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Main Research Themes @ VUL

Activity Understanding

* Activity Detection
« Efficient Search
» Object Tracking

= ACTIVITYNET
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Vision for
Automated Navigation

* Sim4CV
* Transfer Learning
» Applications

Fundamentals

* Optimization for CV&ML
(sparse, low-rank, integer)
* Deep DNN Understanding
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THEME: ACTIVITY UNDERSTANDING
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Fun Facts

DECEMBER

&

By 2017, online video will account 55% of people watch videos online 45% of people watch more than an

for 74% of all online traffic3 every day' hour of Facebook or YouTube
videos a week?

Almost 50% of internet users look 85% of Facebook video is watched
for videos related to a product or without sound®

service before visiting a store*

Source: 1) MWP Statistics, 2015; 2) HubSpot, 2016 3) KPCB, 2016 4) Google, 2016; 5) DIGIDAY, 2016
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Applications of Activity Understanding
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Activity Detection @ VUL

Natural actors —

/ user generated video

Naturalnes

Wide range of high-level activities
(organized in a hierarchy):
daily living, work, leisure, etc.

~

~200 actions
>200 samples
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Activity Detection @ VU

ACTIVITYNET Home Explore People Download

A Large-Scale Video Benchmark for
Human Activity Understanding

Our benchmark aims at covering a wide range of complex human
activities that are of interest to people in their daily living. We
illustrate three scenarios in which ActivityNet can be used to
compare algorithms for human activity understanding: global video
classification,trimmed activity classification and activity detection.

()

CLASSES UNTRIMMED VIDEOS PER ACTIVITY INSTANCES PER VIDEO HOURS
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About

Google

Google Faculty Research Award in
2015; 1%t in MENA for Machine
Perception; 1%t in Saudi Arabia

15t Version (R1.1):
e ~200 classes

e ~850 hours

e class hierarchy

ActivityNet: A Large-Scale Video
Benchmark for Human Activity
Understanding [CVPR’15]
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Activity Detection @ VUL
B3 ACTIVITYNET

Large Scale Activity Recognition Challenge

ACTIVITYNET

Challenge Introduction

At CVPR 2018 (June 22 — All Day)
http://activity-net.org/challenges/2018
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ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding [CVPR’15]
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http://activity-net.org/challenges/2018

Activity Detection @ VUL

1. Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos [CVPR’16] )
proposals are represented as sparse combinations of STIPs (10FPS on single CPU core)
2. DAPs: Deep Action Proposals for Action Understanding [ECCV’16] action
multi-scale (sparse) proposals are output by an LSTM in one pass (130FPS on single GPU) >' prOpOsals
3. SST: Single-Stream Temporal Action Proposals [CVPR’17]
multi-scale (dense) proposals are scored by a GRU in one pass + streaming (300FPS on single GPU) »
4. SCC: Semantic Context Cascade for Efficient Action Detection [CVPR’17] N
incorporating objects and scenes in more efficient and accurate activity detection
5. End-to-End, Single-Stream Temporal Action Detection in Untrimmed Videos [BMVC’17]
multi-scale (dense) detector for streaming video (700FPS on single GPU)
6. Action Search: Spotting Actions in Videos and Its Application to Temporal Action Localization [ECCV’18] action
learning to detect activities using human search sequences in video >' detectors
7. What do | Annotate Next? An Empirical Study of Active Learning for Action Localization [ECCV’18]
learnable active learner for efficient annotation and activity detector training
8. Diagnosing Error in Temporal Action Detectors [ECCV’18]
tools to help diagnose detector errors (e.g. localization, double detection, classification, etc.) _

King Abdullah University of
Science and Technology
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Act|V|ty Detectlon Examples

Key
Detection

Ground-truth
Time

(Actions are played
at 1x speed,
Background video
is sped up)
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Object Tracking @ VUL

. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild [ECCV’18]

large-scale dataset for single object tracking with withheld testing sequences

. A Benchmark and Simulator for UAV Tracking [ECCV’16]

simulation based tracking benchmark and large dataset for aerial tracking

. Context-Aware Correlation Filter Tracking [CVPR’17] [oral]

add-on to any correlation filter tracker to discriminate object from context

. Target Response Adaptation for Correlation Filter Tracking [ECCV’16] [spotlight]

add-on to any correlation filter tracker to dynamically adapt the target per frame

