Omnidirectional vision geometry and signal processing

Kostas Daniilidis
with Christopher Geyer (now at UC Berkeley)
and Ameesh Makadia
GRASP Laboratory
Computer and Information Science Department
University of Pennsylvania

Demystifying catadioptric cameras

Simplify:
Catadioptric projections can be described by simple, intuitive models
Revelations:
Modeling catadioptric projections gives us insight into perspective cameras
Motion: To give a framework
for studying structure-from-motion in parabolic mirror cameras
Signals: How to deal with the intensities coonn a_{I} sphere.

Central Catadioptric Projection

Setup.

An object in space
Hyperbolic mirror
Imagevplamerision

Central Catadioptric Projection

Rays through
focus
COGNITIVE VISION

Central Catadioptric Projection

Intersected withantypersperla

Central Catadioptric Projection

Reflected rays incident with second focus

COGNITIVE VISION

Central Catadioptric Projection

Intersected with the image plane

COGNITIVE VISION

Central Catadioptric Projection

is a double projection:
First on the mirror, then on the image plane.

COGNITIVE VISION

Unifying Theorem:

All central catadioptric projections are equivalent to double projection through the sphere.

Corollary: Conventional cameras are just a singularity.

Equivalence with the sphere

Setup.

Object.
Sphere. Point on its axis.

Image plane.

COGNITIVE VISION

Equivalence with the sphere

Rays through sphere center

Equivalence with the sphere

Equivalence with the sphere

Rays through point on axis

COGNITIVE VISION

Equivalence with the sphere

Intersected with image plane

Equivalence with the sphere

Image of object obtained on image plane identical to catadioptric projection

Two facts:

1. Parabolic projection $=$ central projection to the sphere then stereo-graphic projection to a plane
2. Perspective projection = central projection to the sphere followed by central projection to a plane from the same center! Our model covers all conventional perspective cameras!!

The projection of a line in space is a conic section and in parabolic mirrors it is a circle.

A new representation of image features

While the projective plane captures both points and lines, we do not have a space suitable for points and circles. We need a CIRCLE SPACE!

Lift a circle (line projection in parabolic omnicameras)

Take inverse stereographic image

Construct cone tangent to locus

P is the representation of the circle

By varying the radius we model points, circles, and imaginary circles!

Not every circle is a line projection (it has to be projection of a great circle). All these feasible lines lie on a plane in circle space.

Transformations of circle space

Motivation: In the perspective case the group of transformations is the set of collineations, i.e. non-singular matrices in PGL(3)

Goal: find the natural transformation group of circle space.

A translation in the plane...

If the sphere has projective quadratic form

$$
Q=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
k 0 & 0 & 0 & -1
\end{array}\right|
$$

Then for A to preserve the sphere we must have

$$
\mathbf{A}^{\mathbf{T}} \mathbf{Q} \mathbf{A}=\mathbf{Q}
$$

(Note similarity with $\mathbf{R}^{\mathbf{T}} \mathbf{R = 1}{ }^{\prime}$

The Lorentz group $O(3,1)$

It is a six dimensional Lie group

Infinitessimal generators of the Lorentz group

$\exp \delta \theta\left(\begin{array}{ccc:c}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0\end{array}\right)$
$\exp \delta \theta\left(\begin{array}{ccc:c}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0\end{array}\right)$
$\exp \delta \theta\left(\begin{array}{ccc:c}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Infinitessimal generators of the Lorentz group

$\exp \delta \theta\left(\begin{array}{ccc:c}0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \hdashline-1 & 0 & 0 & 0\end{array}\right)$
$\exp \delta \theta\left(\begin{array}{ccc:c}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 0 \\ \hdashline 0 & -1 & 0 & 0\end{array}\right)$
$\exp \delta \theta\left(\begin{array}{ccc:c}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hdashline 0 & 0 & 1 & 0\end{array}\right)$
-We need a linear transformation from uncalibrated pixels to calibrated rays. Such a linear transformation exists and its kernel contains the parameters of this mapping.

Motion estimation

Perspective image pair:
 Epipolar constraint describes coplanarity between two projection centers and image point

Two view perspective: the essential matrix

Recall that two images p_{1}, p_{2} of the same space point X satisfy the bilinear constraint

$$
p_{1}{ }^{\top} E p_{2}=0
$$

where E is a 3×3 rank 2 matrix independent of X.

