Integrating Structural Information in Deep Convolutional Neural Networks for Low- and High-Level Vision

lasonas Kokkinos

Center for Visual Computing CentraleSupelec Galen Group INRIA-Saclay

31 March, 2016 Center for Machine Perception, Prague

Deep Learning and Computer Vision

pixels \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object 1980's K-Means/ 2000-2010 SIFT/HOG classifier "car" pooling fixed unsupervised supervised h^1 2010 + h^2 0 X $\blacktriangleright max(0, W^2 h^1)$ $max(0, W^1 x)$ $W^3 h^2$

Breakthrough: Imagenet 2012

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. *NIPS*13

Imagenet top-5 error rates

1			and the second s		(
	10: 1				
	1.			A Star	A BBBOOKES
	199				ALL CONTRACTOR
~	1	· · · · · · · · · · · · · · · · · · ·	A Statements		
	K				Contraction of the second s
	200				a plant of
1	Since 10	1		The second second	

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
	No. Martin Constraint	40°.00	

				-
grille		mushroom	cherry	Madagascar cat
	convertible	agaric	dalmatian	squir <mark>rel monkey</mark>
	grille	mushroom	grape	spider monkey
	pickup	jelly fungus	elderberry	titi
	beach wagon	gill fungus	ffordshire bullterrier	indri
	fire engine	dead-man's-fingers	currant	howler monkey

Humans:5.4%

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. *NIPS*13 [18%] (best shallow competitor: 36%)

K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, http://arxiv.org/abs/1502.01852, 2015. [4.5%]

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, http://arxiv.org/abs/1502.03167, 2015. [4.5%]

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Arxiv, 2015 [3.6%]

DCNNs and Vision

2012 onwards: all about DCNNs

if [all] you have [is] a hammer, you treat everything like a nail

-Classification & Detection

Today:

-Semantic Segmentation

-Boundary Detection

-Feature Descriptors

2014 onwards: structured prediction and DCNNs

trust is good, but control is better!

This talk: controlling DCNNs for low- and high- level tasks

Convolutional/Fully Connected DCNN layers

convolutional fully connected 3/ 5 2048 192 192 128 48 128 27 13 224 3/ 13 ense 13 13 3/ 27 128 Ma 192 192 2048 na Max po Max 128 Stride

feature extraction

pooling

classification

densé

AlexNet

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks NIPS13

VGG network

pooling

48

K. Simonyan and A. Zisserman. Very deep CNNs for large-scale image recognition, ICLR 2015

dense

1000

2048

2048

convolutional

Fully connected layers: 1x1 spatial convolution kernels "FCNNs" (2015) or "Space Displacement Neural Nets" (1998)

Y. LeCun, et al, Gradient-Based Learning Applied to Document Recognition, Proc. IEEE 1998 J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Fast (shared convolutions) Simple (dense)

This talk: controlling DCNNs for low- and high- level tasks

- -Classification & Detection
- -Semantic Segmentation
- -Boundary Detection
- -Feature Descriptors

G. Papandreou

P.-A. Savalle

S. Tsogkas

G. Papandreou, P. A. Savalle, I. Kokkinos Modeling Local and Global Deformations in Deep Learning: Epitomic Convolution, MIL, and Sliding Window Detection, CVPR 2015
P.-A. Savalle, S. Tsogkas, G. Papandreou, I. Kokkinos. Deformable Part Models with CNN features (ECCVW 2014)

Scale-Invariant classification

A. Howard. Some improvements on deep convolutional neural network based image classification, 2013.
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition, 2014.
T. Dietterich et al. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 1997

Position and Scale evaluation in `batch mode'

Patchwork(x,y)

l(x,y,s)

Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. ECCV 2012 Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet. arXiv 2014

Explicit Scale/Position Search + MIL Training

MIL: Explicit position & scale search during both training and testing

Bonus: Vanilla argmax yields 48% localization error in Imagenet

Towards Object Detection

Search over position and scale: done! Missing: aspect ratio

Procrustes Alignment: The Greeks did it first!

