − s12 + t22 − 1
2 r̄ s23−

1
2 r̄ t13 − 1

2 r̄(s13 − t13),
t21 = 0,
t23 = s13 + s23 − t13.
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Stable radial distortion calibration Markov-Lukacs Theorem

Markov-Lukacs Theorem: Example II

Cost function

min C(K, Ri , ti , k)
H(H, c, k)

substitution

=⇒

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

where k(s, t) = (s11 − t11 + 2r̄ t12, 2s12 − 2t12 + r̄ t13, s13 − t13)
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Markov-Lukacs Theorem: Example II

Cost function

min C(K, Ri , ti , k)
H(H, c, k)

substitution

=⇒

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

where k(s, t) = (s11 − t11 + 2r̄ t12, 2s12 − 2t12 + r̄ t13, s13 − t13)

Constraints

f (r) ≥ 0 and f (r) ≤ 0 for r ∈ [0, r̄ ] =⇒

S1 =

(

s11 s12

s12 s13

)

� 0, T1 =

(
1
r̄

t12

t12 t13

)

� 0,

S2 =

(

−2r̄ t22 − 2t12r̄ + s11 − 1
r̄

t12 − s12 + t22 − . . .
t12 − s12 + t22 − . . . s23

)

� 0,

T2 =

(

0 t22

t22 s13 + s23 − t13

)

� 0.
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Stable radial distortion calibration Stable Radial distortion calibration

Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval
1

min f (x)
=⇒

2

min f (x)
subject to pi(yi , x) ≥ 0

for yi ∈ [ai , bi ]

⇐⇒

3

min f (x(s, t))
subject to Si � 0

Ti � 0
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Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval
1

min f (x)
=⇒

2

min f (x)
subject to pi(yi , x) ≥ 0

for yi ∈ [ai , bi ]

⇐⇒

3

min f (x(s, t))
subject to Si � 0

Ti � 0

Solution

Estimate initial parameters

Local opt. (L-M) of 1

Identify Si , Ti based on L

Set Si , Ti = 0

Local opt. (SQP, IP) of 3
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Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval
1

min f (x)
=⇒

2

min f (x)
subject to pi(yi , x) ≥ 0

for yi ∈ [ai , bi ]

⇐⇒

3

min f (x(s, t))
subject to Si � 0

Ti � 0

Solution

Estimate initial parameters

Local opt. (L-M) of 1

Identify Si , Ti based on L

Set Si , Ti = 0

Local opt. (SQP, IP) of 3

Better solution

Estimate initial parameters

Local opt. (L-M) of 1

Identify Si , Ti based on L

Initialize Si , Ti using PMI

Local opt. (SQP, IP) of 3

J.Heller, D.Henrion, T.Pajdla Stable Radial Distortion Calibration April 9, 2015 40 / 45



Stable radial distortion calibration Polynomial matrix inequalities programming

Polynomial matrix inequalities (PMI) programming

Polynomial matrix inequalities optimization problem

Let p0(x) ∈ R[x], Gi ∈ S
ni (R[x]), i = 1, . . . , m and x =∈ R

m . Then the
polynomial matrix inequalities optimization problem has the following form:

min p(x)
subject to Gi(x) � 0, i = 1, . . . , m.
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ni (R[x]), i = 1, . . . , m and x =∈ R

m . Then the
polynomial matrix inequalities optimization problem has the following form:

min p(x)
subject to Gi(x) � 0, i = 1, . . . , m.

Calibration problem with rational L to PMI problem

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

subject to Si(s, t) � 0
Ti(s, t) � 0

relaxation

=⇒

min C(

fixed
︷ ︸︸ ︷

K, Ri , ti , k(s, t))
H(H, c
︸︷︷︸

fixed

, k(s, t))

subject to Si(s, t) � 0
Ti(s, t) � 0
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Stable radial distortion calibration Polynomial matrix inequalities programming

Polynomial matrix inequalities (PMI) programming

Polynomial matrix inequalities optimization problem

Let p0(x) ∈ R[x], Gi ∈ S
ni (R[x]), i = 1, . . . , m and x =∈ R

m . Then the
polynomial matrix inequalities optimization problem has the following form:

min p(x)
subject to Gi(x) � 0, i = 1, . . . , m.