Assume p_{1} and p_{2} are the catadioptric projections of X

COGNITIVE VISION

$q_{2}{ }^{\top} E q_{1}=0$

However there exist Lorentz group elements $K_{1} \& K_{2}$ such that

$$
q_{1}=K_{1} \stackrel{p}{1}_{\mathbf{f}}^{1} \text { and } q_{2}=K_{2} \mathbf{p}_{2}^{f}
$$

Catadioptric fundamental matrix

i.e. the lifted image points satisfy a bilinear epipolar constraint!!!
F is the 4×4 catadioptric fundamental matrix
The kernel of F is the kernel of K.

Reconstruction algorithm much simpler than in perspective!

1. When intrinsics constant recover camera parameters with kernel computation and intersect

$$
\operatorname{ker} F \cap \operatorname{ker} F^{T}=\{\lambda \tilde{\omega}\}
$$

2. Recover rotation and translation
3. Reconstruct environment or produce novel views.

A characterization of parabolic

 fundamental matricesRecall that a 3×3 matrix E is an essential matrix if and only if

for some U, V in SO(3)
Claim: $A \times 4$ matrix F is a parabolic fundamental matrix if and only if

What are the properties of F?

- Rank 2 (4 constraints)
- Two Lorentzian Singular Values are equal (? Constraints)

How many degrees of freedom are in F?

- 5 for motion
- 3+3 for intrinsics left and right
- =11

However algebraically:

- 4 constraints already for rank of a 4×4 to be 2
- ? Constraints for Lorentzian Singular Values to be equal

The set of all $g \times$ in X for any g in G is called the orbit of x. If the group possesses an orbit, that means for any a, b in $X, g a=b$ for $a g$ in G, then the group action is called transitive. For example, there is always a rotation mapping one point on the sphere to another.

If a subgroup H of G fixes a point x in X then H is called the isotropy group. A typical example of an isotropy group is the subgroup SO (2) of SO (3) acting on the north-pole of a sphere.

A space X with a transitive Lie group action G is called homogeneous space.
If the isotropy group is H , it is denoted with G / H.

Group theoretic analysis of bilinear constraints

- Let's examine the LSVD characterization of parabolic fundamental matrices:

$$
\mathrm{F}=\mathrm{U} \operatorname{diag}(1,1,0,0) \mathbf{V}^{\mathrm{T}} \quad \mathrm{U}, \mathrm{~V} \in \mathrm{SO}(3,1)
$$

implies fundamental matrices are closed under left or right multiplication by Lorentz transformations, i.e.

is also a parabolic fundamental matrix.
Note: the same reasoning applies to essential matrices.

Thus $S O(3,1) \times S O(3,1)$ acts upon the set of fundamental matrices

The isotropy group H_{F} ：all g＇s leaving F invariant

$$
\mathrm{H}_{\mathrm{F}}=\{\mathrm{g}: \varphi(\mathrm{g}, \mathrm{~F})=\mathrm{F}\}
$$

The set of fundamental matrices form a quotient sbace

$$
\mathcal{F}=\mathrm{SO}(3,1) \times \mathrm{SO}(3,1) / \mathrm{H}_{\mathrm{F}}
$$

Quotient of Lie groups are automatically manifolds

Quotient of Lie groups are automatically manifolds

$\operatorname{dim} \mathcal{F}=\operatorname{dim} \mathrm{G}-\operatorname{dim} \mathrm{H}_{\mathrm{F}}$

All of these results also apply to essential matrices

Two view example

Given these two views with corresponding points estimate the parabolic fundamental matrix

Image processing in perspective images

- Images obtained through perspective projection undergo local mappings:
- Translations
- Similitude
- Affine
- Projective (Collineations).

Template deformation in an omni-image is not covered by any of these mappings

Original image

calibration

Spherical image

Definitions

The rotation of a function $f(\eta)$ by an element $g \in S O(3)$ is defined with the operator Λ_{g} as $\wedge_{g} f(\eta)=f\left(g^{-1} \eta\right)$

The integration of a function $f(\eta) \in L^{2}\left(S^{2}\right)$ is defined as

$$
\int_{\eta \in S^{2}} f(\eta) d \eta=\int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \phi) \sin (\theta) d \theta d \phi
$$

How does convolution look like on the sphere?

- What is the "shift" in the convolution?
- It is a 3D-rotation acting as an operator:

$$
\begin{gathered}
(f * h)(\eta)=\int_{g \in S O(3)} f\left(g^{n}\right) h\left(g^{-1} \eta\right) d g, \quad \eta \in S^{2} \\
\eta:=(\cos (\varphi) \sin (\vartheta), \sin (\varphi) \sin (\vartheta), \cos (\vartheta))
\end{gathered}
$$

What about a Fourier transform on the sphere?