Persistent Aerial Tracking System for UAVs [IROS’16]

STRUCK-based tracker for aerial tracking refined in simulation and transferred to real UAVs

In Defense of Sparse Tracking: Circulant Sparse Tracker [CVPR’16] [spotlight]
Revisiting LASSO based tracking with efficient FFT solution in dual domain

3D Part-Based Sparse Tracker with Automatic Synchronization and Registration [CVPR’16]
sparsity based tracker in 3D exploiting automatic registration from frame-to-frame

J\

) \

tracking
datasets

tracking

frameworks

sample
trackers

Bernard Ghanem
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@& https://tracking-net.org

ﬁ‘aCél.l‘ije{ MOTIVATIONS' PAPERS ABOUT TEAM DO@WNLOADS ‘CONTACT

TrackingNet: A Large-ScalelDataset and Benchmark for
ObjectTracking in theWild

MOTIVATIONS

Large Scale Dataset Object Tracking In the wild

>14M Boundi


eval.tracking-net.org

ObJect Tracklng Pose Estimation Object Detection Action Recognition

\,”‘./..,

Autonomous Nav1gat10n 3D Reconstliuction Crowd Understanding Urban Scene Understanding

XX¥KC ;b/ooo 000 /00

065/0;“ XX N oo/ooo‘v ' oo/oo

Indoor Scene Understanding

Human Training

Aerial Surveying

.../. .... 0000 | 000 /00
® Image ® Depth/Multi-View ® Video ® Segmentation/Bounding Box
® Image Label @ User Input ® Physics ® Camera Localization

Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications [IJCV’18] (www.sim4cv.org)



http://www.ue4sim.org/

Self-Driving Car: Scene Generator

R Track Editor alpha (map11) - map1lirk

File Edit Track Help

Designer Asset folder

N

RoadStraight Road3Way

Track file

Hedge 3

(o]

Display zoom: [¥] Downsample images
[] Draw grid
Cursor 1196.197] [¥] Show background

Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications [IJCV’'18](
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http://www.ue4sim.org/

Single RGB Camera Self-Driving Car Result

DRIVING

Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications [IJCV’'18]( )
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Self-Driving Car: Real-World Transfer

Driving Policy Transfer via Modularity and Abstraction [CoRL'18][In Collaboration with Intel Labs]
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Self-Driving Car: Real-World Transfer

~4,000 km (2,485 mi) away ...

... on another continent.

Driving Policy Transfer via Modularity and Abstraction [CoRL’'18][In Collaboration with Intel Labs]
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Single RGB Camera based Self-Racing UAV

Our controller

Teaching UAVs to Race: End-to-End Regression of Agile Controls in Simulation [ECCVW’18][Best Paper Award]

allluse Ellal] dzaly VISUAL
COMPUTING Bernard Ghanem

CENTER

£

= s
King Abdullah University of
Science and Technology




THEME: FUNDAMENTALS
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What I'm NOT going to talk about.

min [|Ac — b3+ Alc|: min f(x) st xec{l,-1}"xeQ

An Exact Penalty Method for Binary Optimization Based on MPEC Formulation
[AAAI'17]
Lp-Box ADMM: A Versatile Framework for Integer Programming [TPAMI’18]

FFTLasso: Large-Scale LASSO in the Fourier Domain
[CVPR’17][oral]

N
1 — — 1

. 2 . T T
min — E ||§H—DXW,||F—I—)\||X”||111 min | =x" Ax+x"b | + h(x)

¥ 2 T X 2
D,x n=1

A Matrix Splitting Method for Composite Function
High Order Tensor Formulation for Convolutional Sparse Coding [ICCV’17] Minimization [CVPR’17]
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What | AM going to talk about

| Analytic Expressions for Probabilistic Moments of PL-DNN with Gaussian Input |

Adel Bibif Modar Alfadly’ and Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

{adel .bibi,modar.alfadly,bernard. ghanerﬂ}@kaust .edu.sa

Oral @CVPR’18

Abstract
The outstanding performance of deep neural networks gﬂ

(DNNs), for the visual recognirion task in particular, has
been demonstrated on several large-scale benchmarks. This
performance has immensely strengthened the line of re-
search that aims to understand and analyze the driving rea- 3‘

X = E y +n —.