Calibration problem with rational L to PMI problem

min C(K, Ri , ti , k(s, t))
H(H, c, k(s, t))

subject to Si(s, t) � 0
Ti(s, t) � 0

relaxation

=⇒

min C(

fixed
︷ ︸︸ ︷

K, Ri , ti , k(s, t))
H(H, c
︸︷︷︸

fixed

, k(s, t))

subject to Si(s, t) � 0
Ti(s, t) � 0

− Still, typically a non-convex problem with many local minima

− Still, finding the global minimizer x∗ is an NP-hard problem
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Stable radial distortion calibration Polynomial matrix inequalities programming

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001.

D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and

static output feedback, 2006.
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Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001.

D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and

static output feedback, 2006.

Hierarchy of LMI (≡ SDP) programs P1, P2, . . . that produces a
monotonically non-decreasing sequence of lower bounds
p(x∗

1) ≤ p(x∗
2) ≤ . . . on the PMI problem, limi→∞ p(x∗

i ) = p(x∗)

Practically, the series converges to p(x∗) in finitely many steps, i.e.,
there exists j ∈ N, such that p(x∗

j ) = p(x∗)

Tools of linear algebra can be used to detect this finite convergence
and to recover both p(x∗) and x∗
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Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001.

D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and

static output feedback, 2006.

Hierarchy of LMI (≡ SDP) programs P1, P2, . . . that produces a
monotonically non-decreasing sequence of lower bounds
p(x∗

1) ≤ p(x∗
2) ≤ . . . on the PMI problem, limi→∞ p(x∗

i ) = p(x∗)

Practically, the series converges to p(x∗) in finitely many steps, i.e.,
there exists j ∈ N, such that p(x∗

j ) = p(x∗)

Tools of linear algebra can be used to detect this finite convergence
and to recover both p(x∗) and x∗

LMI relaxation Pδ of order δ

min p(x)
s.t. Gi(x) � 0

⇒
min ℓy(p(x))
s.t Mδ−γi

(Gi , y) � 0
Mδ(y) � 0.

∣
∣
∣
∣
∣
∣
∣

ℓy(p(x)) =
∑

α pαyα
Mδ(G, y) = ℓy((ψδ(x)ψ⊤

δ (x)) ⊗ G)

Mδ(y) = ℓy(ψδ(x)ψ⊤

δ (x))
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Stable radial distortion calibration Conclusion

Stable Radial Distortion Calibration for Rational L(r)
Final Breakdown

Estimate initial parameters

Unconstrained nonlinear optimization (lsqnonlin, Ceres, ....)

min C(K, Ri , ti , k), H(H, c, k)

Identify Si , Ti based on the shape of L(r) (by hand)

Initialize Si , Ti using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

min C(

fixed
︷ ︸︸ ︷

K, Ri , ti , k(s, t)), H(

fixed
︷︸︸︷

H, c, k(s, t))
subject to Si(s, t) � 0, Ti(s, t) � 0

Constrained nonlinear optimization (fmincon: SQP, IP, ...)

min C(K, Ri , ti , k(s, t)), H(H, c, k(s, t))
subject to Si(s, t) � 0, Ti(s, t) � 0
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Stable radial distortion calibration Conclusion

Conclusion

We were interested in polynomial and rational distortion functions L

and the related extrapolation issues (problem mainly for wide angle
camera with strong radial distortion)

We introduced a new prior:

nonnegativity of certain polynomials on certain intervals

We suggested a procedure to effectively enforce these constraints in
radial distortion calibration ...

... quite general, maybe can be helpful for other problems as well?
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Thank you for your attention
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