Stable Radial Distortion Calibration by Polynomial Matrix Inequalities Programming

Jan Heller ${ }^{1}$ Didier Henrion ${ }^{3,2,1}$ Tomas Pajdla ${ }^{1}$
${ }^{1}$ Czech Technical University, Faculty of Electrical Engineering, Prague, Czech Republic
${ }^{2}$ LAAS, CNRS, Toulouse, France
${ }^{3}$ Université de Toulouse, Toulouse, France

April 9, 2015

Properties of Radial Distortion

Properties of Radial Distortion

Depends on the center of radial distortion \mathbf{c}, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

Properties of Radial Distortion

Depends on the center of radial distortion c, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

For the center of the radial distortion \mathbf{c}

$$
L(\|\mathbf{c}\|)=L(0)=1
$$

Properties of Radial Distortion

Depends on the center of radial distortion c, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

For the center of the radial distortion \mathbf{c}

$$
L(\|\mathbf{c}\|)=L(0)=1
$$

The distortion function is non-negative on the camera field of view (FOV)

$$
L(r)>0, \text { for } r \in\left[0, r_{\max }\right]
$$

Properties of Radial Distortion

Depends on the center of radial distortion \mathbf{c}, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

For the center of the radial distortion \mathbf{c}

$$
L(\|\mathbf{c}\|)=L(0)=1
$$

The distortion function is non-negative on the camera field of view (FOV)

$$
L(r)>0, \text { for } r \in\left[0, r_{\max }\right]
$$

$L(r)$ as function of distortion

$$
\mathbf{p}^{\prime}=L(r) \mathbf{p}
$$

$L^{\prime}(r)$ as function of undistortion

$$
\mathbf{p}=L^{\prime}(r) \mathbf{p}^{\prime}
$$

Properties of Radial Distortion

Depends on the center of radial distortion c, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

For the center of the radial distortion \mathbf{c}

$$
L(\|\mathbf{c}\|)=L(0)=1
$$

The distortion function is non-negative on the camera field of view (FOV)

$$
L(r)>0, \text { for } r \in\left[0, r_{\max }\right]
$$

$L(r)$ as function of distortion

$$
\mathbf{p}^{\prime}=L(r) \mathbf{p}
$$

$L^{\prime}(r)$ as function of undistortion

$$
\mathrm{p}=L^{\prime}(r) \mathbf{p}^{\prime}
$$

Properties of Radial Distortion

Depends on the center of radial distortion \mathbf{c}, distortion function L, and on the distance of the image point to the center of radial distortion $r=\|\mathbf{p}\|$

For the center of the radial distortion \mathbf{c}

$$
L(\|\mathbf{c}\|)=L(0)=1
$$

The distortion function is non-negative on the camera field of view (FOV)

$$
L(r)>0, \text { for } r \in\left[0, r_{\max }\right]
$$

$L(r)$ as function of distortion
as function of undistortion

$$
\mathbf{p}^{\prime}=L(r) \mathbf{p}
$$

$$
\mathrm{p}=L^{\prime}(r) \mathbf{p}^{\prime}
$$

Radial distortion calibration

Radial distortion calibration is the estimation of \mathbf{c} and L, assuming other camera properties stay the same.

Radial Distortion Calibration

Radial Distortion Calibration

Distortion model $L(r)$
Polular choice: polynomial and rational functions (OpenCV, ...)

$$
L(r, \mathbf{k})=\frac{f(r, \mathbf{k})}{g(r, \mathbf{k})}=\frac{1+k_{1} r+k_{2} r^{2}+k_{3} r^{3}}{1+k_{4} r+k_{5} k^{2}+k_{6} r^{3}}, \mathbf{k} \in \mathbb{R}^{6}
$$

Radial Distortion Calibration

Distortion model $L(r)$
Polular choice: polynomial and rational functions (OpenCV, ...)

$$
L(r, \mathbf{k})=\frac{f(r, \mathbf{k})}{g(r, \mathbf{k})}=\frac{1+k_{1} r+k_{2} r^{2}+k_{3} r^{3}}{1+k_{4} r+k_{5} k^{2}+k_{6} r^{3}}, \mathbf{k} \in \mathbb{R}^{6}
$$

Radial distortion calibration as a part of camera calibration

$$
\left.\begin{array}{l}
\mathbf{q}_{i j}=\mathrm{R}_{i} \mathbf{X}_{j}+\mathbf{t}_{i}, \\
\mathbf{p}_{i j}=\left(\mathbf{q}_{i j}^{x}, \mathbf{q}_{i j}^{y}\right)^{\top} / \mathbf{q}_{i j}^{z}, \\
\mathbf{p}_{i j}^{\prime}=L\left(\left\|\mathbf{p}_{i j}\right\|, \mathbf{k}\right) \mathbf{p}_{i j}, \\
\mathbf{e}_{i j}=\left(\mathbf{u}_{i j}, 1\right)^{\top}-\mathrm{K}\left(\mathbf{p}_{i j}^{\prime}, 1\right)^{\top} .
\end{array}\right\} \Rightarrow \begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right)=\sum_{i, j}\left\|\mathbf{e}_{i j}\right\|^{2} \\
& \begin{array}{l}
\text { 1. Initial parameter estimation } \\
\text { 2. Local optimization (L-M) }
\end{array}
\end{aligned}
$$

