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Demystifying catadioptric cameras

Simplify:
Catadioptric projections can be described 
by simple, intuitive models

Revelations:
Modeling catadioptric projections gives us 
insight into perspective cameras

Motion: To give a framework 
for studying structure-from-motion in 
parabolic mirror cameras

Signals: How to deal with the intensities 
on a sphere.
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Central Catadioptric Projection

Setup.

An object in space

Hyperbolic mirror

Image plane
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Central Catadioptric Projection

Rays through
focus
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Intersected
with hyperbola

Central Catadioptric Projection
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Reflected rays 
incident with 
second focus

Central Catadioptric Projection
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Intersected 
with the image plane

Central Catadioptric Projection
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is a double 
projection:

First on the 
mirror, then 
on the image 
plane.

Central Catadioptric Projection
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Unifying Theorem:

All central catadioptric projections are 
equivalent to double projection through the 

sphere.

Corollary: Conventional cameras are just a 
singularity.
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Setup.

Object.

Sphere.  Point on its 
axis.

Image plane.

Equivalence with the sphere
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Rays through sphere 
center

Equivalence with the sphere
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Rays intersected with 
sphere

Equivalence with the sphere
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Rays through 
point on axis

Equivalence with the sphere
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Intersected with
image plane

Equivalence with the sphere
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Image of object 
obtained on image 
plane identical to 

catadioptric 
projection

Equivalence with the sphere
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Two facts:

1. Parabolic projection = central 
projection to the sphere then 
stereo-graphic projection to a 
plane

2. Perspective projection = central 
projection to the sphere followed 
by central projection to a plane 
from the same center ! Our 
model covers all conventional 
perspective cameras!!
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The projection of a line in space is a conic 
section and in parabolic mirrors it is a 
circle.
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A new representation of image features

While the projective plane captures both 
points and lines, we do not have a space 
suitable for points and circles. We need a

CIRCLE SPACE!
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Lift a circle (line projection in parabolic 
omnicameras)
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Take inverse stereographic image
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Construct cone tangent to locus
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P is the representation of the circle
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By varying the radius we model points, 
circles, and imaginary circles!
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Not every circle is a line projection (it has to be 
projection of a great circle). All these feasible 

lines lie on a plane in circle space.
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Image of the 
absolute conic
Image of the 

absolute conic

calibrating 
conic

calibrating 
conic
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Transformations of circle space

Motivation: In the perspective case the group of 
transformations is the set of collineations, i.e. 
non-singular matrices in PGL(3)

Goal: find the natural transformation group of 
circle space.
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A translation in the plane….

If the sphere has projective quadratic form

Then for A to preserve the sphere we must 
have

(Note similarity with              )

Q =

i
k
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

y
{

AT  QA =Q

RT R=I
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The Lorentz group O(3,1)

It is a six dimensional Lie group
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Infinitessimal generators 
of the Lorentz group

Rotations about
the x-axis y-axis z-axis

Generated by skew-symmetric matrices:
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Infinitessimal generators 
of the Lorentz group

Translations along
the x-axis y-axis

Scaling about
the origin

Generated by :
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•We need a linear transformation from uncalibrated 
pixels to calibrated rays.
Such a linear transformation exists and its kernel 
contains the parameters of this mapping.
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Motion estimation
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Perspective image pair: 
Epipolar constraint describes coplanarity
between two projection centers and image 

point
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Two view perspective:
the essential matrix

Recall that two images p1, p2 of the 
same space point X satisfy the bilinear 
constraint

where E is a 3×3 rank 2 matrix 
independent of X,

p1
T  Ep2 = 0
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Two views

Assume p1 and p2 are the 
catadioptric projections of X
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Two views

q2
T  E q1 = 0
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Two views

However there exist Lorentz group elements  K1 & K2 such that

q1 = K1  pé 1 and q2 = K2  pé 2
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Catadioptric fundamental matrix

i.e. the lifted image points satisfy a 
bilinear epipolar constraint!!!

F is the 4×4 catadioptric fundamental 
matrix

The kernel of F is the kernel of K.

pé 2
T  K2

T  E K1  pé 1 = 0

F



COGNITIVE VISION DANIILIDIS 39

Reconstruction algorithm much simpler than 
in perspective !

1. When intrinsics constant recover camera 
parameters with kernel computation and 
intersection

2. Recover rotation and translation
3. Reconstruct environment or produce novel 

views.
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A characterization of parabolic
fundamental matrices

Recall that a 3×3 matrix E is an essential 
matrix if and only if 

for some U, V in SO(3)
Claim: A 4×4 matrix F is a parabolic 
fundamental matrix if and only if  

for some U, V in SO(3,1)
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What are the properties of F?

• Rank 2 (4 constraints)
• Two Lorentzian Singular Values are equal
(? Constraints)
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How many degrees of freedom are in F?

