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Problem

ANN search

• Given query point q, find its nearest neighbor with respect to
Euclidean distance within data set X in a d-dimensional space

• Encode (compress) vectors, speed up distance computations

• Fit underlying distribution with little space & time overhead

Vector quantization

• Given data set X , map it to discrete codebook C such that distortion
is minimized

• Use ANN search to assign points to centroids

• Use vector quantization to improve ANN search
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Applications in vision
Retrieval (image as point) [Jégou et al. ’10][Perronnin et al. ’10]
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4× 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.



Applications in vision
Retrieval (patch as point) [Tolias et al. ’13][Qin et al. ’13]

Speeded-up, relaxed spatial matching

Giorgos Tolias and Yannis Avrithis
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Abstract

A wide range of properties and assumptions determine
the most appropriate spatial matching model for an ap-
plication, e.g. recognition, detection, registration, or large
scale image retrieval. Most notably, these include discrim-
inative power, geometric invariance, rigidity constraints,
mapping constraints, assumptions made on the underlying
features or descriptors and, of course, computational com-
plexity. Having image retrieval in mind, we present a very
simple model inspired by Hough voting in the transforma-
tion space, where votes arise from single feature correspon-
dences. A relaxed matching process allows for multiple
matching surfaces or non-rigid objects under one-to-one
mapping, yet is linear in the number of correspondences. We
apply it to geometry re-ranking in a search engine, yielding
superior performance with the same space requirements but
a dramatic speed-up compared to the state of the art.

1. Introduction
Discriminative local features have made sub-linear index-
ing of appearance possible, but geometry indexing still ap-
pears elusive if one targets invariance, global geometry ver-
ification, high precision and low space requirements. Large
scale image retrieval solutions typically consider geometry
in a second, re-ranking phase. The latter is linear in the
number of images to match, hence its speed is crucial.

Exploiting local shape of features (e.g. local scale, ori-
entation, or affine parameters) to extrapolate relative trans-
formations, it is either possible to construct RANSAC hy-
potheses by single correspondences [14], or to see corre-
spondences as Hough votes in a transformation space [12].
In the former case one still has to count inliers, so the pro-
cess is quadratic in the number of (tentative) correspon-
dences. In the latter, voting is linear but further verification
with inlier count seems unavoidable.

Flexible spatial models are more typical in recognition;
these are either not invariant to geometric transformations,
or use pairwise constraints to detect inliers without any
rigid motion model [11]. The latter are at least quadratic

Figure 1. Top: HPM matching of two images of Oxford dataset, in
0.6ms. All tentative correspondences are shown. The ones in cyan
have been erased. The rest are colored according to strength, with
red (yellow) being the strongest (weakest). Bottom: Inliers found
by 4-dof FSM and affine-model LO-RANSAC, in 7ms.

in the number of correspondences and their practical run-
ning time is still prohibitive if our target for re-ranking is
thousands of matches per second.

We develop a relaxed spatial matching model which ap-
plies the concept of pyramid match [8] to the transforma-
tion space. Using local feature shape to generate votes, it is
invariant to similarity transformations, free of inlier-count
verification and linear in the number of correspondences. It
imposes one-to-one mapping and is flexible, allowing non-
rigid motion and multiple matching surfaces or objects.

Fig. 1 compares our Hough pyramid matching (HPM)
to fast spatial matching (FSM) [14]. Both buildings are
matched by HPM, while inliers from one surface are only
found by FSM. But our major achievement is speed: in a
given query time, HPM can re-rank one order of magnitude
more images than the state of the art in geometry re-ranking.
We give a more detailed account of our contribution in sec-
tion 2 after discussing the most related prior work.



Applications in vision
Localization, pose estimation [Sattler et al. ’12][Li et al. ’12]

Fast Image-Based Localization using Direct 2D-to-3D Matching

Torsten Sattler, Bastian Leibe, Leif Kobbelt
RWTH Aachen University
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Abstract
Recently developed Structure from Motion (SfM) recon-

struction approaches enable the creation of large scale 3D
models of urban scenes. These compact scene representa-
tions can then be used for accurate image-based localiza-
tion, creating the need for localization approaches that are
able to efficiently handle such large amounts of data. An
important bottleneck is the computation of 2D-to-3D cor-
respondences required for pose estimation. Current state-
of-the-art approaches use indirect matching techniques to
accelerate this search. In this paper we demonstrate that
direct 2D-to-3D matching methods have a considerable
potential for improving registration performance. We de-
rive a direct matching framework based on visual vocabu-
lary quantization and a prioritized correspondence search.
Through extensive experiments, we show that our frame-
work efficiently handles large datasets and outperforms cur-
rent state-of-the-art methods.

1. Introduction
Image-based localization is an important problem in

computer vision. Its applications include localization and
navigation for both pedestrians [22, 31, 13] and robots
[6, 5], Augmented Reality [1, 3], and the visualization of
photo collections [26]. Image-based localization is also an
important part in the pipeline of higher-level computer vi-
sion tasks such as semantic object annotation [9] and can
be used as an initial pose estimate to speed up large-scale
reconstructions from Internet photo collections [27].

Traditionally, large-scale image-based localization has
been treated as an image retrieval problem. After finding
those images in a database that are most similar to the query
image, the location of the query can be determined relative
to them [22, 31]. The huge progress achieved in the field
of image retrieval enables the use of an increasing num-
ber of images for the representation of real world scenes
[25, 19, 20]. However, the localization accuracy obtained
this way cannot be better than the precision of the GPS
positions available for the database images. To achieve a
higher localization accuracy, more detailed information is
needed which can be obtained from a 3D reconstruction
of the scene. Using these models additionally permits to

Figure 1: Our approach for image-based localization accu-
rately registers query images (bottom right) to a 3D scene
model of an entire city (top left, close-up view) using an
efficient 2D-to-3D matching framework.

estimate the orientation (and thus the complete pose) of
the camera and yields a much more structured representa-
tion of the scenes. Recent advances in SfM research [27]
now make it possible to construct models on a city-scale
level consisting of millions of points in only a few hours
[8, 29, 21], creating the need for image-based localization
methods that can handle such large datasets.

