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Why faces?

1. The most frequent entity 
in the media by far:  e.g. 
~1.2 faces / Photo on avg

2. Understanding 
identification

3. One class, billions of 
instances



Challenges in Unconstrained Face Recognition
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1. Pose

2. Illumination

3. Expression

4. Aging

5. Occlusion



Unconstrained Face Recognition Era:
The Labeled Faces in the Wild (LFW)

13,233 photos of 5,749 celebrities

Labeled faces in the wild: A database for studying face recognition in unconstrained 
environments, Huang, Jain, Learned-Miller, ECCVW, 2008



Face verification

=

!=



Progress over the past 7 years

Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments (results page),

Gary B. Huang, Manu Ramesh, Tamara Berg and Erik Learned-Miller.
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Face Recognition Pipeline

Detect Align Represent Classify
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Deep Neural Networks on aligned inputs
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Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR, 2014.



Deep Neural Networks on aligned inputs
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Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR, 2014.



SFC Training Dataset
4.4 million photos blindly 
sampled, belonging to more 
than 4,000 identities



SFC Training Dataset
4.4 million photos blindly 
sampled, belonging to more 
than 4,000 identities

Many images per person, 
but not too many identities

Q1: What is better for 
learning a generic face 
representation: more 
identities or more samples 
per identity?

Galanti, Wolf, Hazan. A 
Theoretical Framework for 
Deep Transfer Learning.
IMAIAI, 2016



The tradeoffs that govern transfer learning
4.4 million photos blindly 
sampled, belonging to more 
than 4,000 identities

Many images per person, 
but not too many identities

Q1: What is better for 
learning a generic face 
representation: more 
identities or more samples 
per identity?

Galanti, Wolf, Hazan. A 
Theoretical Framework for 
Deep Transfer Learning.
IMAIAI, 2016

I. For a given budget of samples. How 
to split between classes and samples 
per class.

II. Having too many samples and not 
enough classes leads to overfitting. 
But not the other way around.

III. The size of the representation and 
the number of training samples.

IV. Saturation.



What size representation is ideal?

The network overfits less on 
the SOURCE training set, and 
performs better on the 
TARGET when reducing the 
representation layer (F7) from 
4K dims to 256 dims.

C1: 

32 filters 

11x11 

M2:

3x3

C3:

16 filters 

9x9
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Can the data suggest optimal dim?

 The dimensionality of the 
representations is mostly 
wasted

 Full rank representation

 Decisions made based on 
few dims

Regular: 90D, 
little separation

Multiverse: 35D, 
good separation

Littwin, Wolf. The Multiverse Loss for Robust Transfer Learning. CVPR 2016 
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Our goals

 Reduce the dimensionality of 
the representation

 Improve the disciminative 
power of each dimension

 Let the data speak
No extra parameter

Fisher Spectrum

Singular values of the representation



Softmax
𝐹

A conventional network

𝐹 ∈ ℝ𝑑×𝑐

where c is #classes
d is the representation dim

Per class 
activations

Training
loss

Representation

𝐷 = [𝑑1 . . 𝑑𝑛]



Softmax
𝐹

A conventional network

𝐹 ∈ ℝ𝑑×𝑐

where c is #classes
d is the representation dim

Representation

𝐷 = [𝑑1 . . 𝑑𝑛] Per class 
activations

Training
loss

 

𝑖=1

𝑛

−𝑙𝑜𝑔
𝑒𝑑𝑖

⊤𝑓𝑦𝑖
+𝑏𝑦𝑖

 𝑗=1
𝑐 𝑒𝑑𝑖

⊤𝑓𝑗 +𝑏𝑗



One network, 
multiple parallel 
activations

Softmax1

Softmax2

Softmax3

𝐹1

𝐹2

𝐹3

The multiverse network

𝐹𝑖 ∈ ℝ𝑑×𝑐

where c is #classes
d is the representation dim



Softmax1

Softmax2

Softmax3

𝐹1

𝐹2

𝐹3

The multiverse network -- loss

𝐹𝑖 ∈ ℝ𝑑×𝑐

where c is #classes
d is the representation dim

1

𝑚
 lossi

m is the multiplicity



Softmax1

Softmax2

Softmax3

𝐹1

𝐹2

𝐹3

The multiverse network -- backprop

𝐹𝑖 ∈ ℝ𝑑×𝑐

where c is #classes
d is the representation dim

m is the multiplicity
1

𝑚
 𝑔𝑟𝑎𝑑𝑖



Enforcing orthogonality

 Enforce orthogonal solutions:

 Practically, the loss used is:

𝐹1 = [𝑓1
1, 𝑓2

1, … , 𝑓𝑐
1]

𝐹2 = [𝑓1
2, 𝑓2

2, … , 𝑓𝑐
2]

∀𝑗𝑓𝑗
1┴𝑓𝑗

2

𝐿′ =  

𝑖=1

𝑛

−𝑙𝑜𝑔
𝑒𝑑𝑖

⊤𝑓𝑦𝑖
1 +𝑏𝑦𝑖

1

 𝑗=1
𝑐 𝑒𝑑𝑖

⊤𝑓𝑗
1+𝑏𝑗

1 − 𝑙𝑜𝑔
𝑒𝑑𝑖

⊤𝑓𝑦𝑖
2 +𝑏𝑦𝑖

2

 𝑗=1
𝑐 𝑒𝑑𝑖

⊤𝑓𝑗
2+𝑏𝑗

2

+𝜆1 𝐹1
2 +𝜆1 𝐹2

2 +𝜆1 𝑏1
2 +𝜆1 𝑏2

2

+𝜆2  

𝑗=1

𝑐

𝑓𝑗
1⊤𝑓𝑗

2

𝑓1
1

𝑓1
2



𝐹1

𝐹2

𝐹3

The multiverse network during test



Surprising properties emerge

I. The solutions are indeed 
orthogonal…
… but they all give the same 
softmax probabilities 

II. The dimensionality drops 
abruptly

III. The Fisher Spectrum improves

Representation singular values Fisher spectrum

Softmax probabilities (90 classes)



Cross entropy loss supports multiplicity

 Due to the properties of the 
softmax, there are multiple 
ways to get the same 
probabilities

Lemma 1. The minimizers 𝐹∗, 𝑏∗ of the cross entropy 
loss 𝐿 are not unique, and it holds that for any vector 
𝑣 ∈ ℝ𝑐 and scalar 𝑠, the solutions 𝐹∗ + 𝑣𝟙𝑐

𝑇 , 𝑏∗ + 𝑠𝟙𝑐

are also minimizers of 𝐿.

𝑃𝑟𝑜𝑜𝑓. denoting 𝑉 = 𝑣𝟙𝑐
𝑇 , 𝒔 = 𝑠𝟙.

