Universitätbonn

Juergen Gall

Analyzing Human Behavior in Video Sequences

Analyzing Human Behavior

21 Actions from HMDB

HMDB51 (Kuehne et al, ICCV 2011)

928 clips, 33183 frames

Puppet Annotation

Joint-annotated HMDB (JHMDB)

[H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013] [http://jhmdb.is.tue.mpg.de]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Study with Annotated Data (2013)

	baseline	given flow	given mask	pose features
GT		+ ~11%	+ ~9%	+ ~20%

- Large potential gain for pose feature
- Not with existing 2d human pose methods

[H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013] [http://jhmdb.is.tue.mpg.de]

09.10.2017

 \mathbf{x}'

 \mathbf{b}_1

(b) Stage ≥ 2

 \mathbf{b}_2

Stack CNNs:

Convolutional

Pose Machines

(T-stage)

CNNs for Pose Estimation

(a) Stage 1

 \mathbf{b}_T

 \mathbf{x}'

[S.-E. Wei et al. Convolutional Pose Machines. CVPR 2016]

Coupled Action Recognition and Pose Estimation

[U. lqbal et al. Pose for Action – Action for Pose. FG 2017]

universität**bonn**

Pose Estimation in Videos

Video datasets for human pose in unconstrained videos does not exist.

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

- Video datasets for human pose in unconstrained videos does not exist.
- Unconstrained means
- Public available content from the Internet (e.g. Youtube)
- Multiple persons in a video (no assumption about position)
- Arbitrary number of visible joints (truncation and occlusion)
- Large scale variations (unknown scale)

[U. lqbal et al. Pose-Track: Joint Multi-Person Pose Estimation and Tracking. CVPR 2017]

Dataset	videos	multi-person	Large scale variation	variable skeleton size	# of Persons
Leeds Sports [21]					2000
MPII Pose [1]			\checkmark	\checkmark	40,522
We Are Family [12]		\checkmark			3131
MPII Multi-Person Pose [30]		\checkmark	\checkmark	\checkmark	14,161
MS-COCO Keypoints [25]		\checkmark	\checkmark	\checkmark	105,698

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Joint-annotated HMDB (JHMDB)

[H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013] [http://jhmdb.is.tue.mpg.de]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Pose-Track Dataset

Dataset	videos	multi-person	Large scale variation	variable skeleton size	# of Persons
J-HMDB [20]	\checkmark		\checkmark	\checkmark	32,173
Penn-Action [45]	\checkmark		\checkmark		159,633
VideoPose [35]	\checkmark				1286
Poses-in-the-wild [10]	\checkmark				831
YouTube Pose [8]	\checkmark				5000
FYDP [36]	\checkmark				1680
UYDP [36]	\checkmark				2000
Multi-Person Pose-Track	\checkmark	\checkmark	\checkmark	\checkmark	16,219

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Multi-Person Pose-Track Dataset

of videos = 60 Training = 30 Testing = 30 # of annotated persons = 16,219

Challenge ICCV 2017

POSETRACK CHALLENGE - ICCV 2017

ABOUT DATES SPEAKERS SUBMISSION PROGRAM PEOPLE

OCTOBER 2017 / VENICE ITALY POSETRACK CHALLENGE

HUMAN POSE ESTIMATION AND TRACKING IN THE WILD

THE REAL PROPERTY OF

[http://posetrack.net/workshops/iccv2017]

Ε

Estimate pose + person association over time:

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

universität**bonn**

Pose Track: Simultaneous Pose Estimation and Tracking

Estimate pose + person association over time:

• Predict body joints (CNN trained on MPII Pose)

- Estimate pose + person association over time:
- Predict body joints (CNN trained on MPII Pose)
- Build a graph with temporal and spatial edges

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Pose Track: Simultaneous Pose

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Unaries: Confidences of detected joints p_d

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

- Spatial binaries: Extract quadratic bounding box around detection
- Two cases:
- Different joint type: $p^s_{(d_f, d'_f)}$
- Logistic regression based on distance and orientation

Spatial binaries: Extract quadratic bounding box around detection

- Two cases:
- Same joint type: $p^s_{(d_f, d'_f)} = \text{IoU}(B_d, B_{d'})$

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Temporal binaries: Compute optical flow (DeepMatching)

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall - Institute of Computer Science III - Computer Vision Group