Essential for image-based localization using 3D models
is to establish correspondences between 2D local features in
the query image and 3D points in the model. The common
approach is to use the feature descriptors, e.g. SIFT [17],
for the 3D points computed during the reconstruction, for-
mulating the correspondence search as a descriptor match-
ing problem. Following the terminology from [16] we re-
fer to 2D image features and their descriptors as features
and to 3D points and their descriptors as points. We distin-
guish between direct and indirect 2D-to-3D matching. Di-
rect matching tries to find the 3D point corresponding to a
2D feature by searching for the nearest neighbors of that
feature’s descriptor in the space containing the 3D point de-
scriptors, while indirect methods use an intermediate con-
struct to represent points and their descriptors which does
not preserve the proximity in descriptor space. Classical di-
rect matching approaches such as approximative tree-based

2011 IEEE International Conference on Computer Vision
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Applications in vision
Classification [Boiman et al. ’08][McCann & Lowe ’12]

Figure 3. “Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small. Top right image: For each descrip-
tor at each point in Q we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)

the entire class C (using all images I ∈ C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributions of Q
and C. As can be seen in Fig. 3, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown useful in [17, 4].
We prove (Sec. 3) that under the Naive-Bayes assump-

tion, the optimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (KL, χ2, etc.)

3. Probabilistic Formulation
In this section we derive the optimal Naive-Bayes im-

age classifier, which is approximated by NBNN (Sec. 4).
Given a new query (test) image Q, we want to find its
class C. It is well known [7] that maximum-a-posteriori
(MAP) classifier minimizes the average classification er-
ror: Ĉ = argmaxC p(C|Q). When the class prior p(C)
is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

Ĉ = argmax
C

p(C|Q) = argmax
C

p(Q|C).

Let d1, ..., dn denote all the descriptors of the query im-
age Q. We assume the simplest (generative) probabilistic
model, which is the Naive-Bayes assumption (that the de-
scriptors d1, ..., dn ofQ are i.i.d. given its class C), namely:

p(Q|C) = p(d1, .., dn|C) =

n∏

i=1

p(di|C)

Taking the log probability of the ML decision rule we get:

Ĉ = argmax
C

log(p(C|Q)) = argmax
C

1

n

n∑

i=1

log p(di|C)

(1)
The simple classifier implied by Eq. (1) is the optimal clas-
sification algorithm under the Naive-Bayes assumption. In
Sec 4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

Naive-Bayes classifier ⇔ Minimum “Image-to-Class”
KL-Distance: In Sec. 2.2 we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of Eq. (1) is equivalent
to minimizing “Query-to-Class” KL-distances.
Eq. (1) can be rewritten as:

Ĉ = argmax
C

∑

d

p(d|Q) log p(d|C)

where we sum over all possible descriptors d. We can sub-
tract a constant term independent of C from the right hand
side of the above equation, without affecting Ĉ. By sub-
tracting

∑
d p(d|Q) log p(d|Q), we get:

Ĉ = argmax
C

(
∑

d∈D

p(d|Q) log
p(d|C)

p(d|Q)
)

= argmin
C

(KL(p(d|Q)‖p(d|C)) ) (2)

where KL(·‖·) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumption, the optimal MAP classifier mini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the queryQ and the class C.
A similar relation between Naive-Bayes classification

and KL-distance was used in [28] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by others [6, 16, 20, 27, 30], but
again – between pairs of images.

4. The Approximation Algorithm Using NN
In this section we present the “NBNN” classifier, which

accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Sec. 3.

Non-Parametric Descriptor Density Estimation:
The optimal MAP Naive-Bayes image classifier of Eq. (1)
requires computing the probability density p(d|C) of de-
scriptor d in a classC. Because the number of local descrip-
tors in an image database is huge (on the order of the num-
ber of pixels in the database), a Parzen density estimation



Applications in vision
BoW (patch quantization) [Sivic et al. ’03][Philbin et al. ’07]
Vector quantization → visual words
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Applications in vision
BoW (codebook construction) [Philbin et al. ’07][Avrithis ’12]
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Applications in vision
Image clustering [Gong et al. ’15][Avrithis ’15]

Web Scale Photo Hash Clustering on A Single Machine

Yunchao Gong, Marcin Pawlowski, Fei Yang, Louis Brandy, Lubomir Boundev, Rob Fergus
Facebook

Abstract

This paper addresses the problem of clustering a very
large number of photos (i.e. hundreds of millions a day)
in a stream into millions of clusters. This is particularly
important as the popularity of photo sharing websites, such
as Facebook, Google, and Instagram. Given large number
of photos available online, how to efficiently organize them
is an open problem.

To address this problem, we propose to cluster the binary
hash codes of a large number of photos into binary cluster
centers. We present a fast binary k-means algorithm that
works directly on the similarity-preserving hashes of im-
ages and clusters them into binary centers on which we can
build hash indexes to speedup computation. The proposed
method is capable of clustering millions of photos on a sin-
gle machine in a few minutes. We show that this approach
is usually several magnitude faster than standard k-means
and produces comparable clustering accuracy. In addition,
we propose an online clustering method based on binary k-
means that is capable of clustering large photo stream on
a single machine, and show applications to spam detection
and trending photo discovery.

1. Introduction

Photo sharing websites are becoming extremely popu-
lar, hundreds of millions of photos are uploaded every day.
For example, Facebook announced it has about 300 mil-
lion photo uploads every day. However, how to efficiently
organize such huge online photo collections is becoming
a challenge. In this paper, we propose to study the prob-
lem of clustering large photo collections at the scale of hun-
dreds millions a day, This process has many practical ap-
plications. For example, clustering large photo collections
into near-duplicate image clusters can help find spam pho-
tos. Online clustering photos into semantic clusters can
be used to find time-sensitive photo clusters and trending
events. For these scenarios, we need online clustering meth-
ods which can handle hundreds of millions photos a day and
can store a very large number of centers in memory.

