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Why faces?

1. The most frequent entity
in the media by far: e.qg.
~1.2 faces / Photo on avg

2. Understanding
identification

3. One class, billions of
Instances




Challenges in Unconstrained Face Recognition

2. lllumination

3. Expression
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4. Aging

5. Occlusion




Unconstrained Face Recognition Era:

photos of 5,7
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Labeled faces in the wild: A database for studying face recognition in unconstrained
environments, Huang, Jain, Learned-Miller, ECCVW, 2008




Face verification




Progress over the past 7 years

w Accuracy / year
Reduction of error wrt human / year
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Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments (results page),
Gary B. Huang, Manu Ramesh, Tamara Berg and Erik Learned-Miller.
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Face Recognition Pipeline
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Deep Neural Networks on aligned inputs

z

o =

- I n
K D |
< 12

pra ©
2 A S
& | L |
w | |
o I
Lo

- e ; : : : : : : F7: F8:
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

Localization Front-End ConvNet Local (Untied) Globally

ConvNet Connected

Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR, 2014.



Deep Neural Networks on aligned inputs

Transfer
Learning
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Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR, 2014.



SFCTralnlng Dataset

4.4 million photos blindly
sampled, belonging to more
than 4,000 identities




SFCTraining Dataset
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4.4 million photos blindly
sampled, belonging to more
than 4,000 identities

Many images per person,
but not too many identities

Q1: What is better for
learning a generic face
representation: more
identities or more samples
per identity?

Galanti, Wolf, Hazan. A
Theoretical Framework for

Deep Transfer Learning.
IMAIAI, 2016



V.

The tradeoffs that govern transfer learning

For a given budget of samples. How
to split between classes and samples
per class.

Having too many samples and not
enough classes leads to overfitting.
But not the other way around.

The size of the representation and
the number of training samples.

Saturation.

Galanti, Wolf, Hazan. A
Theoretical Framework for

Deep Transfer Learning.
IMAIAI, 2016



What size representation is ideal?

The network overfits less on
the SOURCE training set, and
performs better on the

_ 2 96.72
TARGET when reducing the 96.07 s = 95.87
representation layer (F7) from | -
4K dims to 256 dims. 4096 1024 256

C1: M2: C3: L4: L5: Le: §256d
calen Foskhan %02 ng rromalzaton —32filters  3x3 16 filters 16X 16x 16 x
Detection & Localization 11x11 99 9x9x16 75716 EXEx10



Can the data suggest optimal dim?

= The dimensionality of the
representations is mostly
wasted

= Full rank representation

o Decisions made based on
few dims

o EIEE
v KNG
Sea turtle .
Wardrobe . i”!E
Whale ,!“
-
"M
Grey wolf g ”
woman £ ] T8
b\
Trichinella &E-
w. 4
main ol SR

Littwin, Wolf. The Multiverse Loss for Robust Transfer Learning. CVPR 2016
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QOur goals

= Reduce the dimensionality of
the representation

1 1 1 1 1 1
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u Improve the disciminative Si?]gularvalues of the representation
power of each dimension 4
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A conventional network

Representation

Per class Training
activations loss
FeRdXC

where cis #classes
d is the representation dim



A conventional network .
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Representation

Per class Training

activations loss

\\—> Softmax

F E Rdxc
where cis #classes
d is the representation dim



The multiverse network

One network,
multiple parallel
activations

\T Softmax,
/
\ F2 \=\_’ Softmax,
[ B BN ) F3
[ \ = Softmax,
Fi = Rdxc

where cis #classes
d is the representation dim




The multiverse network -- loss

1
—z loss.
m

m is the multiplicity

\: Softmax,
/
\ F2 \=\_’ Softmax,
oo o — > F3
[ \ —— Softmax3
Fi € Rdxc

where cis #classes
d is the representation dim




The multiverse network -- backprop

1
— 2 gTCldi m is the multiplicity
m

\T Softmax,
Fl
\ F? \\— Softmax,
[ 2 BN J F3
[ \— Softmax,
Fi € Rdxc

where cis #classes
d is the representation dim




Enforcing orthogonality

= Enforce orthogonal solutions:

FU=1[fi\ f2 e /]

v, fiLf?
F2 = [f2,f2, ... f2] o

= Practically, the loss used is:
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n
L' = z —log —log
T £1 1 T £2 2
: 235:1 edi fjtb; Z§=1 edi Ji*hj

A IF 2 +2411F2 112 + 2416 12 +2411D%112

C
+AZ Z|f:i1Tfj2|
j=1




The multiverse network during test




Surprising properties emerge

The solutions are indeed
orthogonal...

... but they all give the same
softmax probabilities

The dimensionality drops
abruptly

The Fisher Spectrum improves
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Cross entropy loss supports multiplicity

= Due to the properties of the
softmax, there are multiple
ways to get the same
probabilities

Lemma 1. The minimizers F*, b* of the cross entropy

loss L are not unique, and it holds that for any vector

v € R¢ and scalar s, the solutions F* + v1%, b* + s,
are also minimizers of L.

Proof.denotingV = vif, s = sl.

L(F*+V,b*+s,D,y) =

T T
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If full rank, then Lemma 1.is IFF

= For full rank representation D
the construction shown in
Lemma 1 is the only way to
obtain multiplicity

Theorem 1. Assume the minimal loss L* (D, y) is
obtained at two solutions F1, b1 and F?, b?. If
rank(D) = d, then there exists some vector v

€ R¢ and some scalar s such that
F1 — F? =y1] and b! — b? = s1.,.

Proof gist:

From the convexity of the cross entropy
loss we infer a condition on the null space of
the Hessian.

We show that for full rank representation,
the Hessian has a zero singular value in only
a few restrictive directions.

Proof.LetW¥ = [, Py, ..., ] = F> — F1, and let ¢
denote the concatenation of the column vectors
1 into a single column vector. From convexity:

_ . OL(D,y)? _
lpT ‘72 L(D,y) Fl ¢_¢T OFOF Fllp =0

For full rank D, we aim to prove that:

Y1 =Yy = Y,




Proof of theorem 1

The hessian can be written:
62

0F;,Firy L(D,y) = Z d;d!p;(NDp;(j") - PD matrix
n

= diudiupi (DS (= D) = 81221 (G)
Z K " Z Z (- ;) deTpmploxw, v)

j=1j'=j+1

After some manipulation: Vanishes if and only

ik ;=
T —
v , OFQF ¥ =
Z Z (%)~ ) Zd AP Py~ )
J=1j'=j+1




... now add orthogonality to the mix

- Proof gist:
[ |
For fU” rank representatIOnS D We employ theorem 1 and get equations of

multiple orthogonal classifiers the form
are only possible for very

e - 1|2
specific (degenerate) classifier ”131”2
collections Filv = — ||f2E |

1 fHI2

Theorem 2. Assume that rank(D) = d, that d < c,
and that the minimal loss L*(D, y) is obtained at a
solution F1, b1, If there exists a second minimizer
F?,b? such that forall j € [1...c] the orthogonality

constraintfj11 1 szl holds, then F! admits to a
stringent second order constraint.




The good news

It is possible to obtain multiple
orthogonal solutions that are
almost as good as a single
solution

It requires the existence of
small singular values in D

Hence the low rank property

Theorem 3. There exist sets of weights F!
= [ft f2, o fAL DY, F2 = [f2 2, .., f21, b? which are
orthogonal as follows Vj f' L f7, for which the joint
loss:
J(FY, b1, F?,b%,D,y) = L(FL,b%,D,y) + L(F? b%,D,y)
is bounded by

2L*(D,y) < J(FY,bY,F?,b%,D,y) < 2L*(D,y) + Aly
where A is a bounded parameter.