Y

A(x),cl(x))

—]

A

Elg(x
sons behind the effectiveness of these networks. One impor-
tant aspect of this analysis has recently gained much atten-

tion, namely the reaction of a DNN to noisy input. This has
snawned research on develonino adversarial innut attacks

ar[g(x)]
n~ N(0,3,)

\ B(y)1 Cg(y) b,
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https://github.com/ModarTensai/network_moments
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Noise Sensitivity

Grille 0

Thresher Labrador

(a) C

Flagpole ) ¢ Labrador
<7

m
Tibetan mastiff 0 Tibetan mastiff
Lycaenid

Balloon

(e) GoogLeNet (f) ResNet-152
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Natural Questions

« Can we derive a closed form expression for the output probability
density function? What about the moments?

« ldeally, we want these expressions for any network under any

distribution.
nND_-_*II...IIIII...IIEHg(n)
PDF of g(n)?
E[g">°(n)]?
var[g(n)]?
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Natural Questions

« Can we derive a closed form expression for the output probability
density function? What about the moments?

« ldeally, we want these expressions for any network under any
distribution.

nNN(lJ/’E) _-_*II...I I III...I I
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Natural Questions

Maybe that Is just too difficult?
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Network Moments

Given a Gaussian input, we want to derive analytical expressions for
the first and second moments of this shallow piecewise linear NN.

- 3
: : ()
XNN(UJQJ,Z:D)—» &E &EC.' —_— g(x) g
<< <q var[g(x)]
NG /

g(x) = Bmax (Ax+c¢1,0,) + ¢

where A € RPX" B € R¥*P ¢; € RP, and ¢y € R?
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First Network Moment

gi(x) = B(i, )max (Ax + €1,0,) + €(i), X ~ N (1, 5s) |

ﬁ‘heorem 1. For any function in the form of g(x) where x ~ N (uz, Xz), we \
have:

where fi, = (Apgy +c¢1) (v), 2 = AN, AT, 52 = X(v,v) and erf(z) = % IN
vs the error function. j
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Second Network Moment (Technical Lemmas)

/Lemma 1. Letx € R™ ~ N (g, X2), for any even p, where 0ij = Xgz(i,J) Vi #\

7, and under mild assumptions on the nonlinear map ¥ : R" — R, we have
GLEIVTES Y TEO
Knvoddi 004i+1 0x1...0xp 1"

)
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Second Network Moment (Technical Lemmas)

Lemma 1. L

7, and under
92 E[¥(x)]
KHVoddi 00iit1

= D l9 polall
/¥ King Abdullah University of
Science and Technology
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A Useful Theorem for Nonlinear Devices

Having Gaussian Inputs’
ROBERT PRICET

Summary—If and only if the inputs to a set of nonlinear, zero-
memory devices are variates drawn from a Gaussian random
process, a useful general relationship may be found between
certain input and output statistics of the set. This relationship
equates partial derivatives of the [(high-order) output correlation
coefficient taken with respect to the input correlation coefficients,
to the output correlation coefficient of a new set of nonlinear devices
bearing a simple derivative relation to the original set. Application
is made to the interesting special cases of conventional cross-
correlation and auntocorrelation functions, and Bussgang’s theorem
is easily proved. As examples, the output aulocorrelation functions
are gsimply obtained for a hard limiter, linear detector, clipper,
and smooth limiter.

frequeney behavior of power spectra resulting from

the passage of noise through zero-memory nonlinear
devices, an interesting, unique property of Gaussian
processes has been encountered, which does not appear
to have been previously reported.

I[N THE COURSE of investigating the asymptotic

HraTrEMENT oF THE THEOREM
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where r. and s., m = 1, 2, --- | N, are integers lying
between 1 and n, inclusive, and are not necessarily distinet.
The k., are positive integers, with & = 2.7, ku. € is
the number of times i appears in (r., s.). 8.... 18 the
Kronecker § function, §,_,, = 1 forr, = s,, 0forr, = s,.
The symbol },“"(z,) denotes the gth derivative of f(x),
taken at x,.