F.L. Bookstein, *Morphometric tools for landmark data*, Cambridge University Press, (1991). T.F. Cootes and C.J. Taylor and D.H. Cooper and J. Graham (1995). "Active shape models - their training and application". *Computer Vision and Image Understanding* (61): 38–59 M.-M. Cheng, Z. Zhang, W.-Y. Lin, P. Torr, BING. CVPR, 2014. R. Girschick, Donahue, Darrell, Malik, RCNN, CVPR 2014

Explicit search over aspect ratio, scale & position

18

Explicit search over aspect ratio, scale & position

See also: Region Proposal Networks (RPN) Faster-RCNN, 2016

19

Pascal VOC 2007: Best sliding-window detector

[1] CNN-DPM: PA Savalle, S. Tsogkas, G. Papandreou, I. Kokkinos. DPM with CNN features (ECCVW 2014)
[2] MP-DPM: R. Girshick, F. Iandola, T. Darrell, and J. Malik. DPMs are CNNs (CVPR 15)
[3] EE-DPM: L. Wan, D. Eigen, R. Fergus. End-to-end integration of CNN, DPM, NMX (CVPR 15)
[4] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (CVPR 2014)

This talk: controlling DCNNs for low- and high- level tasks

- -Classification & Detection
- -Semantic Segmentation
- -Boundary Detection
- -Feature Descriptors

L-C. Chen

G. Papandreou

K. Murphy

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015 S. Chandra, I. Kokkinos, Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs, arXiv:1603.08358

Semantic segmentation task

Repurposing DCNNs for semantic segmentation

Accelerate CNN evaluation by 'hard dropout' & finetuning In VGG: Subsample first FC layer 7x7 → 3x3

Decrease score map stride (32->8) with 'atrous' (w. holes) algorithm

M. Holschneider, et al, A real-time algorithm for signal analysis with the help of the wavelet transform, *Wavelets, Time-Frequency Methods and Phase Space,* 1989.

FCNN for semantic segmentation: results

OK classification-wise, rather poor segmentation-wise

- Large CNN receptive field:
 - + good accuracy
 - worse performance near boundaries

J. Long, E. Shelhamer, T. Darrell, FCNNs for Semantic Segmentation, CVPR 15

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015

FCNN-DenseCRF: Accurate & Sharp

P. Krähenbühl and V. Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS 2011

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015

Mean Field Inference for the Ising Model

Variational Inference:
$$\mathbf{q}^* = \operatorname{argmin}_{\mathbf{q} \in \mathcal{Q}} KL(\mathbf{q} || \mathbf{p})$$

where: $KL(\mathbf{q} || \mathbf{p}) = \sum_{\mathbf{x}} \mathbf{q}(\mathbf{x}) \log \frac{\mathbf{q}(\mathbf{x})}{\mathbf{p}(\mathbf{x})}$, and \mathcal{Q} simplifies minimization
Naïve mean field: $\mathcal{Q}: \{\mathbf{q}: \mathbf{q}(\mathbf{x}) = \prod_{n} \mathbf{q}_{n}(x_{n})\}$
lsing model: $\mathbf{p}(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$
 $E(\mathbf{x}) = \sum_{n} \sum_{m} J_{m,n} |\mathbf{x}_{m} - \mathbf{x}_{n}| \quad \mathbf{x}_{n} \in \{-1, 1\}$

$$= \sum_{n} \sum_{m \in \mathcal{N}_{n}} J_{m,n} |\mathbf{x}_{m} - \mathbf{x}_{n}| \qquad \mathbf{x}_{n} \in \{-1, 1\}$$

Mean Field equations:

$$\mathbf{q}_n(1) = \tanh\left(\sum_m J_{n,m}\mathbf{q}_m(1)\right)$$

27

Dense CRF: smart choice of pairwise term

28

$$\begin{split} \psi_{i,j}(l,l') &= \mu(l,l') \sum_{m=1}^{M} w_m k_m(\mathbf{f}_i, \mathbf{f}_j) \\ &= [l \neq l'] \left[w_1 \exp\left(-\frac{\|p_i - p_j\|^2}{2\sigma_a^2} - \frac{\|I_i - I_j\|^2}{2\sigma_b^2}\right) + w_2 \exp\left(-\frac{\|p_i - p_j\|^2}{2\sigma_\gamma^2}\right) \right] \\ \text{Potts model} \quad \text{`Bilateral kernel'} \qquad \text{Spatial proximity} \\ \text{Mean Field Updates:} \\ Q_i(l) &= \frac{1}{Z_i} \exp\left\{-\psi_i(l) - \sum_{l'} \mu(l,l') \sum_{m=1}^{M} w_m \sum_{j \in \mathcal{N}_i} k_m(\mathbf{f}_i, \mathbf{f}_j) Q_j(l')\right\} \end{split}$$