𝐿 𝐹∗ + 𝑉, 𝑏∗ + 𝒔, 𝐷, 𝑦 =

−  

𝑖=1

𝑛

log
𝑒𝑑𝑖

𝑇𝑓𝑦𝑖
+𝑑𝑖

𝑇𝑣+𝑏𝑦𝑖
+𝑠

 𝑗=1
𝑐 𝑒𝑑𝑖

𝑇𝑓𝑗+𝑑𝑖
𝑇𝑣+𝑏𝑗+𝑠

= −  

𝑖=1

𝑛

log
𝑒𝑑𝑖

𝑇𝑣+𝑠𝑒𝑑𝑖
𝑇𝑓𝑦𝑖

+𝑏𝑦𝑖

 𝑗=1
𝑐 𝑒𝑑𝑖

𝑇𝑣+𝑠𝑒𝑑𝑖
𝑇𝑓𝑗+𝑏𝑗

= −  

𝑖=1

𝑛

log
𝑒𝑑𝑖

𝑇𝑣+𝑠𝑒𝑑𝑖
𝑇𝑓𝑦𝑖

+𝑏𝑦𝑖

𝑒𝑑𝑖
𝑇𝑣+𝑠  𝑗=1

𝑐 𝑒𝑑𝑖
𝑇𝑓𝑗+𝑏𝑗

= −  

𝑖=1

𝑛

log
𝑒𝑑𝑖

𝑇𝑓𝑦𝑖
+𝑏𝑦𝑖

 𝑗=1
𝑐 𝑒𝑑𝑖

𝑇𝑓𝑗+𝑏𝑗
= 𝐿 𝐹∗, 𝑏∗, 𝐷, 𝑦



If full rank, then Lemma 1 is IFF

 For full rank representation D 
the construction shown in 
Lemma 1 is the only way to 
obtain multiplicity

Proof gist:
From the convexity of the cross entropy
loss we infer a condition on the null space of
the Hessian.
We show that for full rank representation,
the Hessian has a zero singular value in only
a few restrictive directions.Theorem 1. Assume the minimal loss 𝐿∗ (𝐷, 𝑦) is 

obtained at two solutions 𝐹1, 𝑏1 and 𝐹2, 𝑏2. If 
𝑟𝑎𝑛𝑘(𝐷) = 𝑑, then there exists some vector 𝑣
∈ ℝ𝑐 and some scalar 𝑠 such that 
𝐹1 − 𝐹2 = 𝑣𝟙𝑐

⊤ and 𝑏1 − 𝑏2 = 𝑠𝟙𝑐.

𝑃𝑟𝑜𝑜𝑓. Let Ψ = 𝜓1, 𝜓2, … , 𝜓𝑐 = 𝐹2 − 𝐹1, and let 𝜓
denote the concatenation of the column vectors 
𝜓1…𝑐 into a single column vector. From convexity:

 𝜓𝑇 𝛻2 𝐿 𝐷, 𝑦
𝐹1

𝜓 = 𝜓𝑇  
𝜕𝐿 𝐷, 𝑦 2

𝜕𝐹𝜕𝐹
𝐹1

𝜓 = 0

For full rank D, we aim to prove that:
𝜓1 = 𝜓2… = 𝜓𝑐



Proof of theorem 1

The hessian can be written:

After some manipulation:

- PD matrix

Vanishes if and only 
if  𝜓𝑗 = 𝜓𝑗′

𝜕2

𝜕𝐹𝑗𝑢𝐹𝑗′𝑣
𝐿 𝐷, 𝑦 =

−  

𝑖=1

𝑛

𝑑𝑖𝑢𝑑𝑖𝑣𝑝𝑖(𝑗)(𝛿𝑗=𝑗′(1 − 𝑝𝑖(𝑗)) − 𝛿𝑗≠𝑗′𝑝𝑖(𝑗′))

𝜓 𝑇
𝜕2

𝜕𝐹𝜕𝐹
 𝐿 𝐷, 𝑦
𝐹1

𝜓 =

 

𝑗=1

𝑐

 

𝑗′=𝑗+1

𝑐

𝜓𝑗 − 𝜓𝑗′
𝑇

 

𝑖=1

𝑛

𝑑𝑖𝑑𝑖
𝑇𝑝𝑖 𝑗 𝑝𝑖(𝑗′)(𝜓𝑗 − 𝜓𝑗

′)

 

𝑖=1

𝑛

𝑑𝑖𝑑𝑖
𝑇𝑝𝑖 𝑗 𝑝𝑖(𝑗′)

 

𝑗=1

𝑐

 

𝑗′=𝑗+1

𝑐

𝜓𝑗 − 𝜓𝑗′
𝑇

 

𝑖=1

𝑛

𝑑𝑖𝑑𝑖
𝑇𝑝𝑖 𝑗 𝑝𝑖(𝑗′)(𝜓𝑗 − 𝜓𝑗

′)



… now add orthogonality to the mix

 For full rank representations  D 
multiple orthogonal classifiers 
are only possible for very 
specific (degenerate) classifier 
collections