Radial Distortion Calibration

Distortion model $L(r)$
Polular choice: polynomial and rational functions (OpenCV, ...)

$$
L(r, \mathbf{k})=\frac{f(r, \mathbf{k})}{g(r, \mathbf{k})}=\frac{1+k_{1} r+k_{2} r^{2}+k_{3} r^{3}}{1+k_{4} r+k_{5} k^{2}+k_{6} r^{3}}, \mathbf{k} \in \mathbb{R}^{6}
$$

Radial distortion calibration as a part of camera calibration

$$
\left.\begin{array}{l}
\mathbf{q}_{i j}=\mathrm{R}_{i} \mathbf{X}_{j}+\mathbf{t}_{i}, \\
\mathbf{p}_{i j}=\left(\mathbf{q}_{i j}^{x}, \mathbf{q}_{i j}^{y}\right)^{\top} / \mathbf{q}_{i j}^{z}, \\
\mathbf{p}_{i j}^{\prime}=L\left(\left\|\mathbf{p}_{i j}\right\|, \mathbf{k}\right) \mathbf{p}_{i j}, \\
\mathbf{e}_{i j}=\left(\mathbf{u}_{i j}, 1\right)^{\top}-\mathrm{K}\left(\mathbf{p}_{i j}^{\prime}, 1\right)^{\top} .
\end{array}\right\} \Rightarrow \begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right)=\sum_{i, j}\left\|\mathbf{e}_{i j}\right\|^{2} \\
& \begin{array}{l}
\text { 1. Initial parameter estimation } \\
\text { 2. Local optimization (L-M) }
\end{array}
\end{aligned}
$$

Radial distortion calibration as a part of homography estimation

$$
\left.\begin{array}{rl}
\mathbf{q}_{i} & =H \mathbf{x}_{i}, \\
\mathbf{p}_{i} & =\left(\mathbf{q}_{i}^{x}, \mathbf{q}_{i}^{y}\right)^{\top} / \mathbf{q}_{i}^{z}, \\
\mathbf{p}_{i}^{\prime} & =L\left(\left\|\mathbf{p}_{i}\right\|, \mathbf{k}\right) \mathbf{p}_{i}, \\
\mathbf{e}_{i} & =\mathbf{u}_{i}-\left(\mathbf{p}_{i}^{\prime}+\mathbf{c}\right) .
\end{array}\right\} \Rightarrow \begin{aligned}
& \min \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})=\sum_{i}\left\|\mathbf{e}_{i}\right\|^{2} \\
& \text { 1. Initial parameter estimat } \\
& \text { 2. Local optimization (L-M }
\end{aligned}
$$

 $\because \because 0 \because 0:$ $\because \because 00 \cdots \because \bullet \bullet$, 000000 ••••••••••••••••• ○000000•••••••••••••••••• , 000000 ••••• ••••••••••••••

 00000

$$
0 \geqslant 0 \geqslant 0 \geqslant 0 \geqslant 0 \geqslant 0
$$

$\therefore \because 0000^{\circ}$
0
$000000_{0} 0^{x} 0^{x} 00^{x}$
$000000^{x} 0$

 $0000000^{x} \theta^{x} \theta^{x} \theta^{x} \geqslant 00_{x}^{x} \theta_{x}^{x}$
 $00000000^{x} 0^{x} 0^{x} 0^{x} 0^{x} 0^{x} 0^{x} 0_{x}^{x}+0^{x}$ $000000 \theta^{x} \theta^{x} \theta^{x} \theta^{x} \theta^{x} \theta^{x} \theta^{x} \theta \theta^{x} \theta^{x} \theta^{x} \theta^{x}$

 $10 \geqslant 0$
 00000000000 0 0 0 0 0 O 0 0.0.

\qquad

e o $x+\frac{x}{x} \times x+x+\frac{x}{x}$

Homograph estimation $\min \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})$ with rational model $L(r)=\frac{f(r)}{g(r)}$

$$
\begin{aligned}
L_{f}(r) & =\frac{1+1.59 r-0.13 r^{2}-0.00872 r^{3}}{1+1.6 r+1.13 r^{2}+0.681 r^{3}}=\frac{-0.00872}{0.681} \frac{(r-131)(r+0.698 \pm 0.622 i)}{(r+1.15)(r+0.514 \pm 1.07 i)} \\
L_{l}(r) & =\frac{1-0.218 r-0.145 r^{2}-0.048 r^{3}}{1-0.227 r+0.191 r^{2}-0.244 r^{3}}=\frac{-0.0478}{-0.244} \frac{(r-1.682)(r+2.35 \pm 2.63 i)}{(r-1.678)(r+0.449 \pm 1.5 i)}
\end{aligned}
$$

Zero-crossing problem - correction

$$
\begin{gathered}
L_{f}(r)=\frac{1+1.59 r-0.13 r^{2}-0.00872 r^{3}}{1+1.6 r+1.13 r^{2}+0.681 r^{3}}=\frac{-0.00872}{0.681} \frac{(r-131)(r+0.698 \pm 0.622 i)}{(r+1.15)(r+0.514 \pm 1.07 i)} \\
L_{l}(r)=\frac{1+0.111 r+0.0546 r^{2}-0.00805 r^{3}}{1+0.118 r+0.342 r^{2}-0.0144 r^{3}}=\frac{-0.00805}{-0.0144} \frac{(r+7.25)(r-0.231 \pm 0.4 .13 i)}{(r-24.2)(r+0.228 \pm 1.68 i)}
\end{gathered}
$$

Camera calibration $\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right)$ with polynomial model

$$
L(r)=f(r)=1+r k_{1}+r^{2} k_{2}+r^{3} k_{3}
$$

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet provide sufficient fitting power for wide range or distortions.
- Several extrapolation issues arise, mainly for wide angle cameras.