Look for a decomposition of functions on the sphere into subspaces invariant under SO(3): Eigenfunctions of the Laplace equation, the spherical harmonics

$$
\begin{gathered}
Y_{m}^{l}(\theta, \phi)=(-1)^{m} \sqrt{\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{m}^{l}(\cos \theta) e^{i m \phi} \\
P_{m}^{l}(x)=\frac{\left(1-x^{2}\right)^{\frac{m}{2}}}{2^{l} l!} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}-1\right)^{l}
\end{gathered}
$$

Spherical Harmonic Transform

$$
\begin{aligned}
f(\theta, \phi) & =\sum_{l \in \mathbb{N}} \sum_{|m| \leq l} \widehat{f}_{l m} Y_{m}^{l}(\theta, \phi) \\
\hat{f}_{l m} & =\int_{\eta \in S^{2}} f(\eta) \overline{Y_{m}^{l}}(\eta) d \eta
\end{aligned}
$$

The $(2 l+1) \hat{f}_{l m}$ are the spherical harmonic coefficients of degree l.

Spherical range images

Let us put it in a more general framework....

- Images are functions on homogeneous spaces (group quotients) and mappings are groups acting on them.

A representation of a group G is a homomorphism T : $G \rightarrow G L(V)$.

A representation is unitary if for all $g \in G$

$$
(T(g) v, T(g) w)=(v, w) \quad \forall v, w \in V
$$

A representation T is reducible if there is a proper subspace W of V which is invariant under T. Otherwise, T is irreducible.

Let T be representation of group \mathbf{G} in vector space V. Then T is irreducible if and only if the only $A: V \rightarrow V^{\prime}$ satisfying $T(g) A=A T(g), \forall g \in G$ are $A=\lambda I$.

If the acting group is unimodular and locally compact, the group has an irreducible representation $U(g, p)$.

The Fourier transform of a function on the homogeneous space G / H exists:

$$
F(p)=\int_{\eta \in G / H} f(\eta) U\left(g^{-1}, \operatorname{proj}(p)\right) d \eta
$$

In the case of the sphere $S^{2}=S O(3) / S O(1)$

$$
\hat{f}_{m}^{l}=\int_{\eta \in G / H} f(\eta) U_{m 0}^{l}(\eta) d \eta
$$

where $U_{m n}^{l}$ the irreducible unitary representation of $S O(3)$.

SO(3) irreducible unitary representation

$$
U_{m n}^{l}(g(\gamma, \beta, \alpha))=e^{-i m \gamma} P_{m n}^{l}(\cos (\beta)) e^{-i n \alpha}
$$

Framework for image processing in various domains

- Identify the domain of definition of the signal as a homogeneous space and the group acting on it.
- Check whether an irreducible unitary representation exists for the acting group. Compute the generalized Fourier transform of the image.
- Compute the transformation (group action) from a generalized shift theorem. Compute invariants from the magnitude of the Fourier coefficients.

Problem 1: Rotation estimation

Sphere SO(3)/SO(2)

Problem: Compute the rotation of a spherical image directly from its spherical harmonic coefficients (no correspondence).

Current methods: Iterative closest point gradient decent minimization or hierarchical flow algorithms.

Shift Theorem

$$
\begin{aligned}
\widehat{f}_{l m}^{g}= & \sum_{|p| \leq l} U_{p m}^{l} \widehat{f}_{l p} \\
& \widehat{f}_{l}^{g} \equiv \Lambda_{g} \widehat{f}_{l}=U^{l}(g)^{T} \widehat{f}_{l}
\end{aligned}
$$

Image Invariants

$$
\wedge_{g} \widehat{f}_{l}=U^{l}(g)^{T} \widehat{f}_{l}
$$

$$
U^{l} \text { is a unitary matrix, }
$$

$$
K_{l}(f(\eta))=\sum_{|m| \leq l} \overline{f_{l m}} \hat{f_{l m}}
$$

Approach

Problem: Determine if two spherical images A and B are related by a rotation $g(\alpha, \beta, \gamma)$, and if so, what are α, β, and γ.

We can use our invariant function $K_{l}(f(\eta))$ to determine if two images are identical up to a rotation.