Image clustering is a well-studied problem in the litera-
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Figure 1. The problem setting of this paper. We are interested in
clustering a large amount of image hash codes into compact binary
centers.

ture [17, 24, 10, 37, 43, 35]. However, how to efficiently
cluster such huge collections of photos on a single machine
has received little attention. This problem is challenging be-
cause 1) it is hard to compactly represent such huge photo
collections; 2) it is computationally very inefficient to per-
form clustering on large datasets; and 3) it is very ineffi-
cient to store and index increasing large number of clus-
ter centers. The first problem has been addressed by recent
works on similarity preserving hashing [44, 12, 30], that try
to represent images as compact hash codes. For the second
challenge, there is work using kd-tree [32] to speed up the
clustering process, but it does not address the third chal-
lenge, as kd-tree needs to store all the real valued centers in
memory. Photo clustering will become infeasible when the
number of clusters accumulates to tens of millions or even
more.

In this paper, we try to address three challenges by devel-
oping a method that clusters image similarity binary codes
into a set of compact binary centers, which can be easily in-
dexed. The basic idea is illustrated in Figure 1. We first rep-
resent the photos using similarity preserving binary codes
[44, 12, 30], enabling us to store large number of photos in
memory. Then we propose a variant of the classic kmeans
algorithm denoted as Binary k-means (Bk-means) that con-
strains the centers to be binary. The centers also live on the
Hamming cube. This enables us to easily use a multi-index

19978-1-4673-6964-0/15/$31.00 ©2015 IEEE



Overview (1)

Binary codes

• spectral hashing [Weiss et al. ’08]

• iterative quantization [Gong & Lazebnik ’11]

Quantization

• vector quantization (VQ) [Gray ’84]

• product quantization (PQ) [Jégou et al. ’11]

• optimized product quantization (OPQ) [Ge et al. ’13]
Cartesian k-means [Norouzi & Fleet ’13]

• locally optimized product quantization (LOPQ) [Kalantidis & Avrithis
’14]
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Overview (2)

Non-exhaustive search

• non-exhaustive PQ [Jégou et al. ’11]

• inverted multi-index [Babenko & Lempitsky ’12]

• multi-LOPQ [Kalantidis & Avrithis ’14]

Clustering

• hierarchical k-means [Nister & Stewenius ’06]

• approximate k-means [Philbin et al. ’07]

• approximate Gaussian mixtures [Kalantidis & Avrithis ’12]

• dimensionality-recursive vector quantization [Avrithis ’13]

• ranked retrieval [Broder et al. ’14]

• inverted-quantized k-means [Avrithis et al. ’15]
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Spectral hashing
[Weiss et al. ’08]

• Given a set of n data points xi ∈ Rd, encode each by binary code yi

• Define similarity matrix S with Sij = exp(−‖xi − xj‖2/t2)
• Require binary codes to be similarity preserving, balanced, and

uncorrelated:
minimize

∑
ij Sij‖yi − yj‖2

subject to yi ∈ {−1, 1}k∑
i yi = 0

1
n

∑
i yiy

>
i = I.
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Spectral hashing
Example

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D.Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.
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RBM (two hidden layers)
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Spectral hashing

a) 3 bits b) 7 bits c) 15 bits

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but

6

• Red: outer-product eigenfunctions: excluded

• Better to cut long dimension first

• Lower spatial frequencies are better than higher ones
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better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but
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• Red: outer-product eigenfunctions: excluded

• Better to cut long dimension first

• Lower spatial frequencies are better than higher ones

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D.Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.
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Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but
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• Red: radius = 0; green: radius = 1; blue: radius = 2



Iterative quantization
[Gong and Lazebnik ’11]

Quantize each data point to the closest vertex of the binary cube,
(±1,±1).

−1 0 1
−1

0

1

Average quantization error: 1.00

(a) PCA aligned.

−1 0 1
−1

0

1

Average quantization error: 0.93

(b) Random Rotation.

−1 0 1
−1

0

1

Average quantization error: 0.88

(c) Optimized Rotation.

Figure 1. Toy illustration of the proposed ITQ method (see Section
2 for details). The basic binary encoding scheme is to quantize
each data point to the closest vertex of the binary cube, (±1,±1)
(this is equivalent to quantizing points according to their quad-
rant). (a) The x and y axes correspond to the PCA directions of
the data. Note that quantization assigns points in the same cluster
to different vertices. (b) Randomly rotated data – the variance is
more balanced and the quantization error is lower. (c) Optimized
rotation found by ITQ – quantization error is lowest, and the par-
titioning respects the cluster structure.

ternating minimization approach for refining the initial or-
thogonal transformation to reduce quantization error. This
approach, dubbed iterative quantization (ITQ) has con-
nections to the orthogonal Procrustes problem [15] and to
eigenvector discretization for multi-class spectral partition-
ing [22], and in our experiments it outperforms the methods
of [12, 19, 21]. Moreover, ITQ can be coupled not only with
PCA, but with any projection onto an orthogonal basis. In
particular, we show how to combine ITQ with canonical
correlation analysis (CCA) to incorporate information from
clean or noisy class labels in order to improve the semantic
consistency of the code.

The rest of this paper is organized as follows. The ITQ
method is described in Section 2. The experimental evalu-
ation presented in Section 3 shows results for the unsuper-
vised scenario, where ITQ is applied to PCA-projected data.
Section 4 describes the supervised version of our method
based on CCA.

2. Unsupervised Code Learning
In this section, we address the problem of learning bi-

nary codes without any supervisory information in the form
of class labels. We first apply linear dimensionality reduc-
tion to the data, and then perform binary quantization in the
resulting space. For the first step, discussed in Section 2.1,
we follow the maximum variance formulation of [19, 21],
which yields PCA projections. The major novelty of our
method is in the second step (Section 2.2), where we try to
preserve the locality structure of the projected data by ro-
tating it so as to minimize the discretization error. Figure 1
illustrates the idea behind our method.