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet provide sufficient fitting power for wide range or distortions.
- Several extrapolation issues arise, mainly for wide angle cameras.

Solution

\rightarrow Enforcing prior knowledge about the overall shape of L.

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet provide sufficient fitting power for wide range or distortions.
- Several extrapolation issues arise, mainly for wide angle cameras.

Solution

\rightarrow Enforcing prior knowledge about the overall shape of L.
Minimization constrained by polynomials non-negative on an interval

$$
\min f(\mathbf{x}) \quad \Longrightarrow \quad \begin{array}{r}
\min f(\mathbf{x}) \\
\text { subject to } p_{i}\left(y_{i}, \mathbf{x}\right) \geq 0 \text { for } y_{i} \in\left[a_{i}, b_{i}\right], i=1, \ldots, n .
\end{array}
$$

Stabilizing radial distortion function L

Motivation

+ polynomial and rational functions are easily manipulated and yet provide sufficient fitting power for wide range or distortions.
- Several extrapolation issues arise, mainly for wide angle cameras.

Solution

\rightarrow Enforcing prior knowledge about the overall shape of L.
Minimization constrained by polynomials non-negative on an interval

$$
\min f(\mathbf{x}) \quad \Longrightarrow \quad \begin{gathered}
\min f(\mathbf{x}) \\
\text { subject to } p_{i}\left(y_{i}, \mathbf{x}\right) \geq 0 \text { for } y_{i} \in\left[a_{i}, b_{i}\right], i=1, \ldots, n .
\end{gathered}
$$

Stabilized radial distortion calibration example

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right)
$$

$\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathrm{t}_{i}, \mathbf{k}\right) \Longrightarrow \quad$ subject to $f(r)-1 \geq 0$ for $r \in\left[0, r_{\max }\right]$,

$$
g(r)-1 \geq 0 \text { for } r \in\left[0, r_{\max }\right]
$$

Representation of polynomials

Univariate polynomials

An univariate polynomial $p(x) \in \mathbb{R}_{n}[x]$ of degree $n \in \mathbb{N}$ is a real function

$$
p(x)=p_{n} x^{n}+p_{n-1} x^{n-1}+\cdots+p_{1} x+p_{0}=\mathbf{p}^{\top} \boldsymbol{\psi}_{n}(x),
$$

where $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{n}\right)^{\top} \in \mathbb{R}^{n+1}$ and $\psi_{n}(x)$ is the canonical basis

$$
\boldsymbol{\psi}_{n}(x)=\left(1, x, x^{2}, \ldots, x^{n}\right)^{\top}
$$

Representation of polynomials

Univariate polynomials

An univariate polynomial $p(x) \in \mathbb{R}_{n}[x]$ of degree $n \in \mathbb{N}$ is a real function

$$
p(x)=p_{n} x^{n}+p_{n-1} x^{n-1}+\cdots+p_{1} x+p_{0}=\mathbf{p}^{\top} \boldsymbol{\psi}_{n}(x),
$$

where $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{n}\right)^{\top} \in \mathbb{R}^{n+1}$ and $\psi_{n}(x)$ is the canonical basis

$$
\boldsymbol{\psi}_{n}(x)=\left(1, x, x^{2}, \ldots, x^{n}\right)^{\top}
$$

Gram matrix associated with a polynomial

Let $q(x) \in \mathbb{R}_{2 n}[x]$. A symmetric matrix $\mathbb{Q} \in \mathbb{R}^{n^{\prime} \times n^{\prime}}$, where $n^{\prime}=n+1$, is called Gram matrix associated with $q(x)$ and the basis $\boldsymbol{\psi}_{n}(x)$ if

$$
q(x)=\boldsymbol{\psi}_{n}^{\top}(x) \mathbb{Q} \boldsymbol{\psi}_{n}(x) .
$$

Representation of polynomials

Univariate polynomials

An univariate polynomial $p(x) \in \mathbb{R}_{n}[x]$ of degree $n \in \mathbb{N}$ is a real function

$$
p(x)=p_{n} x^{n}+p_{n-1} x^{n-1}+\cdots+p_{1} x+p_{0}=\mathbf{p}^{\top} \boldsymbol{\psi}_{n}(x),
$$

where $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{n}\right)^{\top} \in \mathbb{R}^{n+1}$ and $\psi_{n}(x)$ is the canonical basis

$$
\boldsymbol{\psi}_{n}(x)=\left(1, x, x^{2}, \ldots, x^{n}\right)^{\top}
$$

Gram matrix associated with a polynomial

 Let $q(x) \in \mathbb{R}_{2 n}[x]$. A symmetric matrix $\mathbf{Q} \in \mathbb{R}^{n^{\prime} \times n^{\prime}}$, where $n^{\prime}=n+1$, is called Gram matrix associated with $q(x)$ and the basis $\boldsymbol{\psi}_{n}(x)$ if$$
q(x)=\boldsymbol{\psi}_{n}^{\top}(x) \mathbb{Q} \boldsymbol{\psi}_{n}(x) .
$$

Non-negative polynomials

A polynomial $p(x) \in \mathbb{R}_{n}[x]$ is $p(x) \geq 0$ for $\forall x$, iff there exists a Gram matrix Q assoc. with $p(x)$ such that $\mathrm{Q} \succeq 0$, i.e., Q is positive semidefinite.