The good news (enlarged)

I
Theorem 3. There exist sets of weights

Fr =iz, fe L b F2 = [fE f5) o, f£], b2
which are orthogonal, i.e., Vj fi' L f7,
for which the joint loss:
](Fl, bl F% b%, D, y) = L(Fl, bi, D, y) + L(Fz, b?, D, Y)
is bounded by
2L*(D,y) < J(F',b',F%,b% D,y) < 2L*(D,y) + Alq

where A is a bounded parameter,
Aq is the smallest singular value of D.



Proving Theorem 3

Proof gist: Using series expansion around F1 = F*

LFr+¥, b)) =L(F1+W¥,b

L, HRO)

The remainder term (Lagrange form):

j N
RW) =5 (FT9) L. |,

ZZ Z (%) - ) Zd AP G () )

j=1j'=j+1

;2 Z (v~ ) DD" (3 ~ ¥}

j=1j'=j+1

Theorem 3 generalization. There exist sets of weights F!
= [fi, for o L DY FT = [ 7, o, 7], ™ which
are orthogonal as follows Vijk fji 1 fj", for which the
joint loss:

J(FL, b ..F™ p™ D,y) = z L(F",b", D, )

r=1
mL*(D,y) < J(FL, bt ..F™ b™ D,y)

m—1

<=mL*(D,y) + Z A da—1+41



Compact representation

= Dim of representation turns
out to be extremely compact

Cifar 100 representation
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Compact representation

= Dim of representation turns
out to be extremely compact

Face representation (Mx)
1000 T T T T

900 |
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= Nolossinenergy
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= Convergence to “natural” dim
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Dimension

51 dimensional representation!



Fisher Spectrum betterment

Between class covariance:
C

1

Sp = ;Z (i =) (1= )"

Within class covariance:

Sy = %zc: E(di - lij)(di - :“J')T

j=1 iEIj
Fisher spectrum:
Spv =yS,v

Fisher ratio:
IS, v
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How to measure post-transfer success

* The Joint Bayesian (JB) method
is a popular learning face

verification method
Chen et al. Bayesian face revisited: a
joint formulation. ECCV, 2012

= Two densities are learned

P(d,d'|H) and P(d,d" |I)

H: Same hypothesis
I: Not same hypothesis



Good Fisher Spectrum =2 Good JB separation

Theorem 5. Given data D, mean u and labels y,
for any centered data point d; = d; — p, we

denote d! = (S, + S,,)~'d;. Given two centered
data points dy, d, such that the fisher ratios
o(dy, Sy, Sy), a(d3, Sy, Sy) < T, it holds that:

JB Probability of
/1 same person

log P(d,,d,|H) +
12T < gP(dy, dy|H) +14
log P(dq,d,|I) + 13

\] JB Probability of
different persons

“Difficult to tell if same or not-same if all
the difference between the faces is in
directions with low fisher scores”

< 1+6T




The emergence of high fisher scores

= \\e prove the emergence of Theorem 6. Let f* ... f™ be a set of m classifiers that are

_ : Sw-orthogonal for data D and labels y, and lety = [y; ... 4]
better fisher SPECtrum using SW denote the Fisher spectrum. GiventhatV 1 < r < m, for

Orthogona“ty_ Eodme)\//alie\/@,mae(f’”,Sb,Sw) > @, it holds that
k=1Yk = .

=i fh o fe]

V), fAS, 7
= [f2 f2 . f2] ’

= Experimentally, improved
fisher spectrum is
demonstrated in both types of
orthogonality




Experiments

Not same

LFW face recognition
Same
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CIFAR-100 thumbnail recognition



CIFAR-100 thumbnail recognition

CIFAR-100

= Learn on go classes

= Transfer to the remaining 10
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» Architecture: NIN

Lin, Chen, Yan. Network in Network.