Efficient high-dimensional convolutions using the Permutohedral Lattice

Philipp Krähenbühl and Vladlen Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS 2011

Qualitative Results

FCNN

FCNN-DCRF

Qualtiative Results

30

Qualitative Results

FCNN

Indicative Results

FCNN

Comparison to state-of-the-art (Pascal VOC test)

Method	mean IOU (%)
MSRA-CFM	61.8
FCN-8s	62.2
TTI-Zoomout-16	64.4
DeepLab-CRF (our)	66.4
DeepLab-MSc-CRF (our)	67.1

Current: 74.7 end-to-end S. Zheng, et al. CRFs as recurrent neural networks. In ICCV, 2015.

Semantic Part Segmentation

S. Tsogkas, G. Papandreou, I. Kokkinos, and A. Vedaldi, Semantic Part Segmentation using high-level guidance, Arxiv, 2015

Fast, Exact, and Multi-Scale Inference for FCNN-CRF

35

S. Chandra, I. Kokkinos, Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs, arXiv:1603.08358

Gaussian Random Fields: Random Fields for dummies

Maximum-A-Posteriori inference = Minimum Mean-Squared Error inference = solution of linear system

Gaussian MRF: blurry samples (hard to have outliers) Gaussian CRF: image-based pairwise terms (e.g. discontinuity -preserving)

Jancsary, Nowozin, Sharp & Rother, Regression Tree Fields, CVPR12 Tappen, Liu, Adelson & Freeman, Learning Gaussian CRFs for low-level vision, CVPR07

Deep Gaussian Conditional Random Field vs. DenseCRF³⁸

	Deep Gaussian CRF	Dense CRF
Variables	continuous	discrete
Inference	exact (linear system)	approximate (mean-field)
Learning	exact (linear system)	BackProp on mean-field
Unary terms	CNN-based	CNN-based
Pairwise terms	CNN-based	parametric (Gaussian form)

Linear systems & Gaussian CRFs

$$A\mathbf{x} = B \qquad \qquad \Theta \mathbf{x}^* = \theta$$

Gauss-Seidel:

$$x_{i}^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left\{ b_{i} - \sum_{j < i} a_{ij} x_{j}^{(k+1)} - \sum_{j > i} a_{ij} x_{j}^{(k)} \right\}$$

~

Jacobi:

sequential Mean-Field

$$x_i^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left\{ b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right\}$$

Conjugate gradients: 2x faster!

Naïve Multi-Resolution Semantic Segmentation

L.-C. Chen, Y. Yang, J. Wang, W. Xu and A. Yuille, 'Attention to Scale: Scale-aware Semantic Image Segmentation, CVPR 2016I. Kokkinos, Pushing the Boundaries of Boundary Detection using Deep Learning, ICLR 2016

40

Linear systems & Multi-resolution CRFs

Learn to enforce coupling of different results Consistently better results than decoupled learning!

Improvements/Complementarity with DenseCRF

42

Quantitative Results

Method	IoU	IoU after dense CRF
Basenet	72.72	73.78
QO_4	73.41	75.13
QO_4^{mres}	73.86	75.46

Method	mean IoU (%)
DeepLab-CRF (Chen et al., 2014)	66.4
DeepLab-MSc-CRF (Chen et al., 2014)	67.1
DeepLab-CRF-7x7 (Chen et al., 2014)	70.3
DeepLab-CRF-LargeFOV (Chen et al., 2014)	70.3
DeepLab-MSc-CRF-LargeFOV (Chen et al., 2014)	71.6
Deeplab-Cross-Joint (Chen et al., 2015a)	73.9
CRFRNN (Zheng et al., 2015)	74.7
Adelaide Context (Lin et al., 2016)	77.8
Deep Parsing Network (Liu et al., 2015)	77.4
Ours (QO_4^{mres})	75.5

This talk: controlling DCNNs for low- and high- level tasks

- -Classification & Detection
- -Semantic Segmentation
- -Boundary Detection
- -Feature Descriptors

 I. Kokkinos, Pushing the Boundaries of Boundary Detection using Deep Learning, ICLR 2016 (earlier title: 'Surpassing Humans in Boundary Detection')

Can humans do it?