Markov-Lukacs Theorem

Computationaly efficient characterization of polynomials non-negative on an interval

Let $\alpha<\beta, p(x) \in \mathbb{R}[x]$ and $\operatorname{deg} p(x)=2 n$. Then $p(x) \geq 0$ for all $x \in[\alpha, \beta]$ if and only if

$$
p(x)=s(x)+(x-\alpha)(\beta-x) t(x)
$$

where $s(x)=\boldsymbol{\psi}_{n}^{\top}(x) \mathrm{S} \boldsymbol{\psi}_{n}(x), t(x)=\boldsymbol{\psi}_{n-1}^{\top}(x) \mathrm{T} \boldsymbol{\psi}_{n-1}(x)$, such that $\mathrm{S}, \mathrm{T} \succeq 0(\mathrm{~S}, \mathrm{~T}$, are positive semidefinite Gram matrices of $s(x)$ and $t(x))$. If $\operatorname{deg} p(x)=2 n+1$, then $p(x) \geq 0$ for all $x \in[\alpha, \beta]$ if and only if

$$
p(x)=(x-\alpha) s(x)+(\beta-x) t(x),
$$

where $s(x)=\boldsymbol{\psi}_{n}^{\top}(x) \mathrm{S} \boldsymbol{\psi}_{n}(x), t(x)=\boldsymbol{\psi}_{n}^{\top}(x) \mathrm{T} \boldsymbol{\psi}_{n}(x)$, such that $\mathrm{S}, \mathrm{T} \succeq 0$.

NB: Even though M-L theorem is an equivalence, we will only use it as an implication: as long as we will have matrices $\mathrm{S}, \mathrm{T} \succeq 0, \mathrm{M}-\mathrm{L}$ theorem guarantees that $p(x)$ constructed using these matrices will be nonnegative on a given interval.

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the rational model $L(r)=f(r) / g(r)$

$$
f(r) \geq 1 \text { and } g(r) \geq 1 \text { for } r \in[0, \bar{r}]
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the rational model $L(r)=f(r) / g(r)$

$$
f(r) \geq 1 \text { and } g(r) \geq 1 \text { for } r \in[0, \bar{r}]
$$

Constraint $f(r) \geq 1$

- According to M-L theorem, $f(r)-1 \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
f(r)-1=k_{1} r+k_{2} r^{2}+k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{S}_{1} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{T}_{1} \boldsymbol{\psi}_{1}(r),
$$

$$
\text { where } \mathrm{S}_{1}=\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0 \text {. }
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the rational model $L(r)=f(r) / g(r)$

$$
f(r) \geq 1 \text { and } g(r) \geq 1 \text { for } r \in[0, \bar{r}]
$$

Constraint $f(r) \geq 1$

- According to M-L theorem, $f(r)-1 \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
f(r)-1=k_{1} r+k_{2} r^{2}+k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{S}_{1} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{T}_{1} \boldsymbol{\psi}_{1}(r),
$$

$$
\text { where } \mathrm{S}_{1}=\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0 \text {. }
$$

- After expanding and comparing coefficients

$$
\begin{aligned}
k_{1} & =s_{11}-t_{11}+2 \bar{r} t_{12}, \\
k_{2} & =2 s_{12}-2 t_{12}+\bar{r} t_{13}, \\
k_{3} & =s_{13}-t_{13}, \\
0 & =\bar{r} t_{11}\left(\Rightarrow t_{11}=0\right) .
\end{aligned}
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints

Constraint $g(r) \geq 1$

- According to M-L theorem, $g(r)-1 \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
g(r)-1=k_{4} r+k_{5} r^{2}+k_{6} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{S}_{2} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{T}_{2} \boldsymbol{\psi}_{1}(r),
$$

$$
\text { where } \mathrm{S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
t_{21} & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0 \text {. }
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints

Constraint $g(r) \geq 1$

- According to M-L theorem, $g(r)-1 \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
\begin{gathered}
g(r)-1=k_{4} r+k_{5} r^{2}+k_{6} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{S}_{2} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{T}_{2} \boldsymbol{\psi}_{1}(r), \\
\text { where } \mathrm{S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
t_{21} & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0
\end{gathered}
$$

- After expanding and comparing coefficients

$$
\begin{aligned}
k_{4} & =s_{21}-t_{21}+2 \bar{r} t_{22}, \\
k_{5} & =2 s_{22}-2 t_{22}+\bar{r} t_{23}, \\
k_{6} & =s_{23}-t_{23}, \\
0 & =\bar{r} t_{21}\left(\Rightarrow t_{21}=0\right) .
\end{aligned}
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints

Cost function

$$
\left.\begin{array}{ccc}
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right) & \text { substitution } & \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right) \\
\mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}) & \Longrightarrow & \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t}))
\end{array}\right)
$$