ICLR, 2014
Layer Filter/Stride | #Channel | #Filter
Convll 5x5/1 3 192
Conv12 1x1/1 192 160
Conv13 1x1/1 160 96
Pooll 3 x3/2 96 —
Dropout1-0.5 — — —
Conv21 5x5/1 96 192
Conv22 1x1/1 192 192
Conv23 1x1/1 192 100
Pool2 3 x3f2 192 —
Dropout1-0.5 — — —
Conv3l 3x3/1 192 192
Conv32 1x1/1 192 192
Conv33 1x1/1 192 100
Avg Pool TxT/1 100 -
EC 1x100/1 100 100




CIFAR-100 Results

Domain Source | Target (transfer)
Metric Val error | Cosine
Ml 0.340 0.789
M2 0.340 0.791
M2 (S, -orthogonal) 0.344 0.798
M3 0.345 0.801
M3 (S,,-orthogonal) 0.346 0.799
M4 0.351 0.807
M4 (S,,-orthogonal) 0.353 0.808
M5 0.360 0.812
M5 (S,,-orthogonal) 0.362 0.811
M6 0.369 0.816
M6 (S,,-orthogonal) 0.371 0.816
M7 0.375 0.815
M7 (S,,-orthogonal) 0.377 0.816
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LFW face recognition

= | earn on CASIA dataset

= Use the Scratch architecture
from the CASIA paper

Yi, Lei, Liao, Li. Learning face representation
from scratch. arXiv, 2014

= Transferto LFW

The network used

Layer Filter/Stride | #Channel | #Filter
Convll 3x3/1 1 32
Conv12 3x3/1 32 64
Max Pool 2x2/2 64 —
Conv2l 3x3/ll 64 64
Conv22 3x3/1 64 128
Max Pool 2x2/2 128 —
Conv3l 3x3/ll 128 06
Conv32 3x3/1 06 102
Max Pool 2x2/2 192 —
Conv4l 3x3/1 192 128
Conv42 3x3/ll 128 256
Max Pool 2x2/2 256 —
Conv3l 3x3/ll 256 160
Conv52 3x3/ll 160 320
Avg Pool 6x6/1 320 -
Dropout1-0.3 - — -
FC 1 = 320/ 1 320 100




LFW results

Domain Source Target (transfer)

Metric Val error Cosine JB on source JB on LFW splits
CASIA trained M1 0.07 0.962 + 0.0032 | 0.966 & 0.0022 § 0.970 = 0.0016
CASIA trained M1 (2) 0.07 0.962 = 0.0021 | 0.966 &= 0.0019 § 0.971 = 0.0022
CASIA trained M1 (3) 0.07 0.961 = 0.0022 | 0.966 = 0.0013 § 0.971 = 0.0015
Ensemble of 3 CASIA M1 0.968 = 0.0019 | 0.972 £ 0.0021 0.975 £+ 0.0025
CASIA trained M2 0.08 0.970 = 0.0021 | 0.974 = 0.0017 [§ 0.976 = 0.0016
CASIA trained M3 0.11 0.972 = 0.0012 | 0.977 £ 0.0015 [§ 0.980 = 0.0034
CASIA trained M3 (2) 0.11 0.971 = 0.0031 | 0.977 £ 0.0028 § 0.979 + 0.0027
CASIA trained M5 (1) 0.12 0.973 = 0.0011 | 0.978 £ 0.0014 § 0.981 = 0.0019
CASIA trained M5 (2) 0.12 0.972 = 0.0015 | 0.977 £ 0.0019 § 0.980 = 0.0031
3rd party DB, M5 0.12 0.982 £+ 0.0034 | 0.982 £+ 0.0031 0.988 £+ 0.0035
Two network ensemble 0.985 £+ 0.0029 | 0.990 £+ 0.0027 §§ 0.991 + 0.0027




Compared to SOTA

Method Single network Ensemble result | #nets | Training dataset

M5 0.9814 = 0.0019 — CASIA [41]

M3, 3rd party DB 0.9883 + 0.0035 | 0.9905 + 0.0027 2 proprietary 800k images
DeepFace [ 2] 0.9700 £ 0.0087 | 0.9735 + 0.0025 7 proprietary. 4M images
DeeplD [+] — 0.9745 £ 0.0026 | 25 proprietary, 160k

Original scratch [11] 0.9773 £+ 0.0031 — 1 CASIA [41]