Let us first introduce our notation. We have a set of n
data points {x1,x2, . . . ,xn}, xi ∈ Rd, that form the rows

of the data matrix X ∈ Rn×d. We assume that the points
are zero-centered, i.e.,

∑n
i=1 xi = 0. Our goal is to learn

a binary code matrix B ∈ {−1, 1}n×c, where c denotes the
code length.1 For each bit k = 1, . . . , c, the binary encoding
function is defined by hk(x) = sgn(xwk), where wk is a
column vector of hyperplane coefficients and sgn(v) = 1 if
v ≥ 0 and 0 otherwise. For a matrix or a vector, sgn(·) will
denote the result of element-wise application of the above
function. Thus, we can write the entire encoding process
as B = sgn(XW ), where W ∈ Rd×c is the matrix with
columns wk.

2.1. Dimensionality Reduction

Following the formulation of [19, 21], we want to pro-
duce an efficient code in which the variance of each bit is
maximized and the bits are pairwise uncorrelated. We can
do this by maximizing the following objective function:

I(W ) =
∑

k

var(hk(x)) =
∑

k

var(sgn(xwk)) ,

1

n
BTB = I .

As shown in [19], the variance is maximized by encod-
ing functions that produce exactly balanced bits, i.e., when
hk(x) = 1 for exactly half of the data points and−1 for the
other half. However, the requirement of exact balancedness
makes the above objective function intractable. Adopting
the same signed magnitude relaxation as in [19], we get the
following continuous objective function:

Ĩ(W ) =
∑

k

E(‖xwk‖22) =
1

n

∑

k

wT
kX

TXwk

=
1

n
tr(WTXTXW ) , WTW = I . (1)

The constraintWTW = I requires the hashing hyperplanes
to be orthogonal to each other, which is a relaxed version
of the requirement that code bits be pairwise decorrelated.
This objective function is exactly the same as that of Prin-
cipal Component Analysis (PCA). For a code of c bits, we
obtain W by taking the top c eigenvectors of the data co-
variance matrix XTX .

2.2. Binary Quantization

Let v ∈ Rc be a vector in the projected space. It is easy
to show (see below) that sgn(v) is the vertex of the hyper-
cube {−1, 1}c closest to v in terms of Euclidean distance.
The smaller the quantization loss ‖ sgn(v)−v‖2, the better
the resulting binary code will preserve the original locality
structure of the data. Now, going back to eq. (1), it is clear

1In our formulation, the entries of B take on values {−1, 1} instead
of {0, 1} because the proposed quantization-based scheme of Section 2.2
requires both the data and the binary cube to be zero-centered.
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Vector quantization
[Gray ’84]

minimize E(C) =
∑

x∈X
min
c∈C
‖x− c‖2 =

∑

x∈X
‖x− q(x)‖2

distortion dataset codebook quantizer



Vector quantization
[Gray ’84]

minimize E(C) =
∑

x∈X
min
c∈C
‖x− c‖2 =

∑

x∈X
‖x− q(x)‖2

distortion dataset codebook quantizer



Vector quantization
[Gray ’84]

• For small distortion → large k = |C|:
• hard to train
• too large to store
• too slow to search



Product quantization
[Jégou et al. ’11]

minimize
∑

x∈X
min
c∈C
‖x− c‖2

subject to C = C1 × · · · × Cm



Product quantization
[Jégou et al. ’11]

• train: q = (q1, . . . , qm) where q1, . . . , qm obtained by VQ

• store: |C| = km with |C1| = · · · = |Cm| = k

• search: ‖y − q(x)‖2 =

m∑

j=1

‖yj − qj(xj)‖2 where qj(xj) ∈ Cj



Optimized product quantization
[Ge et al. ’13]

minimize
∑

x∈X
min
ĉ∈Ĉ
‖x−R>ĉ‖2

subject to Ĉ = C1 × · · · × Cm
R>R = I



Optimized product quantization
Parametric solution for x ∼ N (0,Σ)

• independence: PCA-align by diagonalizing Σ as UΛU>

• balanced variance: permute Λ by π such that
∏
i λi is constant in

each subspace; R← UP>
π

• find Ĉ by PQ on rotated data X̂ = RX



Locally optimized product quantization
[Kalantidis & Avrithis ’14]

• compute residuals r(x) = x−Q(x) on coarse quantizer Q

• collect residuals Zi = {r(x) : Q(x) = ci} per cell

• train (Ri, qi)← OPQ(Zi) per cell



Locally optimized product quantization
[Kalantidis & Avrithis ’14]

• residual distributions closer to Gaussian assumption

• better captures the support of data distribution, like local PCA
• multimodal (e.g. mixture) distributions
• distributions on nonlinear manifolds



Local principal component analysis
[Kambhatla & Leen ’97]
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But, we are not doing dimensionality reduction!
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Inverted multi-index
[Babenko & Lempitsky ’12]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• train codebook C from dataset {xn}, defining a coarse quantizer Q

• quantize each point x to Q(x) and encode its residual
r(x) = x−Q(x) by product quantizer q

• given query y, visit w coarse cells closest to y



Inverted multi-index
[Babenko & Lempitsky ’12]

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

inverted index inverted multi-index
Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query y, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to y



Inverted multi-index
Multi-sequence algorithm
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Figure 2. Top – The overview of the query process within the inverted multi-index. First, the two halves of the query q1 and q2 are
matched w.r.t. sub-codebooks U and V to produce the two sequences of codewords ordered by the distance (denoted r and s) from the
respective query half. Then, those sequences are traversed with the multi-sequence algorithm that outputs the pairs of codewords ordered
by the distance from the query. The lists associated with those pairs are concatenated to produce the answer to the query. Bottom – The
first iterations of the multi-sequence algorithm in this example. Red denotes pairs in the priority queue, blue indicates traversed pairs (the
pair traversed at the current iteration is emphasized). Green numbers correspond to pair indices (i and j), while black symbols give original
codewords (uα(i) and vβ(j)). The numbers in entries are the distances r(i)+s(j) = d

(
q, [uα(i) vβ(j)]

)
.