Markov-Lukacs Theorem: Example I

Non-negativity on a interval constraints to positive semidefinite constraints Cost function

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right) \quad \text { substitution } \quad \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right) \\
& \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}) \\
& \Longrightarrow \quad \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { where } \mathbf{k}(\mathbf{s}, \mathbf{t})=\left(s_{11}-t_{11}+2 \bar{r} t_{12}, 2 s_{12}-2 t_{12}+\bar{r} t_{13}, s_{13}-t_{13}\right. \text {, } \\
& \left.s_{21}-t_{21}+2 \bar{r} t_{22}, 2 s_{22}-2 t_{22}+\bar{r} t_{23}, s_{23}-t_{23}\right) \text {. }
\end{aligned}
$$

Constraints

$$
\begin{aligned}
& f(r) \geq 1 \text { and } g(r) \geq 1 \text { for } r \in[0, \bar{r}] \Longrightarrow \\
& \mathrm{S}_{1}=\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
0 & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0, \\
& \mathrm{~S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
0 & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0 .
\end{aligned}
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the polynomial model $L(r)=f(r)$

$$
f(r) \geq 0 \text { and } f(r) \leq 1 \text { for } r \in[0, \bar{r}]
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the polynomial model $L(r)=f(r)$

$$
f(r) \geq 0 \text { and } f(r) \leq 1 \text { for } r \in[0, \bar{r}]
$$

Constraint $f(r) \geq 0$

- According to M-L theorem, $f(r) \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
f(r)=1+k_{1} r+k_{2} r^{2}+k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{S}_{1} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{T}_{1} \boldsymbol{\psi}_{1}(r),
$$

$$
\text { where } \mathrm{S}_{1}=\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0 \text {. }
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints
Constraints on the polynomial model $L(r)=f(r)$

$$
f(r) \geq 0 \text { and } f(r) \leq 1 \text { for } r \in[0, \bar{r}]
$$

Constraint $f(r) \geq 0$

- According to M-L theorem, $f(r) \geq 0$ for $r \in[0, \bar{r}]$ iff

$$
f(r)=1+k_{1} r+k_{2} r^{2}+k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{S}_{1} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{1}(r)^{\top} \mathbf{T}_{1} \boldsymbol{\psi}_{1}(r),
$$

$$
\text { where } \mathrm{S}_{1}=\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0 \text {. }
$$

- After expanding and comparing coefficients

$$
\begin{aligned}
k_{1} & =s_{11}-t_{11}+2 \bar{r} t_{12}, \\
k_{2} & =2 s_{12}-2 t_{12}+\bar{r} t_{13}, \\
k_{3} & =s_{13}-t_{13}, \\
1 & =\bar{r} t_{11}\left(\Rightarrow t_{11}=\frac{1}{\bar{r}}\right) .
\end{aligned}
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints

Constraint $f(r) \leq 1$

- According to M-L theorem, $f(r) \leq 1$ for $r \in[0, \bar{r}]$ iff

$$
\begin{gathered}
1-f(r)=-k_{1} r-k_{2} r^{2}-k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{S}_{2} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{2}(r)^{\top} \mathrm{T}_{1} \boldsymbol{\psi}_{1}(r), \\
\text { where } \mathrm{S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
t_{21} & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0
\end{gathered}
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints

Constraint $f(r) \leq 1$

- According to M-L theorem, $f(r) \leq 1$ for $r \in[0, \bar{r}]$ iff

$$
\begin{gathered}
1-f(r)=-k_{1} r-k_{2} r^{2}-k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{S}_{2} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{2}(r)^{\top} \mathrm{T}_{1} \boldsymbol{\psi}_{1}(r), \\
\text { where } \mathrm{S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
t_{21} & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0
\end{gathered}
$$

- After expanding and comparing coefficients

$$
\begin{aligned}
-k_{1} & =s_{21}-t_{21}+2 \bar{r} t_{22} \\
-k_{2} & =2 s_{22}-2 t_{22}+\bar{r} t_{23} \\
-k_{3} & =s_{23}-t_{23} \\
0 & =\bar{r} t_{21}
\end{aligned}
$$

Markov-Lukacs Theorem: Example II

Non-negativity on a interval constraints to positive semidefinite constraints

Constraint $f(r) \leq 1$

- According to M-L theorem, $f(r) \leq 1$ for $r \in[0, \bar{r}]$ iff

$$
\begin{gathered}
1-f(r)=-k_{1} r-k_{2} r^{2}-k_{3} r^{3}=r \boldsymbol{\psi}_{1}(r)^{\top} \mathrm{S}_{2} \boldsymbol{\psi}_{1}(r)+(\bar{r}-r) \boldsymbol{\psi}_{2}(r)^{\top} \mathrm{T}_{1} \boldsymbol{\psi}_{1}(r), \\
\text { where } \mathrm{S}_{2}=\left(\begin{array}{ll}
s_{21} & s_{22} \\
s_{22} & s_{23}
\end{array}\right) \succeq 0, \mathrm{~T}_{2}=\left(\begin{array}{cc}
t_{21} & t_{22} \\
t_{22} & t_{23}
\end{array}\right) \succeq 0
\end{gathered}
$$