Temporal binaries: Compute optical flow (DeepMatching) $\underline{K}_{dd'} = |K_{d_f} \cup K_{d'_{f'}}| \text{ and } \overline{K}_{dd'} = |K_{d_f} \cap K_{d'_{f'}}|$ $\{\overline{K}/\underline{K}, \min(p_d, p_{d'}), \Delta \mathbf{x}_{dd'}, \|\Delta \mathbf{x}_{dd'}\|\}$ Logistic regression: $p_{(d_f, d'_{f'})}^t$

> [U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Solve integer linear program:

 $v \in \{0,1\}^{|D|}, s \in \{0,1\}^{|E_s|}, \text{ and } t \in \{0,1\}^{|E_t|}$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Solve integer linear program:

$$v \in \{0,1\}^{|D|}, s \in \{0,1\}^{|E_s|}, \text{ and } t \in \{0,1\}^{|E_t|}$$

$$\operatorname{argmin}_{v,s,t} \left(\langle v, \phi \rangle + \langle s, \psi_s \rangle + \langle t, \psi_t \rangle \right)$$

$$\langle v, \phi \rangle = \sum_{d \in D} v_d \phi(d)$$

$$\langle s, \psi_s \rangle = \sum_{(d_f, d'_f) \in E_s} s_{(d_f, d'_f)} \psi_s(d_f, d'_f)$$

$$\langle t, \psi_t \rangle = \sum_{(d_f, d'_f') \in E_t} t_{(d_f, d'_f')} \psi_t(d_f, d'_{f'})$$

$$\psi_t(d_f, d'_{f'}) = \log \frac{1 - p_d}{p_d}$$

$$\psi_s(d_f, d'_f) = \log \frac{1 - p_{(d_f, d'_f)}}{p_{(d_f, d'_f')}^s}$$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Solve integer linear program:

 $v \in \{0,1\}^{|D|}, s \in \{0,1\}^{|E_s|}, \text{ and } t \in \{0,1\}^{|E_t|}$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

To obtain plausible pauses, constraints are added:

• Spatial transitivity: $s_{(d_f,d'_f)} + s_{(d'_f,d''_f)} - 1 \le s_{(d_f,d''_f)}$

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

To obtain plausible pauses, constraints are added:

Spatial transitivity: $s_{(d_f,d'_f)} + s_{(d'_f,d''_f)} - 1 \le s_{(d_f,d''_f)}$ Temporal transitivity: $t_{(d_f,d'_f')} + t_{(d'_f,d''_f'')} - 1 \le t_{(d_f,d''_f'')}$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

To obtain plausible pauses, constraints are added:

- Spatial transitivity:
- Temporal transitivity:
- Spatio-temporal trans.:

$$\begin{aligned} s_{(d_f,d'_f)} + s_{(d'_f,d''_f)} - 1 &\leq s_{(d_f,d''_f)} \\ t_{(d_f,d'_{f'})} + t_{(d'_f,d''_{f''})} - 1 &\leq t_{(d_f,d''_{f''})} \\ t_{(d_f,d'_{f'})} + t_{(d_f,d''_{f'})} - 1 &\leq s_{(d'_f,d''_{f'})} \\ t_{(d_f,d'_{f'})} + s_{(d'_{f'},d''_{f'})} - 1 &\leq t_{(d_f,d''_{f'})} \end{aligned}$$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

To obtain plausible pauses, constraints are added:

Spatio-temporal consistency:

$$t_{(d_f,d'_{f'})} + t_{(d''_f,d'''_{f'})} + s_{d_f,d''_f} - 2 \le s_{d'_{f'},d'''_{f'}}$$

$$t_{(d_f,d'_{f'})} + t_{(d''_f,d'''_{f'})} + s_{d'_{f'},d'''_{f'}} - 2 \le s_{d_f,d''_f}$$

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Estimate pose + person association over time:

- Predict body joints (CNN trained on MPII Pose)
- Build a graph with temporal and spatial edges
- Partition spatio-temporal graph

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Qualitative Results

Line/Marker color = Person identity Marker edge color = Joint type

Pose Track: Evaluation

- Pose estimation accuracy (mAP)
- Person association (MOTA)