Web-Scale Training [ 7] 0.9800 0.9843 4 proprietary, S00M images
MSU TR [3%] 0.9745 £ 0.0099 | 0.9823 £ 0.0068 7 CASIA [41]

MMDER [5] 0.9843 + 0.0020 | 0.9902 + 0.0019 8 proprietary, 500k

DeeplD2 [ 5] 0.9633 0.9915 £ 0.0013 25 proprietary, 160k

DeeplD2+ [2Y] 0.9870 0.9947 £ 0.0012 | 25 proprietary,290k

FaceNet [ 7] 0.9887 + 0.0015 | 0.9963 + 0.0009 8 proprietary, 200M

FR+FCN [13](*) — 0.9645 + 0.0025 5 CelebFaces [ 7], 88k
betaface.com(*) - 0.9808 == 0.0016 | NA NA

Uni-Ubi(*) — 0.9900 £0.0032 | NA | NA

Face++ [12](*) — 0.9950 £+ 0.0036 4 proprietary, SM face images
DeeplD3 [26](*) — 0.9953 £ 0.0010 | 25 proprietary.300k
Tencent-BestImage(*) — 0.9965 £ 0.0025 20 proprietary, 1M face images
Baidu [1Y](*) — 0.9977 £ 0.0006 10 | proprietary, 1.2M face images
AuthenMetric(*) — 0.9977 + 0.0009 | 25 proprietary, 500k face images

Excellent single
network result

Relativley small
dataset

Extrmely compact
representation 51D



CIFAR-100
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Representation
singular values

Representation
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Next step: multiple mv layers

— SOftmax
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Next step: multiple mv layers
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Can we use a network instead of JB?

f

E— (a) Cosine angle
DeepFace
| Replica
—  (b) Kernel Methods
—
Replica

(c) Siamese Network

Chopra, Hadsell, LeCun. Learning a
similarity metric discriminatively, with
application to face verification.

CVPR, 2005.

N —



Deep Siamese Architecture

Binary
Label

) Network / Feature
Face A Extractor 9 £

SHARED
WEIGHTS

Face B é Network / Feature % ﬁ/

Extractor

> um->

| f1—f2|

1
P= 1 + e~ (Wx[f1—f2[+b)

E = —ylog(p) — (1 — y)log(1 — p)




Deep Siamese Architecture

Binary
Label

Network / Feature
Face A =2 Extractor —

‘N
i
SHESR , [=> E >
(Whlk
Network / Feature /
Face B =3 Extractor —_— | & 1

pP= 1 4+ e~ (Wxlfi—fa|+b)
E = —ylog(p) — (1 —y)log(1 — p)

Q5: Is binary classification loss the most appropriate loss for a Siamese Architecture?
A: No. Gadot and Wolf. PatchBatch. CVPR 2016.



Optical flow

Given multiple image compute the motion field between them.




Architecture: from a patch to a representation

Layer Filter/Stride Output size
Input — 1 x 51 x 51
Convl 3x3/1 32 x 49 x 49
Batch Normalization - 32 x 49 x 49
Max Pool 2x2/2 32 x 25 x 25
Conv?2 I3 x3/1 64 x 23 x 23
Batch Normalization — 64 x 23 x 23
Max Pool 2x2/2 64 x 12 x 12
Conv3 3x3/1 128 x 10 x 10
Batch Normalization - 128 x 10 x 10
Max Pool 2x2/2 128 x 5 x5
Conv4 3x3/1 256 x 3 x 3
Batch Normalization - 256 x 3 x 3
Max Pool 2x2/2 256 x 2 x 2
Conv5 2x2/1 512 x 1 x1
Batch Normalization — 512 x 1 x1

Table 1. The network model for representing a grayscale 51 x 51
input patch as 512D vector. The Batch Normalization is our fine-
grained variant. Leaky RelLU units [26] (with «« = 0.1) are used as
activation functions following the five batch normalization layers.