- After expanding and comparing coefficients

$$
\left.\begin{array}{rl}
-k_{1} & =s_{21}-t_{21}+2 \bar{r} t_{22}, \\
-k_{2} & =2 s_{22}-2 t_{22}+\bar{r} t_{23} \\
-k_{3} & =s_{23}-t_{23}, \\
0 & =\bar{r} t_{21} .
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
& s_{21}=-2 \bar{r} t_{22}-2 t_{12} \bar{r}+s_{11}-\frac{1}{\bar{r}} \\
& s_{22}= t_{12}-s_{12}+t_{22}-\frac{1}{2} \bar{r} s_{23}- \\
& \frac{1}{2} \bar{r} t_{13}-\frac{1}{2} \bar{r}\left(s_{13}-t_{13}\right), \\
& t_{21}=0, \\
& t_{23}=s_{13}+s_{23}-t_{13}
\end{aligned}\right.
$$

Markov-Lukacs Theorem: Example II

Cost function

$\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right) \quad$ substitution $\quad \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right)$ $\mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}) \quad \Longrightarrow \quad \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t}))$ where $\mathbf{k}(\mathbf{s}, \mathbf{t})=\left(s_{11}-t_{11}+2 \bar{r} t_{12}, 2 s_{12}-2 t_{12}+\bar{r} t_{13}, s_{13}-t_{13}\right)$

Markov-Lukacs Theorem: Example II

Cost function

$$
\begin{array}{ccc}
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right) & \text { substitution } & \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right) \\
\mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}) & \Longrightarrow & \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { where } \mathbf{k}(\mathbf{s}, \mathbf{t})=\left(s_{11}-t_{11}+2 \bar{r} t_{12}, 2 s_{12}-2 t_{12}+\bar{r} t_{13}, s_{13}-t_{13}\right)
\end{array}
$$

Constraints

$$
\begin{gathered}
f(r) \geq 0 \text { and } f(r) \leq 0 \text { for } r \in[0, \bar{r}] \Longrightarrow \\
\mathrm{S}_{1}=\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{12} & s_{13}
\end{array}\right) \succeq 0, \mathrm{~T}_{1}=\left(\begin{array}{cc}
\frac{1}{\bar{r}} & t_{12} \\
t_{12} & t_{13}
\end{array}\right) \succeq 0, \\
\mathrm{~S}_{2}=\left(\begin{array}{cc}
-2 \bar{r} t_{22}-2 t_{12} \bar{r}+s_{11}-\frac{1}{\bar{r}} & t_{12}-s_{12}+t_{22}-\ldots \\
t_{12}-s_{12}+t_{22}-\ldots & s_{23}
\end{array}\right) \succeq 0, \\
\mathrm{~T}_{2}=\left(\begin{array}{cc}
0 & t_{22} \\
t_{22} & s_{13}+s_{23}-t_{13}
\end{array}\right) \succeq 0 .
\end{gathered}
$$

Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval

(1)	(2)	3
min $f(\mathbf{x})$	min $f(\mathbf{x})$	$\min f(\mathbf{x}(\mathbf{s}, \mathbf{t}))$
	subject to $p_{i}\left(y_{i}, \mathbf{x}\right) \geq 0$	subject to $\mathrm{S}_{i} \succeq 0$
	for $y_{i} \in\left[a_{i}, b_{i}\right]$	$\mathrm{T}_{i} \succeq 0$

Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval

Solution

- Estimate initial parameters
- Local opt. (L-M) of (1)
- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on L
- Set $\mathrm{S}_{i}, \mathrm{~T}_{i}=\mathbf{0}$
- Local opt. (SQP, IP) of 3

Stable Radial distortion calibration

Minimization constrained by polynomials non-negative on an interval
(1)
$\min f(\mathbf{x})$
(2) $\min f(\mathbf{x})$
subject to $p_{i}\left(y_{i}, \mathbf{x}\right) \geq 0$ for $y_{i} \in\left[a_{i}, b_{i}\right]$
(3) $\min f(\mathbf{x}(\mathbf{s}, \mathbf{t}))$ subject to $\mathrm{S}_{i} \succeq 0$
$\mathrm{T}_{i} \succeq 0$

Solution

- Estimate initial parameters
- Local opt. (L-M) of ©
- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on L
- Set $\mathrm{S}_{i}, \mathrm{~T}_{i}=\mathbf{0}$
- Local opt. (SQP, IP) of (3)

Better solution

- Estimate initial parameters
- Local opt. (L-M) of (1)
- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on L
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI
- Local opt. (SQP, IP) of (3)

Polynomial matrix inequalities (PMI) programming

Polynomial matrix inequalities optimization problem

Let $p_{0}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}], \mathrm{G}_{i} \in \mathbb{S}^{n_{i}}(\mathbb{R}[\mathbf{x}]), i=1, \ldots, m$ and $\mathbf{x}=\in \mathbb{R}^{m}$. Then the polynomial matrix inequalities optimization problem has the following form:

$$
\begin{gathered}
\min p(\mathbf{x}) \\
\text { subject to } \mathrm{G}_{i}(\mathbf{x}) \succeq 0, i=1, \ldots, m .
\end{gathered}
$$