{(r(i), s(j)) | i = 1 . . . L, j = 1 . . . L} in the or-
der of the increasing sum r(i) + s(j) (which equals
d(q, [uα(i) vβ(j)])). In this way, the centroids [uα(i) vβ(j)]
are visited in the order of increasing distance from q. The
traversal starts from the pair (1, 1) naturally corresponding
to the cell around the centroid [uα(1) vβ(1)], which the
query falls into. During the traversal, the lists Wα(i) β(j)

are concatenated, until the length of the answer exceeds the
predefined length T , at which point the traversal stops.

We propose an algorithm to perform such a traver-
sal (Figure 2-bottom). This multi-sequence algorithm is
based around a priority queue of index pairs (i, j), where
the priority of each pair is defined as − (r(i) + s(j)) =
−d

(
q, [uα(i) vβ(j)]

)
. The queue is initialized with a sin-

gle pair (1, 1). At each subsequent step t, the pair (it, jt)
with top priority (lowest distance from q) is popped from
the queue and considered traversed (the associated list
Wα(i) β(j) is added to the output list). The pairs (it + 1, jt)
and (it, jt+1) are then considered for the insertion into the
priority queue. The pair (it+1, jt) is inserted into the queue
if its other preceding pair (it + 1, jt − 1) has also been tra-
versed (or if jt=1). Similarly, the pair (it, jt+1) is inserted
into the queue if its other preceding pair (it− 1, jt+1) has
also been traversed (or if it=1). The idea is that each pair
is inserted only once when both of its preceding pairs are
traversed.

The multi-sequence algorithm produces a sequence of

pairs (i, j), whose lists Wi,j are accumulated into the query
response. One can prove the correctness of the algorithm:

Corollary 1 (correctness): the multi-sequence algo-
rithm produces the sequence of pairs in the order of in-
creasing r(i) + s(i) and will eventually visit every pair in
{1 . . . L} ⊗ {1 . . . L}.

Regarding the efficiency of the algorithm, one can prove
that the queue within the algorithm grows slow enough:

Corollary 2: at the tth step of the algorithm, when t
pairs have been output, the priority queue is no longer than
0.5 +

√
2t+ 0.25.

The proof of both corollaries and the pseudocode of the
multi-sequence algorithm are given in the supplementary
material.

Inverted index vs. inverted multi-index. Let us now
discuss the relative efficiency of the two indexing structures,
given the same codebook size K. In this situation, the in-
duced subdivision of the space is very different for the stan-
dard inverted index and for the inverted multi-index (Fig-
ure 1). In particular, the standard index maintains K lists
that correspond to the space subdivision into K cells, while
the multi-index maintains K2 lists corresponding to a much
finer subdivision of the space. While the lengths of the cell
lists within the inverted index tend to be balanced (due to
the nature of the k-means algorithm), the distribution of list
lengths within the multi-index is highly non-uniform. In
particular, there are lots of empty lists that correspond to ui
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Figure 3. Recall as a function of the candidate list length. For the same codebook size K, we compare three systems with similar retrieval
and construction complexities: an inverted index with K codewords, an inverted index with larger codebook (218 codewords) sped up by a
kd-tree search with a maximum of K comparisons, an inverted multi-index with codebooks having K codewords. In all three experiments,
multi-indices returned shorter lists with higher recall.
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Figure 4. Time (in milliseconds) required to retrieve a list of a
particular length from the inverted multi-index and index on the
BIGANN dataset.

is needed. Overall, the recall@T of both baselines was
uniformly worse than the recall@T of the inverted multi-
indices in our experiments. Both, kd-trees and multi-indices
incur some computational overhead over inverted indices
(tree search and multi-sequence algorithm, respectively)
and we now address the question how big this overhead is
for the inverted multi-indices.

How fast is querying an inverted multi-index? To
answer this question, we give the timings for the inverted
multi-indices (K = 212,K = 214) on the BIGANN dataset
as a function of the requested list length in Figure 4. The
multi-index retrieval time essentially remains flat until the
list length grows into many thousands, which means that
the computational cost of the multi-sequence algorithm re-
mains small compared to the quantization. We also give the
timing curves for inverted indices with K = 212, 214. Their
approximately two-fold speed advantage over the second-
order indices (for the same K) stems most likely from the
particular efficiency of vector instructions (BLAS library)
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Recall@T*=1000
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Figure 5. Recall@T ∗ (T ∗ = 1 to 10000) of the Multi-ADC sys-
tem (storing m = 8 extra bytes per vector for reranking) for the
BIGANN dataset. The curves correspond to the Multi-ADC sys-
tem that reranks a candidate list of a certain length T (x-axis)
returned by the second-order multi-index (K = 214), while the
flat dashed lines corresponds to the system that reranks the en-
tire dataset. After reranking a tiny part of the billion-size dataset,
Multi-ADC is able to match the performance of the exhaustive
search-based system.

on our CPU. This efficiency makes matching against code-
books faster in the inverted index case despite the same
number of scalar operations.

Put together, Figure 3 and Figure 4 demonstrate the ad-
vantage of the second-order inverted multi-index over the
standard inverted index. Thus, the multi-index with K =
212 provides much higher recall and is faster to query than
the inverted index with K = 214. In Figure 4, we also
provide timings for the fourth-order index and small K.
Here, querying for short list lengths is much faster, however
the overhead from the multi-sequence algorithm kicks in at
shorter lengths (hundreds) exhibiting the main weakness of
higher-order inverted multi-indices.

Nearest neighbor search with reranking. The goal of



Multi-LOPQ
[Kalantidis & Avrithis ’14]

x = ( x1 , x2 )

q2

q1 ...