Method	Rcll	Prcn	MT ≁	ML	IDs	FM N	MOTA	MOTP
				\downarrow	\downarrow	\downarrow		
Ours BBox-Tracking [38, 34]	63.0	64.8	775	502	431	5629	28.2	55.7
+ LJPA [17] + CPM [40]	58.8 60.1	64.8 57.7	716 754	646 611	319 347	5026 4969	26.6 15.6	53.5 53.4

[U. lqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Pose Track: Evaluation

- Pose estimation accuracy (mAP)
- Person association (MOTA)

Method	Head	Sho	Elb	Wri	Hip	Knee	Ank	mAP
Ours	56.5	51.6	42.3	31.4	22.0	31.9	31.6	38.2
BBox-Detection [34]								
+ LJPA [17]	50.5	49.3	38.3	33.0	21.7	29.6	29.2	35.9
+ CPM [40]	48.8	47.5	35.8	29.2	20.7	27.1	22.4	33.1
DeeperCut [16]	56.2	52.4	40.1	30.0	22.8	30.5	30.8	37.5

[U. Iqbal et al. **Pose-Track: Joint Multi-Person Pose Estimation and Tracking.** CVPR 2017]

Joint-annotated HMDB (JHMDB)

[H. Jhuang et al. Towards Understanding Action Recognition. ICCV 2013] [http://jhmdb.is.tue.mpg.de]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Video Analysis for Studying the Behavior of Mice

10/9/2017

Recurrent Neural Networks

• Gated units (LSTM/GRU)

• Fully supervised:

• Weakly supervised (transcripts)

 $action_A \rightarrow action_B \rightarrow action_A \rightarrow action_C$

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

 Represent an activity a like "spoon_powder" by latent sub-activities s₁^(a),s₂^(a),s₃^(a),...

- Optimal number of sub-activities is unknown:
 - Many sub-activities for long activities
 - Few sub-activities for short activities

Model

• RNN with Gated Recurrent Units (GRU)

Model

 Hidden Markov Model (HMM) enforce fixed order of sub-activities: s₁^(a), s₂^(a), s₃^(a),...

HMMs use probabilities of RNN as input

Hidden Markov Model (HMM) for each activity

The transcripts define the order of activities:

Action transcript: action_1 action_2 action_3

The transcripts define the order of activities:

Action transcript: action_1 action_2 action_3

The transcripts define the order of activities:

Action transcript: action_1 action_2 action_3

(Initialization)

Action transcript:

action_1 action_2 action_3

linear segmentation

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Action transcript:

action_1 action_2 action_3

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Action transcript:

action_1 action_2 action_3

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

09.10.2017

Juergen Gall - Institute of Computer Science III - Computer Vision Group

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Results

Accuracy on unseen sequences (video without transcript)

Breakfast	Accuracy (Mof)
GRU no subactions GRU w/o reestimation	$\begin{array}{c} 22.4\\ 28.8\end{array}$
GRU + reestimation	33.3
GRU + GT length	51.3

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

Accuracy on unseen sequences (video without transcript)

Breakfast	Iter 1	Iter 2	Iter 3	Iter 4	Iter 5
GMM w/o reest.	15.3	23.3	26.3	27.0	26.5
MLP w/o reest.	22.4	24.0	23.7	23.1	20.3
GRU w/o reest.	25.5	29.1	28.6	29.3	28.8
GRU w/o HMM	21.3	20.1	23.8	21.8	22.4

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

Juergen Gall – Institute of Computer Science III – Computer Vision Group

 Accuracy on unseen sequences (video with transcript)

	Breakfast	Hollywood Ext.
Model	Jacc. (IoD)	Jacc. (IoD)
OCDC [3] HTK [16]** ECTC [9]**	23.4 40.6 -	$\begin{array}{c} 43.9 \\ 42.4 \\ 41.0 \end{array}$
GRU w/o reestimation GRU + reestimation	41.5 47.3	50.1 51.1

[A. Richard et al. Weakly Supervised Action Learning with RNN based Fine-to-Coarse Modeling. CVPR 2017]

09.10.2017

Juergen Gall – Institute of Computer Science III – Computer Vision Group

Research Unit - Anticipating Human Behavior

[https://pages.iai.uni-bonn.de/FOR2535]

universität**bonn**

Research Unit - Anticipating Human Behavior

universitätbonn

Thank you for your attention.

European Research Council

universitätbonn

09.10.2017