DRLIM type Loss

Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant

mapping. CVPR 2006.

| OrigbrLiM | (1— Y)%Dfﬂ . (Y]%{max({],m — D) }?




DRLIM type Loss

Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant

mapping. CVPR 2006.

| OrigDrLiIM | (springmodel) (1 — Y)%Dfﬂ + (Y) %{mﬂx(ﬂa m — Dy)}?

[ CENT-DFLIM | (1—Y)D2 +(Y){max(0,m?—D2)}

NI MK ECUIE oA

(a)



DRLIM type Loss

Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant

mapping. CVPR 2006.

Orig DrLIM

CENT-DrLIM

CENT-DrLIM+5D |

(1— Y)%Dfu + (V) %{ma.x([], m — Dy)}?
(1—-Y)DZ +(Y){max(0,m*—D3)}

(l—Y)}aDi—I—(Y})L{max(D, mE—D,ﬁ,]}—I—(l—}.) (a'.;}—{—u'l}.

(b) ()



Benchmarks - KITTI12022/KITTl2015

= Raw Optical Flow on KITTI2012 validation set - ~8% err

Method Out-Noc | Running time Method Fl-all | Running time
PatchBatch-ACCRTE-PS71 5.29% 60.5s PatchBatch-ACCURATE | 21.69% 50.5s
PatchBatch-ACCURATE 5.44% 50.5s DiscreteFlow [ %] 22.38% 3min
PH-Flow [ Y] 5.76% 800s CPM-Flow (anon.) 24.24% 2s
FlowFields [ ] 5.77% 23s EpicFlow [ 2] 27.10% 15s
CPM-Flow (anon.) 5.80% 2s FilteringFlow (anon.) 28.50% 116s
NLTGV-SC [10] 5.93% 16s DeepFlow [ 4] 29.18% 17s
PatchBatch-FAST 5.94% 25.5s HS [15] 42.18% 2.6m
DDS-DF [7] 6.03% Im DB-TV-L1 [40] 47.97% 16s
TGV2ADCSIFT [7] 6.20% 12s HAOF [0] 50.29% 16.2s
DiscreteFlow [ 2] 6.23% 3m PolyExpand [ 4] 53.32% Is

Table 5. Top 10 KITTI2015 Pure Optic Flow Algorithms as of the
submission date. Fl-all is the percentage of pixels with euclidean
error > 3 pixels. The FAST network was not trained on this bench-
mark by the submission time.

Table 4. Top 10 KITTI2012 Pure Optic Flow Algorithms as pub-
lished on the submission date. Out-Noc is the percentage of pixels
with euclidean error > 3 pixels out of the non-occluded pixels



Benchmarks - MPI-Sintel

Method ] EPE all, “final” pass
FlowFields [ 1] 5.810
CPM-Flow (anon.) 5.960
DiscreteFlow [25] G077
EpicFlow [121] G285
Deep+R [ 3] G769
PatchBatch-CENT+5D 6. 783
DeepFlow2 (anon.) 6.928
PatchBatch-SPRG 7.188
SparseFlowFused [ 6] 7.189
DeepFlow [ 15] 7.212
FlowNetS+ft+v [15] 7.218
NNF-Local [Y] 7.249
PatchBatch-SPRG+5D 7.281
PatchBatch-CENT 7.323
SPM-BFP [25] T.325
AggregFlow [ 1G] T.329

Table 6. Top MPI-Sintel results as of the submission date. Each
number represents the EPE (end-point-error), averaged over all the
pixels in the comparison images, using the "final’ rendering pass
of MPI-Sintel. Four ACCURATE variants are shown. The CENT-
FIGURE4+SD network is ranked 6th as of the paper’s submission
date. The FAST network was not trained on this benchmark by that
date. The TF+OFM method [22] (EPE 6.727) is removed from this
tahle since it is not a oure ostical Aow method.




I'VE SPOKEN ENOUGH.
ANY QUESTIONS?

Deep Neural Networks on aligned inputs
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Deep Neural Networks on aligned inputs
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