Polynomial matrix inequalities (PMI) programming

Polynomial matrix inequalities optimization problem

Let $p_{0}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}], \mathrm{G}_{i} \in \mathbb{S}^{n_{i}}(\mathbb{R}[\mathbf{x}]), i=1, \ldots, m$ and $\mathbf{x}=\in \mathbb{R}^{m}$. Then the polynomial matrix inequalities optimization problem has the following form:

$$
\begin{gathered}
\min p(\mathbf{x}) \\
\text { subject to } \mathrm{G}_{i}(\mathbf{x}) \succeq 0, i=1, \ldots, m .
\end{gathered}
$$

Calibration problem with rational L to PMI problem

$$
\begin{array}{ccr}
\min & \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right) & \\
\mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) & \text { relaxation } & \min \mathcal{C}(\overbrace{\left.\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right)} \\
\text { subject to } & \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0 & \\
\mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0 & & \mathcal{H}(\underbrace{\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t}))}_{\text {fixed }} \\
& & \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0 \\
& & \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{array}
$$

Polynomial matrix inequalities (PMI) programming

Polynomial matrix inequalities optimization problem

Let $p_{0}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}], \mathrm{G}_{i} \in \mathbb{S}^{n_{i}}(\mathbb{R}[\mathbf{x}]), i=1, \ldots, m$ and $\mathbf{x}=\in \mathbb{R}^{m}$. Then the polynomial matrix inequalities optimization problem has the following form:

$$
\begin{gathered}
\min p(\mathbf{x}) \\
\text { subject to } \mathrm{G}_{i}(\mathbf{x}) \succeq 0, i=1, \ldots, m
\end{gathered}
$$

Calibration problem with rational L to PMI problem

$$
\begin{array}{ccr}
\min & \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right) & \\
& \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) & \text { relaxation }
\end{array}
$$

- Still, typically a non-convex problem with many local minima
- Still, finding the global minimizer \mathbf{x}^{*} is an NP-hard problem

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001. D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and static output feedback, 2006.

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001. D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and static output feedback, 2006.

- Hierarchy of LMI (\equiv SDP) programs $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ that produces a monotonically non-decreasing sequence of lower bounds $p\left(\mathbf{x}_{1}^{*}\right) \leq p\left(\mathrm{x}_{2}^{*}\right) \leq \ldots$ on the PMI problem, $\lim _{i \rightarrow \infty} p\left(\mathbf{x}_{i}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Practically, the series converges to $p\left(\mathbf{x}^{*}\right)$ in finitely many steps, i.e., there exists $j \in \mathbb{N}$, such that $p\left(\mathbf{x}_{j}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Tools of linear algebra can be used to detect this finite convergence and to recover both $p\left(\mathbf{x}^{*}\right)$ and \mathbf{x}^{*}

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001. D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and static output feedback, 2006.

- Hierarchy of LMI (\equiv SDP) programs $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ that produces a monotonically non-decreasing sequence of lower bounds $p\left(\mathbf{x}_{1}^{*}\right) \leq p\left(\mathbf{x}_{2}^{*}\right) \leq \ldots$ on the PMI problem, $\lim _{i \rightarrow \infty} p\left(\mathbf{x}_{i}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Practically, the series converges to $p\left(\mathrm{x}^{*}\right)$ in finitely many steps, i.e., there exists $j \in \mathbb{N}$, such that $p\left(\mathbf{x}_{j}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Tools of linear algebra can be used to detect this finite convergence and to recover both $p\left(\mathbf{x}^{*}\right)$ and \mathbf{x}^{*}

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001. D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and static output feedback, 2006.

- Hierarchy of LMI (\equiv SDP) programs $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ that produces a monotonically non-decreasing sequence of lower bounds $p\left(\mathbf{x}_{1}^{*}\right) \leq p\left(\mathbf{x}_{2}^{*}\right) \leq \ldots$ on the PMI problem, $\lim _{i \rightarrow \infty} p\left(\mathbf{x}_{i}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Practically, the series converges to $p\left(\mathbf{x}^{*}\right)$ in finitely many steps, i.e., there exists $j \in \mathbb{N}$, such that $p\left(\mathbf{x}_{j}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Tools of linear algebra can be used to detect this finite convergence and to recover both $p\left(\mathbf{x}^{*}\right)$ and \mathbf{x}^{*}

Hierarchy of Linear Matrix Inequality Relaxations

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, 2001. D. Henrion, J.-B. Lasserre: Convergent relaxations of polynomial matrix inequalities and static output feedback, 2006.

- Hierarchy of LMI (\equiv SDP) programs $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ that produces a monotonically non-decreasing sequence of lower bounds $p\left(\mathbf{x}_{1}^{*}\right) \leq p\left(\mathbf{x}_{2}^{*}\right) \leq \ldots$ on the PMI problem, $\lim _{i \rightarrow \infty} p\left(\mathbf{x}_{i}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Practically, the series converges to $p\left(\mathbf{x}^{*}\right)$ in finitely many steps, i.e., there exists $j \in \mathbb{N}$, such that $p\left(\mathbf{x}_{j}^{*}\right)=p\left(\mathbf{x}^{*}\right)$
- Tools of linear algebra can be used to detect this finite convergence and to recover both $p\left(\mathbf{x}^{*}\right)$ and \mathbf{x}^{*}