• 5 for motion
• 3+3 for intrinsics left and right
• =11
However algebraically:
• 4 constraints already for rank of a 4x4 

to be 2
• ? Constraints for Lorentzian Singular 

Values to be equal
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The set of all gx in X for any g in G is called the 
orbit of x. If the group possesses an orbit, that 
means for any a,b in X, ga=b for a g in G, then the 
group action is called transitive.  For example, 
there is always a rotation mapping one point on the 
sphere to another.

If a subgroup H of G fixes a point x in X then H is 
called the isotropy group. A typical example of an 
isotropy group is the subgroup SO(2) of SO(3) 
acting on the north-pole of a sphere. 

A space X with a transitive Lie group action G is 
called homogeneous space. 

If the isotropy group is H, it is denoted with G/H. 
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Group theoretic analysis 
of bilinear constraints

• Let’s examine the LSVD characterization of parabolic 
fundamental matrices:

implies fundamental matrices are closed under left or 
right multiplication by Lorentz transformations, i.e.

is also a parabolic fundamental matrix.

Note: the same reasoning applies to essential matrices.
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Thus SO(3,1) × SO(3,1) 
acts upon the set of 
fundamental matrices

F SO(3,1) × SO(3,1)

(U,V)

The action of SO(3,1) × SO(3,1) on
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F
g

HF

The isotropy group HF: all g’s leaving F invariant
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Because of its one-to-one 
correspondence, the set of 

fundamental matrices 
inherits the structure of 

a quotient space

The set of fundamental matrices 
form a quotient space
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The dimension of the 
quotient space is the 

difference in the 
dimensions 

of the Lie groups

Quotient of Lie groups are automatically 
manifolds
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The dimension of the 
quotient space is the 

difference in the 
dimensions 

of the Lie groups

Quotient of Lie groups are automatically 
manifolds

9 12 3= –
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All of these results also 
apply to essential matrices

Instead, SO(3) × SO(3) 
acts on the set of essential

matrices SO(3) × SO(3)

HE



COGNITIVE VISION DANIILIDIS 53

Two view example

Given these two views with corresponding 
points estimate the parabolic 

fundamental matrix
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Image processing in perspective images

• Images obtained through perspective 
projection undergo local mappings:
– Translations
– Similitude
– Affine
– Projective (Collineations). 
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Template deformation in an omni-image is not 
covered by any of these mappings
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Spherical imageOriginal image
calibration
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Ζ

Ξ
Ψ

Ζ

Ξ
Ψ

Ζ

Ξ
Ψ

Definitions
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How does convolution look like on the sphere?

• What is the “shift” in the convolution?
• It is a 3D-rotation acting as an operator:

North pole
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What about a Fourier transform on the sphere?

Look for a decomposition of functions on the 
sphere into subspaces invariant under SO(3): 
Eigenfunctions of the Laplace equation, the 
spherical harmonics
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Spherical Harmonics
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Spherical Harmonic Transform
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Reconstruction with Spherical Harmonics
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Spherical range images
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Let us put it in a more general 
framework….

• Images are functions on homogeneous 
spaces (group quotients) and mappings 
are groups acting on them.
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SO(3) irreducible unitary representation
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Problem 1: Rotation estimation
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Shift Theorem
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Image Invariants
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Approach
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Estimating Rotation Around Z-axis

Re-examining the shift property
we see that the angle alpha appears 
only once.

Ζ

Ξ

Ψ

We can generate an over-constrained system using 
multiple coefficients with m>0
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Estimating Rotation Around Y-axis

Without loss of generality, we 
assume that only beta is nonzero 
(apply known alpha and gamma 
rotations to images prior to 
estimation).  

Rewriting the shift property we get

Ζ

Ξ

Ψ



COGNITIVE VISION DANIILIDIS 84

Estimating All Parameters

Ζ

Ξ

Ψ

Estimation is done in two steps
Generate estimates for beta and 
gamma.

Use beta and gamma as input to 
solving for alpha, which we already 
know how to calculate.
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Estimating beta and gamma

Ζ

Ξ

Ψ

The first rotation of alpha is not 
reflected in the coefficients f_l0

Using only the equations for the 
coefficients f_l0, we get an over-
constrained system for the two 
unknowns beta and gamma
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Estimation from very few coefficients!



COGNITIVE VISION DANIILIDIS 87

Resistant to clutter

6%, 10%, and 13% clutter
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Problem 2: Template matching
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Harmonic analysis

• Global shape descriptors (moment, Fourier-
descriptors) of the 60’s-80’s have been 
abandoned because of occlusions. 

• Omnidirectional images give you large closed 
areas persistent in images (many appearance 
based techniques)

• Classical Fourier can not be applied anyway due 
to the new deformations.

• Let us re-think Fourier-transforms!