Segmentation: task-agnostic, ill-posed

Can humans do it?

Segmentation: task-agnostic, ill-posed

Can humans do it?

Segmentation: task-agnostic, ill-posed

30 years of boundary detection

S. Xie and Z. Tu, Holistically-Nested Edge Detection, ICCV 2015

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016

This work

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques:

Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture: Tied Multi-Scale Networks Grouping in DCNNs

Holistically-Nested Edge Detection network

Outputs: $\mathbf{f}^m, \quad m=1,\ldots,5$

53

$$l^{m}(\mathbf{W}, \mathbf{w}^{(m)}) \doteq \sum_{j \in Y} w_{\hat{y}_{j}} S(\hat{y}_{j}, s_{j}^{m}) \qquad s_{j}^{m} = \langle \mathbf{w}^{(m)}, \mathbf{f}_{j} \rangle$$
$$\mathcal{L}_{side}(\mathbf{W}, \mathbf{w}) = \sum_{m=1}^{M} \alpha_{m} l^{m}(\mathbf{W}, \mathbf{w}^{(m)})$$
$$\mathcal{L}_{HED}(\mathbf{W}, \mathbf{w}, \mathbf{h}) = \mathcal{L}_{side}(\mathbf{W}, \mathbf{w}) + \mathcal{L}_{fuse}(\mathbf{W}, \mathbf{w}, \mathbf{h})$$

This work in a nutshell

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques:

Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture: Tied Multi-Scale Networks Grouping in DCNNs

Ambiguity in boundary annotations

Common interpretation, but different position information!

Ambiguity in boundary annotations

Solution: take into account annotator inaccuracies

Ambiguity in boundary annotations

$$(x_j, y_j) \to (\{x_b\}, y_j), b \in \mathcal{B}_j$$

 $l(y_j, s_j) \to l(y_j, \max_{b \in \mathcal{B}_j} s_b)$

For every positive point, gather set of locations that can `support' it False negative if no such point leads to a positive decision

Method	Baseline	MIL	G-DSN	M-Scale	VOC	Grouping
ODS	0.7781	0.7863	0.7892	0.8033	0.8086	0.8134
OIS	0.7961	0.8083	0.8106	0.8196	0.8268	0.8308
AP	0.804	0.802	0.789	0.8483	0.861	0.866

This work in a nutshell

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques: Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture: Tied Multi-Scale Networks Spectral Clustering in DCNNs

Holistically-Nested Edge Detection Training

$$\mathcal{L}(\mathbf{W}, \mathbf{w}, \mathbf{h}) = \mathcal{L}_{side}(\mathbf{W}, \mathbf{w}) + \mathcal{L}_{fuse}(\mathbf{W}, \mathbf{w}, \mathbf{h})$$

DSN's side losses: steer network parameters to correct values $\mathcal{L}^{(t)}(\mathbf{W}, \mathbf{w}, \mathbf{h}) = (1 - \frac{t}{T})\mathcal{L}_{side}(\mathbf{W}, \mathbf{w}) + \mathcal{L}_{fuse}(\mathbf{W}, \mathbf{w}, \mathbf{h})$

Graduated DSN: remove side losses as training progresses

Method	Baseline	MIL	G-DSN	M-Scale	VOC	Grouping
ODS	0.7781	0.7863	0.7892	0.8033	0.8086	0.8134
OIS	0.7961	0.8083	0.8106	0.8196	0.8268	0.8308
AP	0.804	0.802	0.789	0.8483	0.861	0.866

This work in a nutshell

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques:

Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture:

Tied Multi-Scale Networks Grouping in DCNNs

 $\downarrow \frac{1}{2}$

 $\downarrow \frac{1}{2}$

Multi-Scale DSN

Scale fusion

Multi-Scale DSN

-tied weights

-end-to-end training

Method	Baseline	MIL	G-DSN	M-Scale	VOC	Grouping
ODS	0.7781	0.7863	0.7892	0.8033	0.8086	0.8134
OIS	0.7961	0.8083	0.8106	0.8196	0.8268	0.8308
AP	0.804	0.802	0.789	0.8483	0.861	0.866