Proof gist:
We employ theorem 1 and get equations of
the form

Theorem 2. Assume that 𝑟𝑎𝑛𝑘(𝐷) = 𝑑, that 𝑑 < 𝑐, 
and that the minimal loss 𝐿∗(𝐷, 𝑦) is obtained at a 
solution 𝐹1, 𝑏1. If there exists a second minimizer 
𝐹2, 𝑏2 such that for all 𝑗 ∈ 1 … 𝑐 the orthogonality

constraint𝑓𝑗1
1 ⊥ 𝑓𝑗1

2 holds, then 𝐹1 admits to a 

stringent second order constraint.

𝐹1𝑇𝑣 = −

𝑓1
1 2

𝑓2
1 2

⋮
𝑓𝑐

1 2



The good news

 It is possible to obtain multiple 
orthogonal solutions that are 
almost as good as a single 
solution

 It requires the existence of 
small singular values in D

 Hence the low rank property

Theorem 3. There exist sets of weights 𝐹1

= 𝑓1
1, 𝑓2

1, … , 𝑓𝑐
1 , 𝑏1, 𝐹2 = 𝑓1

2, 𝑓2
2, … , 𝑓𝑐

2 , 𝑏2 which are 

orthogonal as follows ∀𝑗 𝑓𝑗
1 ⊥ 𝑓𝑗

2, for which the joint 

loss:
𝐽(𝐹1, 𝑏1, 𝐹2, 𝑏2, 𝐷, 𝑦) = 𝐿(𝐹1, 𝑏1, 𝐷, 𝑦) + 𝐿(𝐹2, 𝑏2, 𝐷, 𝑦)

is bounded by
2𝐿∗ 𝐷, 𝑦 ≤ 𝐽 𝐹1, 𝑏1, 𝐹2, 𝑏2, 𝐷, 𝑦 ≤ 2𝐿∗(𝐷, 𝑦) + 𝐴𝜆𝑑

where 𝐴 is a bounded parameter.



The good news (enlarged)

Theorem 3. There exist sets of weights
𝐹1 = 𝑓1

1, 𝑓2
1, … , 𝑓𝑐

1 , 𝑏1, 𝐹2 = 𝑓1
2, 𝑓2

2, … , 𝑓𝑐
2 , 𝑏2

which are orthogonal, i.e.,  ∀𝑗 𝑓𝑗
1 ⊥ 𝑓𝑗

2, 

for which the joint loss:

𝐽(𝐹1, 𝑏1, 𝐹2, 𝑏2, 𝐷, 𝑦) = 𝐿(𝐹1, 𝑏1, 𝐷, 𝑦) + 𝐿(𝐹2, 𝑏2, 𝐷, 𝑦)
is bounded by

2𝐿∗ 𝐷, 𝑦 ≤ 𝐽 𝐹1, 𝑏1, 𝐹2, 𝑏2, 𝐷, 𝑦 ≤ 2𝐿∗(𝐷, 𝑦) + 𝐴𝜆𝑑
where 𝐴 is a bounded parameter,
𝜆𝑑 is the smallest singular value of D. 



Proving Theorem 3

Proof gist: Using series expansion around 𝐹1 = 𝐹∗

The remainder term (Lagrange form):

Theorem 3 generalization. There exist sets of weights 𝐹1

= 𝑓1
1, 𝑓2

1, … , 𝑓𝑐
1 , 𝑏1 … 𝐹𝑚 = 𝑓1

𝑚, 𝑓2
𝑚, … , 𝑓𝑐

𝑚 , 𝑏𝑚 which 

are orthogonal as follows ∀𝑖𝑗𝑘 𝑓𝑗
𝑖 ⊥ 𝑓𝑗

𝑘, for which the 

joint loss:

𝐽 𝐹1, 𝑏1 … 𝐹𝑚, 𝑏𝑚, 𝐷, 𝑦 =  

𝑟=1

𝑚

𝐿 𝐹𝑟 , 𝑏𝑟 , 𝐷, 𝑦

𝑚𝐿∗ 𝐷, 𝑦 ≤ 𝐽 𝐹1, 𝑏1 … 𝐹𝑚, 𝑏𝑚, 𝐷, 𝑦

≤ 𝑚𝐿∗(𝐷, 𝑦) +  

𝑙=1

𝑚−1

𝐴𝑙 𝜆𝑑−𝑙+1

𝐿 𝐹1 + Ψ, 𝑏1 = 𝐿 𝐹1 + Ψ, 𝑏1 + (𝛻𝑇𝜓) 𝐿 𝐷, 𝑦  
F1,𝑏1

+ 𝑅(𝜓)

𝑅 𝜓 =
1

2
𝛻𝑇𝜓

2
𝐿 𝐷, 𝑦  

𝜃

=
1

2
 

𝑗=1

𝑐

 

𝑗′=𝑗+1

𝑐

𝜓𝑗 − 𝜓𝑗
′ 𝑇

 

𝑖=1

𝑛

𝑑𝑖𝑑𝑖
𝑇𝑝𝑖 𝑗 𝑝𝑖(𝑗

′) 𝜓𝑗 − 𝜓𝑗
′

≤
1

2
 

𝑗=1

𝑐

 

𝑗′=𝑗+1

𝑐

𝜓𝑗 − 𝜓𝑗
′ 𝑇

𝐷𝐷𝑇 𝜓𝑗 − 𝜓𝑗
′



Compact representation

 Dim of representation turns 
out to be extremely compact

 No loss in energy

 Convergence to “natural” dim 

Cifar 100 representation



Compact representation

 Dim of representation turns 
out to be extremely compact

 No loss in energy

 Convergence to “natural” dim 

Face representation (M5)

51 dimensional representation!



Fisher Spectrum betterment

Between class covariance:

Fisher spectrum:

Fisher ratio:

𝑆𝑏 =
1

𝑛
 

𝑗=1

𝑐

𝑛𝑗 𝜇 − 𝜇𝑗 𝜇 − 𝜇𝑗
𝑇

𝑆𝑤 =
1

𝑛
 

𝑗=1

𝑐

 

𝑖∈𝐼𝑗

𝑑𝑖 − 𝜇𝑗 𝑑𝑖 − 𝜇𝑗
𝑇

𝑆𝑏𝑣 = 𝛾𝑆𝑤𝑣

𝜎 𝑣, 𝑆𝑏 , 𝑆𝑤 =
𝑣𝑇𝑆𝑏𝑣

𝑣𝑇𝑆𝑤𝑣

Within class covariance:



How to measure post-transfer success

 The Joint Bayesian (JB) method 
is a popular learning face 
verification method
Chen et al. Bayesian face revisited: a 
joint formulation. ECCV, 2012

 Two densities are learned

=

!=
𝑃 𝑑, 𝑑′ 𝐻 and 𝑃 𝑑, 𝑑′ 𝐼

𝐻: Same hypothesis
𝐼: Not same hypothesis



Good Fisher Spectrum Good JB separation

JB Probability of 
same person

JB Probability of 
different persons

“Difficult to tell if same or not-same if all
the difference between the faces is in
directions with low fisher scores”

Theorem 5. Given data 𝐷, mean 𝜇 and labels 𝑦, 

for any centered data point  𝑑𝑖 = 𝑑𝑖 − 𝜇, we 

denote 𝑑𝑖
′ = 𝑆𝑏 + 𝑆𝑤

−1  𝑑𝑖. Given two centered 

data points  𝑑1,  𝑑2 such that the fisher ratios 
𝜎 𝑑1

′ , 𝑆𝑏 , 𝑆𝑤 , 𝜎(𝑑2
′ , 𝑆𝑏, 𝑆𝑤) < 𝑇, it holds that:

1 − 2𝑇 ≤
log𝑃 𝑑1, 𝑑2 𝐻 + 𝜂1

log𝑃 𝑑1, 𝑑2 𝐼 + 𝜂2
≤ 1 + 6𝑇

=

!=



The emergence of high fisher scores

 We prove the emergence of 
better fisher spectrum using 𝑆𝑤

orthogonality.  