We extract Euler angles of rotation from the Shift Theorem.

$$
\begin{aligned}
& U^{l} \text { gives } U^{l}\left(g_{1} g_{2}\right)=U^{l}\left(g_{1}\right) U^{l}\left(g_{2}\right) \\
& g(\alpha, \beta, \gamma)=g_{1}\left(\alpha+\frac{\pi}{2}, \frac{\pi}{2}, 0\right) g_{2}\left(\beta+\pi, \frac{\pi}{2}, \gamma+\frac{\pi}{2}\right) \\
& \wedge_{g_{2} g_{1}} \widehat{f_{l}}=\left(U^{l}\left(g_{1}\right)\right)^{T}\left(U^{l}\left(g_{2}\right)\right)^{T} \widehat{f_{l}} \\
& \hat{f}_{l m}^{g}=e^{-i m\left(\gamma+\frac{\pi}{2}\right)} \sum_{|p| \leq l} e^{-i p\left(\alpha+\frac{\pi}{2}\right)} \hat{f}_{l} \sum_{|k| \leq l} P_{p k}^{l}(0) P_{k m}^{l}(0) e^{-i k(\beta+\pi)}
\end{aligned}
$$

Re-examining the shift property we see that the angle alpha appears only once.

$\widehat{f}_{l m}^{g}=e^{-i m\left(\gamma+\frac{\pi}{2}\right)} \sum_{|p| \leq l} e^{-i p\left(\alpha+\frac{\pi}{2}\right)} \widehat{f}_{l p} \sum_{|k| \leq l} P_{p k}^{l}(0) P_{k m}^{l}(0) e^{-i k(\beta+\pi)}$
We can generate an over-constrained system using multiple coefficients with $m>0$

Without loss of generality, we assume that only beta is nonzero (apply known alpha and gamma rotations to images prior to estimation).

Rewriting the shift property we get

$$
\begin{aligned}
\wedge_{g} \widehat{f}_{l m} & =\sum_{|p| \leq l} e^{-i p \beta} C_{m p}^{l} \\
C_{m p}^{l} & =e^{-i m\left(\frac{\pi}{2}\right)}\left(\sum_{|| | \leq l} e^{-i k\left(\frac{\pi}{2}\right)} \widehat{f}_{l k} P_{k p}^{l}(0) P_{p m}^{l}(0) e^{-i k \pi}\right)
\end{aligned}
$$

Estimation is done in two steps Generate estimates for beta and gamma.

Use beta and gamma as input to solving for alpha, which we already

The first rotation of alpha is not reflected in the coefficients f_10

Using only the equations for the
 coefficients f_l0, we get an overconstrained system for the two unknowns beta and gamma

Estimation from very few coefficients!

COGNITIVE VISION

Angle	$l \leq 5$	$l \leq 8$	$l \leq 16$	Flow
$\alpha=-2.4^{\circ}$	-2.2°	-2.3°	-2.2°	-2.7°
$\beta=9.3^{\circ}$	7.2°	7.6°	7.3°	8.1°
$\gamma=2.2^{\circ}$	2.5°	2.4°	2.7°	1.9°

Resistant to clutter

Angle	$l \leq 8$	$l \leq 16$	Flow	$l \leq 8$	$l \leq 16$	Flow	$l \leq 8$	$l \leq 16$	Flow
$\alpha=15^{\circ}$	14.96°	14.96°	14.88°	14.57°	14.83°	14.76°	14.19°	14.19°	14.45°
$\beta=13.8^{\circ}$	13.87°	14.03°	13.88	13.87°	13.81°	13.90	13.96°	13.96°	13.98
$\gamma=12.8^{\circ}$	13.01°	12.89°	12.94°	13.11°	13.11°	13.41°	13.74°	13.68	13.50

Problem 2: Template matching

Given $f(\eta), h(\eta) \in L^{2}\left(S^{2}\right)$, the correlation between $f(\eta)$ and $h(\eta)$ is defined as

$$
g(\alpha, \beta, \gamma)=\int_{S^{2}} f(\eta) \Lambda(R) h(\eta) d \eta
$$

Correlation can be obtained from the spherical harmonics \hat{f}_{m}^{l} and \hat{h}_{m}^{l} via the 3-D Inverse Discrete Fourier Transform as

$$
g(\alpha, \beta, \gamma)=\operatorname{IDFT}\left\{\sum_{l} \hat{f}_{m}^{l} \overline{\hat{h}_{k}^{l}} U_{m, h}^{l}(\pi / 2) U_{h, k}^{l}(\pi / 2)\right\} .
$$

Harmonic analysis

- Global shape descriptors (moment, Fourierdescriptors) of the 60's-80's have been abandoned because of occlusions.
- Omnidirectional images give you large closed areas persistent in images (many appearance based techniques)
- Classical Fourier can not be applied anyway due to the new deformations.
- Let us re-think Fourier-transforms!