..
.



Multi-LOPQ
Result on SIFT1B, 128-bit codes

T Method R = 1 10 100

20K
IVFADC+R [Jégou et al. ’11] 0.262 0.701 0.962
LOPQ+R [Kalantidis & Avrithis ’14] 0.350 0.820 0.978

10K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.304 0.665 0.740
OMulti-D-OADC [Ge et al. ’13] 0.345 0.725 0.794
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.430 0.761 0.782

30K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.328 0.757 0.885
OMulti-D-OADC [Ge et al. ’13] 0.366 0.807 0.913
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.463 0.865 0.905

100K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.334 0.793 0.959
OMulti-D-OADC [Ge et al. ’13] 0.373 0.841 0.973
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.476 0.919 0.973



Application: image search



Deep learned image features
[Krizhevsky et al. ’12] [Babenko et al. ’14]

2 A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky

trained to recognize Image-Net [1] classes. We measure such performance on
four standard benchmark datasets: INRIA Holidays [8], Oxford Buildings, Ox-
ford Building 105K [19], and the University of Kentucky benchmark (UKB) [16].
Perhaps unsurprisingly, these deep features perform well, although not better
than other state-of-the-art holistic features (e.g. Fisher vectors). Interestingly,
the relative performance of different layers of the CNN varies in different re-
trieval setups, and the best performance on the standard retrieval datasets is
achieved by the features in the middle of the fully-connected layers hierarchy.

Fig. 1. The convolutional neural network architecture used on our experiments. Purple
nodes correspond to input (an RGB image of size 224 × 224) and output (1000 class
labels). Green units correspond to outputs of convolutions, red units correspond to the
outputs of max pooling, and blue units correspond to the outputs of rectified linear
(ReLU) transform. Layers 6, 7, and 8 (the output) are fully connected to the preceding
layers. The units that correspond to the neural codes used in our experiments are
shown with red arrows. Stride=4 are used in the first convolutional layer, and stride=1
in the rest.

The good performance of neural codes demonstrate their universality, since
the task the network was trained for (i.e. classifying Image-Net classes) is quite
different from the retrieval task we consider. Despite the evidence of such univer-
sality, there is an obvious possibility to improve the performance of deep features
by adapting them to the task, and such adaptation is the subject of the second
part of the paper. Towards this end, we assemble a large-scale image dataset,
where the classes correspond to landmarks (similar to [14]), and retrain the CNN
on this collection using the original image-net network parameters as initializa-
tion. After such training, we observe a considerable improvement of the retrieval
performance on the datasets with similar image statistics, such as INRIA Holi-
days and Oxford Buildings, while the performance on the unrelated UKB dataset
degrades. In the second experiment of this kind, we retrain the initial network
on the Multi-view RGB-D dataset [12] of turntable views of different objects. As
expected, we observe the improvement on the more related UKB dataset, while
the performance on other datasets degrades or stays the same.

Finally, we focus our evaluation on the performance of the compact ver-
sions of the neural codes. We evaluate the performance of the PCA compression



Image search on CNN activations
[Razavian ’14, Babenko ’15, Kalantidis ’15, Tolias ’16]
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Figure 6. Performance of AML versus number of re-ranked images. On the left we present results on Oxford105k with MCA using AlexNet
and VGG16. Results with VGG16 using MCA and rMCA are presented on Oxford105k (middle) and on Paris106k (right).

Query 1 → 1 21 → 2 19 → 3 13 → 4 3 → 5 25 → 6 2 → 7 8 → 8

Query 1 → 1 4 → 2 220 → 3 52 → 4 15 → 5 212 → 6 10 → 7 159 → 8 26 → 9 860 → 10

Query 120 → 1 118 → 2 753 → 3 467 → 4 631 → 5 82 → 6 594 → 7
Figure 8. Examples of top retrieved images after re-ranking with AML. On the left we show the query image and depict the bounding box
in blue color. We present the top ranked images and report for each image its initial and final ranking. The localization window is shown
in magenta, while positive (negative) images are depicted with green (red) border.

ever, we compete with such approaches and show that AML
can even outperform them. Particularly, we perform lower
on Oxford but achieve the highest performance on Paris.

Razavian et al. [32] propose to perform region cross-
matching and accumulate the maximum per query region
similarity. We evaluate this cross-matching process on the
collection of regional vectors used in rMCA; we simply skip
the final aggregation process and keep the regional vectors
individually. The cross-matching achieves 75.2% mAP on
Oxford5k as a filtering stage, while adding re-ranking with
AML acts in a complementary way and increases the per-
formance up to 78.5%. However, cross-matching has two
drawbacks. Firstly, the regions vectors have to be stored in-
dividually and increase the memory requirements by a fac-
tor of |B|. Secondly, the complexity cost is linear in the
number of indexed images and quite high since it requires
to compute |B|2 (e.g. 1024 [32]) inner products per image.
Note that, non-standard evaluation protocol is followed for
the results reported in the work of Razavian et al. [32] by
enlarging the query bounding boxes. In addition, the cost of
their feature extraction is extremely high since they feed 32
images of resolution 576× 576 to the CNN.

9. Conclusions

In this work, we re-visit both filtering and re-ranking re-
trieval stages by employing CNN activations of convolu-
tional layers. Our compact vector representation encodes
several image regions in a simple aggregation manner and
is shown to outperform state-of-the-art solutions.

The purpose of our localization is to increase the perfor-
mance of retrieval system that is initially based on a com-
pact representation. The same CNN information adopted
during the filtering stage is employed for re-ranking as well.
Our approach competes with state-of-the-art methods that
employ costly geometric matching or query expansion and
we achieve the highest performance on Paris dataset.
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Multi-LOPQ on CNN activations
Image query on Flickr 100M (4k → 128 dimensions)
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Hierarchical k-means
[Nister & Stewenius ’06]
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Abstract

A recognition scheme that scales efficiently to a large

number of objects is presented. The efficiency and quality is

exhibited in a live demonstration that recognizes CD-covers

from a database of 40000 images of popular music CD’s.