 Experimentally, improved 
fisher spectrum is 
demonstrated in both types of 
orthogonality

𝐹1 = [𝑓1
1, 𝑓2

1, … , 𝑓𝑐
1]

𝐹2 = [𝑓1
2, 𝑓2

2, … , 𝑓𝑐
2]

∀𝑗 , 𝑓𝑗
1┴𝑆𝑤𝑓𝑗

2

Theorem 6. Let 𝑓1 … 𝑓𝑚 be a set of 𝑚 classifiers that are 
𝑆𝑤-orthogonal for data 𝐷 and labels 𝑦, and let 𝛾 = 𝛾1 …𝛾𝑑

denote the Fisher spectrum. Given that ∀ 1 ≤ 𝑟 ≤ 𝑚, for 
some value 𝜃, 𝜎 𝑓𝑟 , 𝑆𝑏, 𝑆𝑤 ≥ 𝜃,  it holds that 
 𝑘=1

𝑑 𝛾𝑘 ≥ 𝑚𝜃.



Experiments

CIFAR-100 thumbnail recognition LFW face recognition

Same Not same



CIFAR-100 thumbnail recognition

 CIFAR-100

 Learn on 90 classes

 Transfer to the remaining 10

 Architecture: NIN
Lin, Chen, Yan. Network in Network.
ICLR, 2014 



CIFAR-100 Results 

Baseline (M1)

Multiverse (M5)



LFW face recognition

 Learn on CASIA dataset

 Use the Scratch architecture 
from the CASIA paper

 Transfer to LFW

 The network used

Yi, Lei, Liao, Li. Learning face representation
from scratch. arXiv, 2014 



LFW results



Compared to SOTA
Excellent single 
network result

Relativley small 
dataset

Extrmely compact 
representation 51D



CIFAR-100 LFW

Representation
singular values

Representation
fisher spectrum

Solid blue M5, Dotted red M3, Dashed magenta M1



Softmax

Softmax

Softmax

Next step: multiple mv layers 



Softmax

Softmax

Softmax

Next step: multiple mv layers 

Softmax

Softmax

Softmax

Softmax

Softmax

Softmax



Can we use a network instead of JB?

DeepFace 
Replica

DeepFace 
Replica

(a) Cosine angle

(b) Kernel Methods

(c) Siamese Network
Chopra, Hadsell, LeCun. Learning a 
similarity metric discriminatively, with 
application to face verification. 
CVPR, 2005.



Deep Siamese Architecture

Network / Feature 
Extractor

Network / Feature 
Extractor

SHARED
WEIGHTS

Face A

Face B

f1
f2
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–
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|
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Binomial
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Entropy 

Loss

Logistic



Deep Siamese Architecture

Network / Feature 
Extractor

Network / Feature 
Extractor

SHARED
WEIGHTS

Face A

Face B

f1
f2

| f
1

–
f2

|

W

Binary

Label

Binomial

Cross

Entropy 

Loss

Logistic

Q5: Is binary classification loss the most appropriate loss for a Siamese Architecture?

A: No. Gadot and Wolf. PatchBatch. CVPR 2016.



Optical flow

Given multiple image compute the motion field between them.



Architecture: from a patch to a representation
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DRLIM type Loss
Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant 

mapping. CVPR 2006.

Orig DrLIM
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DRLIM type Loss
Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant 

mapping. CVPR 2006.

Orig DrLIM

CENT-DrLIM
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(spring model)



DRLIM type Loss
Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant 

mapping. CVPR 2006.

Orig DrLIM

CENT-DrLIM
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CENT-DrLIM+SD



Benchmarks - KITTI2012/ KITTI2015

 Raw Optical Flow on KITTI2012 validation set  - ~8% err
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Benchmarks - MPI-Sintel
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