Fusion for Image Restoration

Filip Šroubek Jan Flusser

sroubekf@utia.cas.cz

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Traffic surveillance - can we read the license plates?

Empirical observation

One image is not enough

- ill-posed problem

Solution

- strong prior knowledge of blurs and/or the original image
- OR
- more images
- techniques how to combine them

Realistic multiframe imaging

registration

image restoration

Superresolution

Goal: Obtaining a high-res image from several low-res images

Traditional superresolution

Method: interpolating LR images on a HR grid

Fusion for image restoration

- Idea: Each image consists of "true" part and "degradation", which can be removed by fusion
- Types of degradation:
 - additive noise: image denoising
 - blurring: blind deconvolution
 - resolution decimation: superresolution

Sroubek, Cristobal, Flusser, IEEE TIP, Sep 2007

Realistic acquisition model

Decimation operator D

- Convolution with the sensor PSF
 Modeling CCDs
- Registration
 - Adjusting sensor PSFs
- Downsampling
 - e.g. take every second pixel
- Masking
 - Eliminating erroneous pixels

(e.g. registration is inaccurate or impossible)

Misregistration

- Optimization with respect to registration parameters
- Marginalization (eliminating registration parameters)

Pickup et al., EURASIP Journal on App. Sig. Proc., 2007.

• Incorporating between-image shift

$$[u * h_k](\tau_k(x, y)) + n_k(x, y) = z_k(x, y)$$
$$[u * g_k](x, y) + n_k(x, y) = z_k(x, y)$$

Blind superresolution

- System of integral equations (ill-posed, underdetermined) $z_k(x) = D[h_k * u](x) + n_k(x)$
- Energy minimization problem (well-posed)

$$E(u, \{h_k\}) = \frac{1}{2} \sum_{k=1}^{K} \|D[h_i * u] - z_k\| + \lambda Q(u) + \gamma R(\{h_k\})$$

Image Regularization

- Q(u) captures local characteristics of the image => Markov Random Fields
- Identity: $\int_{\Omega} |u|^2$ Tichonov (GMRF): $\int_{\Omega} |\nabla u|^2$
- Variational integral: $\int_{\Omega} \phi(|\nabla u|)$

• Huber MRF, bilateral filters, ...

PSF Regularization

with one additional constraint $0 \le h_i(x) \le 1$, $\forall x, i$

AM algorithm

- Alternating minimizations of $E(u, \{h_k\})$
- Input: blurred LR images and estimation of PSF size
- Output: HR image and PSFs
- Blind deconvolution in the SR framework

$$E(u, \{h_k\}) = \frac{1}{2} \sum_{k=1}^{K} \|D[h_i * u] - z_k\| + \lambda Q(u) + \gamma R(\{h_k\})$$

Taking pictures in a museum

Long-time exposure

Moving car

Scaled LR input images

MBD+SR

Reprinted from Sroubek, et al., IEEE TIP, Sep 2007.

Still car & moving camera

rough registration

Superresolved image (2x)

Optical zoom (ground truth)

Reprinted from Sroubek, et al., IEEE TIP, Sep 2007.

Superresolution with High Factor

Input LR frames

PLACE REAL PROPERTY.	10.0.0.00	A			Part 100	
ACCREME INCOMENT	Alternative P	ALC: NO.	ALCONT !	Sectors 1	1012255	Baselogal
1.	1 2 2 3 4		1.1.7.25	C DEPENDING	5. S.	1000
	100000	100000	-A160.0	-100 C	10000	1000
THE REAL PROPERTY.	THE REAL PROPERTY.	PP INTE	1000			Bridges M.
COMM COMM	100.000	Sec. 1	and the second	STORE 1	STHEFT &	PTHEF.
SPECIAL SHIFTLE	CHEMP	20100	and the second	and the second s	TOPLAT	Second Second

Original frame

Reprinted from Sroubek, et al., IEEE TIP, Sep 2007.

Webcam images

LR input frame

Superresolution image (2x)

Reprinted from Sroubek *et al., "*Imaging for Detection and Identification", NATO Advance Study Institute, 2006

Video sequence

160x120, 30fps

Video sequence

original LR video

reconstructed HR video

Challenges

Challenges

- 3D scene
- objects having different motion
- improving registration

- space-variant deblurring
- motion field
 - minimization over registration param.

Matlab GUI

Any questions ?

sroubekf@utia.cas.cz

www.utia.cas.cz/sroubekf