The scheme builds upon popular techniques of indexing

descriptors extracted from local regions, and is robust

to background clutter and occlusion. The local region

descriptors are hierarchically quantized in a vocabulary

tree. The vocabulary tree allows a larger and more

discriminatory vocabulary to be used efficiently, which we

show experimentally leads to a dramatic improvement in

retrieval quality. The most significant property of the

scheme is that the tree directly defines the quantization. The

quantization and the indexing are therefore fully integrated,

essentially being one and the same.

The recognition quality is evaluated through retrieval

on a database with ground truth, showing the power of

the vocabulary tree approach, going as high as 1 million

images.

1. Introduction

Object recognition is one of the core problems in

computer vision, and it is a very extensively investigated

topic. Due to appearance variabilities caused for

example by non-rigidity, background clutter, differences in

viewpoint, orientation, scale or lighting conditions, it is a

hard problem.

One of the important challenges is to construct methods

that scale well with the size of the database, and can select

one out of a large number of objects in acceptable time. In

this paper, a method handling a large number of objects is

presented. The approach belongs to a currently very popular

class of algorithms that work with local image regions and

This work was supported in part by the National Science Foundation

under award number IIS-0545920, Faculty Early Career Development

(CAREER) Program.

Figure 1. A vocabulary tree with branch factor three and only

two levels for illustration purposes. A large number of elliptical

regions are extracted from the image and warped to canonical

positions. A descriptor vector is computed for each region.

The descriptor vector is then hierarchically quantized by the

vocabulary tree. In the first quantization layer, the descriptor is

assigned to the closest of the three green centers. In the second

layer, it is assigned to the closest of the three blue descendants to

the green center. With each node in the vocabulary tree there is an

associated inverted file with references to the images containing

an instance of that node. The images in the database are scored

hierarchically using the inverted files at multiple levels of the

vocabulary tree.



Approximate k-means
[Philbin et al. ’07][Gong et al. ’15]

Web-scale image clustering revisited

Yannis Avrithis†, Yannis Kalantidis‡, Evangelos Anagnostopoulos†, Ioannis Z. Emiris†
†University of Athens, ‡Yahoo! Labs

Abstract

Large scale duplicate detection, clustering and mining
of documents or images has been conventionally treated
with seed detection via hashing, followed by seed growing
heuristics using fast search. Principled clustering meth-
ods, especially kernelized and spectral ones, have higher
complexity and are difficult to scale above millions. Under
the assumption of documents or images embedded in Eu-
clidean space, we revisit recent advances in approximate
k-means variants, and borrow their best ingredients to in-
troduce a new one, inverted-quantized k-means (IQ-means).
Key underlying concepts are quantization of data points and
multi-index based inverted search from centroids to cells.
Its quantization is a form of hashing and analogous to seed
detection, while its updates are analogous to seed growing,
yet principled in the sense of distortion minimization. We
further design a dynamic variant that is able to determine
the number of clusters k in a single run at nearly zero ad-
ditional cost. Combined with powerful deep learned rep-
resentations, we achieve clustering of a 100 million image
collection on a single machine in less than one hour.

1. Introduction

NEARLY two decades ago [6], discovering duplicates
among millions of web documents was the motiva-

tion behind one of the first locality sensitive hashing (LSH)
schemes, later known as MinHash [7]. The same method
was subsequently used to select seeds which, followed by
efficient search and spatial verification, would lead to clus-
tering and mining in collections of up to 105 images [10].

Many approaches followed, but problems have remained
such as failing to discover infrequent documents, seed
growing relying on heuristics, or more principled methods
like medoid shift still being too costly to scale up [38].
Pairwise matching remains a problem that is inherently
quadratic in the number of documents, and approximate
nearest neighbor (ANN) search has been employed to help.
Approximate k-means (AKM) is one such attempt [26],
where each data point is assigned to the nearest centroid
by ANN search. Binary k-means (BKM) [14] is another

(a) Ranked retrieval [8] (b) DRVQ [1]

(c) EGM [2] (d) This work: IQ-means

Figure 1. Different k-means variants. ( ) Data points; ( ) cen-
troids; ( ) search range; ( ) estimated cluster extent, used to dy-
namically determine k.

recent alternative where points and centroids are binarized
and ANN search follows in Hamming space. But in this
work we focus our attention on the inverse process.

Observing that data points remain fixed during k-means
iterations, ranked retrieval [8] chooses to search for near-
est data points using centroids as queries, as illustrated in
Fig. 1a. This choice dispenses the need to rebuild an in-
dex at each iteration, and requires less queries because cen-
troids are naturally fewer than data points. Points are ex-
amined more than once and not all points are assigned to
centroids; it is observed however that distortion is not influ-
enced much. If range queries were used, this method would
be very similar to mean shift [9], except that centroid dis-
placement is not independent here.

Dimensionality-recursive vector quantization (DRVQ)
[1] relies on the same inverted centroid-to-data queries.

• centroids updated as in k-means

• points assigned to centroids by approximate search

• index rebuilt in every k-means iteration



Ranked retrieval
[Broder et al. ’14]

• points assigned by inverse search from centroids to points

• needs conflict resolution; points may remain unassigned

• index built only once; resembles mean shift [Cheng et al. ’95]



Dimensionality-recursive vector quantization
[Avrithis ’13]

• points quantized as in multi-index

• cells assigned exhaustively by distance map from centroids

• points assigned by lookup



Approximate Gaussian mixtures
[Kalantidis & Avrithis ’12]

• centroids & variances updated as in EM

• points soft-assigned by approximate search

• k dynamically estimated



Inverted-quantized k-means
[Avrithis et al. ’15]

• inverse search as in RR

• points quantized as in DRVQ; search as in multi-index

• k dynamically estimated as in AGM



Inverted-quantized k-means

representation: for each cell uα, with Xα = {x ∈ X : q(x) = uα}
• probability pα = |Xα|/n
• mean µα = 1

|Xα|
∑

x∈Xα x of all points in Xα

update: for each centroid cm, with Am = {α ∈ I : a(uα) = m}

cm ←
1∑

α∈Am pα

∑

α∈Am
pαµα,

assignment: for each centroid cm,

• find the w nearest sub-codewords in each of two sub-codebooks

• run multi-sequence independently in w × w search block

• assign visited cells m← a(uα); resolve conflicts



Centroid-to-cell search

tical above a few million points. There are several methods
for estimating k even dynamically like component annihila-
tion [12], DP-Means [21] and EGM [2]; here we choose to
integrate our approach with EGM, which comes as a natural
extension at nearly zero cost.