Pascal Context Dataset

The Role of Context for Object Detection and Semantic Segmentation in the Wild , R. Mottaghi, et al, CVPR 2014

-tied weights

-end-to-end training -more data 🙂

Method	Baseline	MIL	G-DSN	M-Scale	VOC	Grouping
ODS	0.7781	0.7863	0.7892	0.8033	0.8086	0.8134
OIS	0.7961	0.8083	0.8106	0.8196	0.8268	0.8308
AP	0.804	0.802	0.789	0.8483	0.861	0.866

This work in a nutshell

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques:

Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture: Tied Multi-Scale Networks Grouping in DCNNs This work in a nutshell

Starting point: Holistically-Nested Edge Detection, S. Xie and Z. Tu, ICCV 2015

Learning Techniques:

Multiple Instance Learning for Boundary Detection Graduated Deep Supervised Networks

Network Architecture: Tied Multi-Scale Networks Grouping in DCNNs

Shi & Malik, Normalized Cuts and Image Segmentation. PAMI 2000 Arbelaez, et al, Contour Detection and Hierarchical Image Segmentation. PAMI 2011 C. Ionescu et al, Matrix Backpropagation for Training Deep Networks with Structured Layers, ICCV 2015

Catanzaro et. al.: Efficient, high-quality image contour detection. ICCV 2009

FCNNs + Spectral Clustering

 $(\mathbf{D} - \mathbf{W})y = \lambda \mathbf{D}y$

 $(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$

 $(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$

 $(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$

Catanzaro et. al.: Efficient, high-quality image contour detection. ICCV 2009 -Global Pb: ~60 seconds (CPU) -spectralPb layer: 0.2 seconds (GPU)

Image Pyramid

Tied CNN outputs

Scale fusion

NCuts & boundaries

Final outputs

All-in-one caffe network, ~1 second per frame

Progress in edge detection

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016

One last trick!

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016

2015: Deeplab: FCNNs + DenseCRF

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015

2016: Combine with spectral embedding

Boundaries Top-3 eigenvectors unaries posterior

2016: Combine with spectral embedding

Boundaries Top-3 eigenvectors unaries posterior

Spectral embedding + DenseCRF

Method	mΔP %
WICHIOU	IIIAI 70
Adelaide-Context-CNN-CRF-COCO (Lin et al., 2015)	77.8
CUHK-DPN-COCO (Liu et al., 2015)	77.5
Adelaide-Context-CNN-CRF-COCO (Lin et al., 2015)	77.2
MSRA-BoxSup (Dai et al., 2015)	75.2
Oxford-TVG-CRF-RNN-COCO (Zheng et al., 2015)	74.7
DeepLab-MSc-CRF-LF-COCO-CJ (Chen et al., 2015)	73.9
DeepLab-CRF-COCO-LF(Chen et al., 2015)	72.7
Multi-Scale DeepLab	72.1
Multi-Scale DeepLab-CRF	74.8
Multi-Scale DeepLab-CRF-Embeddings	75.4
Multi-Scale DeepLab-CRF-Embeddings-GraphCuts	75.7

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016

Bottom-up alternative: metric learning

A. Harley, I. Kokkinos, and K. Derpanis, Learning Dense Convolutional Embeddings for Semantic Segmetnation, ICLR workshops 2016

This talk: controlling DCNNs for low- and high- level tasks

- -Classification & Detection
- -Semantic Segmentation
- -Boundary Detection
- -Feature Descriptors

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, F. Moreno-Noguer, Discriminative Learning of Deep Convolutional Descriptors, ICCV15

Advertisement #1

ICCV 2015

Discriminative learning of Deep Convolutional Feature Point Descriptors

Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, Francesc Moreno-Noguer

https://github.com/cvlab-epfl/deepdesc-release

Advertisement #2

CVIU Special Issue on Deep Learning for CV

Submission deadline: April 16, 2016

Conclusion

2012 onwards: all about DCNNs

if [all] you have [is] a hammer, you treat everything like a nail

-Classification & Detection

-Semantic Segmentation

-Boundary Detection

-Feature Descriptors

2014 onwards: incorporating structure in DCNNs

trust is good, but control is better!

even better are results!

Thanks!