Furthermore, not only is the above theorem true for
inputs having an nth-order joint Gaussian distribution,
but it holds true only for such inputs if the f.{(x) are
allowed to be of general form.

FProof

£,(i,5) Vi #
> R, we have

)
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Second Network Moment

[ g:(x) ~ B(i,:)max (Ax,0,) + c2(i), x ~ N (0,,%,) }

ﬁI‘heorem 2. For any function in the form of g(x) where x ~ N (0,,,%,;) and\
that c; = 0, then:

it E s (7 (5):
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Network Moments

e N
b <P Elg(x
X ~ N (pay Sa) — | & & — g(x) &)
< < var[g(x)]
2 /

g(x) = Bmax (Ax+c¢1,0,) + ¢

The mean:  E[gi(x)]
The variance: var[gi(x)] ~ E[g?(x)] — E[gi(x)]*| .o,
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Extending to Deeper Networks




Extending to Deeper Networks

Given any piecewise linear deep neural network (PL-DNN)

43(‘
x = fﬂ——* 000 000 e “Koala!”
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Extending to Deeper Networks

We approximate the logits function f : R" — R? around a certain Input

— fi()()
I I III..QI I Y — fz(x) = f(x)
—Vfd(.X)

l
- Conv
- RelU
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Extending to Deeper Networks

We propose a two-stage linearization strategy at a randomly chosen RelLU

—[fi(x)]
‘ _fd(.X)

/L ! A\ .
\?j« b — [81(x)
ﬁfﬂ — o
. w__, :’: :i — | gi(x) | = f(x)
g-E1:
< Mm —> | 8alX) ]
\ _/
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Tightness Verification




Tightness on Synthetic Networks and Data

Verifying tightness by comparing the expressions to Monte Carlo Simulations
under various network architectures and various noise regimes.

Fully Connected Networks

ﬁ

Convolutional Networks

ﬁ

-
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Tightness on AlexNet with ImageNet

Are the expressions tight enough to predict AlexNet top-k score ordering?

top-1 accurac Y top-2 accurac Y top-3 accurac Y top-4 accurac Y top-5 accurac Y
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More Experiments

Tightness on LeNet & explaining other (deterministic) adversarial attacks

Choice of ReLU for two-stage linearization

- Linearization around cluster centers g ]
g o | ’%@‘}‘;}&

- Analyzing the behavior of varying logit 2 .- %ké. /"“@/\\} -
score under varying variance 1 0 20 I
o 50 100 150 200

Input Standard Deviation
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Localized Spatial Noise

« Using our expressions, it is now possible to study the effects of
adding Gaussian noise around each pixel of the input

« We can visualize a set of heat maps that shows the average fooling

rate of LeNet per class label in MNIST validation dataset

Red and blue indicate high and low fooling rates respectlvely

R
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Targeted Adversarial Attack

With EM(us,0?) = Elgi(M + x(,, 021,))], we define the targeted attack for
image M to target j as the following optimization:

arg max (€M(,u,r, 0?) — max (SM(;Ll 2))) s.t. 0< o <2, —p1, < u, < fP1,

Hoa i#]

~ 949999

Classified as:

o].ll;.u: Ellall dealy
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Non-Targeted Adversarial Attack (a- Support)

With p& having a random support of size a%, we define the non-targeted attack
for image M as the following optimization:

arg min (&M(ui,ag) e G °))) st. 0<0? <2, —Blan < pf < Blan
pe o | JF

Misclassified MNIST images by . @ E 4%,
LeNet: - . - 550
Misclassified ImageNet images by ﬂ«f@ ! gnﬁ_ = 2%,

AlexNet: +75
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Future Work with Network Moments

* More attacks:
— sparse support optimization (e.g. add L1 reqgularizer)
— spatially contiguous attacks (e.g. add TV reqgularizer)
— different input noise distributions
— applications: detection, segmentation, and emotion

« Use In network training
— No need for noisy data augmentation/sampling
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Sneak Peek: Targeted Attacks with Spatially Contiguous Noise

%
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