LMI relaxation \mathcal{P}_{δ} of order δ

$$
\begin{gathered}
\min p(\mathbf{x}) \\
\text { s.t. } \mathrm{G}_{i}(\mathbf{x}) \succeq 0
\end{gathered} \Rightarrow \begin{array}{c|c}
\min \ell_{\mathbf{y}}(p(\mathbf{x})) \\
\mathrm{s.t} \mathrm{M}_{\delta-\gamma_{i}}\left(\mathrm{G}_{i}, \mathbf{y}\right) \succeq 0 \\
\mathrm{M}_{\delta}(\mathbf{y}) \succeq 0 . & \begin{array}{c}
\ell_{\mathbf{y}}(p(\mathbf{x})) \\
\mathrm{M}_{\delta}(\mathrm{G}, \mathbf{y})
\end{array}=\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}} y_{\boldsymbol{\alpha}}\left(\left(\boldsymbol{\psi}_{\delta}(\mathbf{x}) \boldsymbol{\psi}_{\delta}^{\top}(\mathbf{x})\right) \otimes \mathrm{G}\right) \\
\mathrm{M}_{\delta}(\mathbf{y})=\ell_{\mathbf{y}}\left(\boldsymbol{\psi}_{\delta}(\mathbf{x}) \boldsymbol{\psi}_{\delta}^{\top}(\mathbf{x})\right)
\end{array}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

$$
\begin{gathered}
\min \mathcal{C}(\overbrace{\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})), \mathcal{H}(\overbrace{\mathrm{H}, \mathbf{c}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{gathered}
$$

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{aligned}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

$$
\begin{gathered}
\min \mathcal{C}(\overbrace{\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})), \mathcal{H}(\overbrace{\mathrm{H}, \mathbf{c}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{gathered}
$$

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{aligned}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

$$
\begin{gathered}
\min \mathcal{C}(\overbrace{\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})), \mathcal{H}(\overbrace{\mathrm{H}, \mathbf{c}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{gathered}
$$

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{aligned}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

$$
\begin{gathered}
\min \mathcal{C}(\overbrace{\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})), \mathcal{H}(\overbrace{\mathrm{H}, \mathbf{c}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{gathered}
$$

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{aligned}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $S_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

```
                min \mathcal{C}(\mp@subsup{\overbrace}{K,\mp@subsup{R}{i}{},\mp@subsup{\mathbf{t}}{i}{\prime}}{\mathrm{ fixed }},\mathbf{k}(\mathbf{s},\mathbf{t})),\mathcal{H}(\mp@subsup{\overbrace}{\textrm{H},\mathbf{c},\mathbf{c}}{\mathrm{ fixed }},\mathbf{k}(\mathbf{s},\mathbf{t}))
subject to }\mp@subsup{S}{i}{}(\mathbf{s},\mathbf{t})\succeq0,\mp@subsup{\textrm{T}}{i}{}(\mathbf{s},\mathbf{t})\succeq
```

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{aligned}
& \min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
& \text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{aligned}
$$

Stable Radial Distortion Calibration for Rational $L(r)$

Final Breakdown

- Estimate initial parameters
- Unconstrained nonlinear optimization (lsqnonlin, Ceres,)

$$
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k})
$$

- Identify $\mathrm{S}_{i}, \mathrm{~T}_{i}$ based on the shape of $L(r)$ (by hand)
- Initialize $\mathrm{S}_{i}, \mathrm{~T}_{i}$ using PMI prg. (GloptiPoly, YALMIP, GpoSolver)

$$
\begin{gathered}
\min \mathcal{C}(\overbrace{\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})), \mathcal{H}(\overbrace{\mathrm{H}, \mathbf{c}}^{\text {fixed }}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{gathered}
$$

- Constrained nonlinear optimization (fmincon: SQP, IP, ...)

$$
\begin{array}{r}
\min \mathcal{C}\left(\mathrm{K}, \mathrm{R}_{i}, \mathbf{t}_{i}, \mathbf{k}(\mathbf{s}, \mathbf{t})\right), \mathcal{H}(\mathrm{H}, \mathbf{c}, \mathbf{k}(\mathbf{s}, \mathbf{t})) \\
\text { subject to } \mathrm{S}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0, \mathrm{~T}_{i}(\mathbf{s}, \mathbf{t}) \succeq 0
\end{array}
$$

Conclusion

- We were interested in polynomial and rational distortion functions L and the related extrapolation issues (problem mainly for wide angle camera with strong radial distortion)
- We introduced a new prior:
nonnegativity of certain polynomials on certain intervals
- We suggested a procedure to effectively enforce these constraints in radial distortion calibration ...
... quite general, maybe can be helpful for other problems as well?

Conclusion

- We were interested in polynomial and rational distortion functions L and the related extrapolation issues (problem mainly for wide angle camera with strong radial distortion)
- We introduced a new prior:

> nonnegativity of certain polynomials on certain intervals

- We suggested a procedure to effectively enforce these constraints in radial distortion calibration ...
... quite general, maybe can be helpful for other problems as well?

Conclusion

- We were interested in polynomial and rational distortion functions L and the related extrapolation issues (problem mainly for wide angle camera with strong radial distortion)
- We introduced a new prior:
nonnegativity of certain polynomials on certain intervals
- We suggested a procedure to effectively enforce these constraints in radial distortion calibration ...
... quite general, maybe can be helpful for other problems as well?