Parallelism has widely been utilized for large scale clus-
tering [24, 15], while algorithms for distributed systems ex-
ist for many popular clustering algorithms like Parallel k-
means [39] or parallel DB-SCAN [25]. We are however
interested in large scale clustering without the need of a dis-
tributed grid. We show that we are able to provide an effi-
cient k-means approximation that can cluster 100M images
in less than an hour on a single machine, while a distributed
implementation of standard k-means on the same dataset
using 300 machines on the grid takes over one day.

3. Inverted-quantized k-means (IQ-means)

Representation. We are given a dataset X of n points in
Rd, and the problem is to find k cluster centroids minimiz-
ing distortion as in k-means. IQ-M assumes the same repre-
sentation and codebook building as in multi-indexing [4]. In
particular, assuming d is even, Rd is expressed as the Carte-
sian product of two orthogonal subspaces, S1 × S2, of d/2
dimensions each. Although this decomposition is subject to
optimization [13], which we do apply in our experiments,
we assume here the simplest decomposition whereby each
vector x is written as a tuple (x1, x2) consisting of two sub-
vectors x1, x2 ∈ Rd/2.

We also assume there are two sub-codebooks U1, U2

trained independently on projections of sample data on
S1, S2 respectively. Each U ` contains s sub-codewords,
partitioning S` into s disjoint subsets for ` = 1, 2. Then,
codebook U = U1×U2 contains s× s codewords and par-
titions Rd into s × s cells. We thus refer to each codeword
u ∈ U as a cell, while U can be seen as a discrete two di-
mensional grid. Given sub-codewords u1i ∈ U1, u2j ∈ U2

with i, j ∈ [s] = {1, . . . , s}, we represent cell (u1i , u
2
j ) ∈ U

by the multi-index notation uα with α being the integer tu-
ple (i, j) ∈ I = [s] × [s]. Every point x can be quan-
tized to a cell q(x) = (q1(x1), q2(x2)), where q`(x`) =
argminu`∈U` ‖x` − u`‖ is the nearest sub-codeword of U `

to projection x` of x on subspace S` for ` = 1, 2.

Update step. Next, similarly to DRVQ [1], all points of
X are quantized on the grid and a discrete two-dimensional
distribution p of points over cells is constructed. In particu-
lar, for each cell uα, probability pα = |Xα|/n measures
the empirical frequency of points falling into uα, where
Xα = {x ∈ X : q(x) = uα}. Further, the mean
µα = 1

|Xα|
∑
x∈Xα x of all points in Xα is kept for each

cell uα. At this point, dataset X may be discarded. An
arbitrary initial set C of k centroids is assumed.

As in all k-means variants, the algorithm then alternates

c1

c2

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(a) visited cells on original grid

8

7

9

6

10

5

11

4

3

2

1

8 9 7 10 6 11 5 12 4 13 3

c1
5

4

6

3

7

2

8

1

9

10

11

12 13 11 14 10 15 9 16 8 17 7

c2

(b) search block of c1 (c) search block of c2

Figure 2. Centroid-to-cell search during assignment, for two cen-
troids c1, c2. ( ) Data points; ( ) centroids; ( ) cells V1 visited by
c1; ( ) cells V2 visited by c2; ( ) other cells.

between an assignment and an update step, where the latter
is simply given by weighted average

cm ←
1

Pm

∑

α∈Am
pαµα, (1)

for all centroids cm ∈ C. Here, Pm =
∑
α∈Am pα

is the proportion of points assigned to centroid cm and
Am = {α ∈ I : a(uα) = m} contains the indices of all
cells assigned to cm during the assignment step, where

a(u) = arg min
cm∈C

‖u− cm‖ (2)

is the index to the nearest centroid c to cell u ∈ U . In other
words, cells cα with their sample mean µα and probability
pα have completely replaced the original data. Still, assign-
ment (2) of cells to centroids is the bottleneck.

Assignment step. Here is where fast search is required. Al-
though assignment rule (2) implies a cell-to-centroid search,
we follow the inverse process as explained in section 1. As
in ranked retrieval [8], this process takes the form of a set of
individual queries for nearest cells, one for each centroid.
Search follows a multi-indexing approach in this work, in
particular using the multi-sequence algorithm [4].

Fig. 2a illustrates part of the grid, with two centroids
c1, c2 and the set of nearest cells to each centroid, say
V1, V2, in different colors. Recall that rows and columns
of the grid correspond to sub-codewords in U1, U2. These



Dynamic IQ-means
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Dynamic IQ-means

• quantize each centroid to closest cell just before search

• get centroid-to-centroid search at no extra cost

• greedily delete centroids as in EGM [Avrithis & Kalantidis ’12]



Comparison on SIFT1M with k ∈ {103, . . . , 104}
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Comparison on YFCC100M, initial k = 105

AlexNet fc7 features, 128 dimensions, optimized decomposition

Cell-KM DKM (×300) D-IQ-Means

k/k′ 100000 100000 85742
time (s) 13068.1 7920.0 140.6
precision 0.474 0.616 0.550

Cell-KM k-means on points quantized to cell

DKM distributed k-means on 300 machines



Mining on YFCC100M

Paris500k

Paris500k + YFCC100M
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