Integrating Structural Information in Deep Convolutional Neural Networks for Low- and High-Level Vision

Iasonas Kokkinos
Center for Visual Computing
CentraleSupelec

Galen Group
INRIA-Saclay

31 March, 2016
Center for Machine Perception, Prague
Deep Learning and Computer Vision

1980’s
pixels → edge → texton → motif → part → object

2000-2010

2010+

Breakthrough: Imagenet 2012

Imagenet top-5 error rates

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Arxiv, 2015 [3.6%]
DCNNs and Vision

2012 onwards: all about DCNNs

if [all] you have [is] a hammer, you treat everything like a nail

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

Today:

2014 onwards: structured prediction and DCNNs

trust is good, but control is better!

This talk: controlling DCNNs for low- and high- level tasks
Convolutional/Fully Connected DCNN layers

AlexNet

VGG network
Fully convolutional neural networks

"FCNNs" (2015) or "Space Displacement Neural Nets" (1998)

Fully convolutional neural networks

Fast (shared convolutions)
Simple (dense)
This talk: controlling DCNNs for low- and high- level tasks

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

Scale-Invariant classification

\[F(x) \rightarrow \{ F(x_{s1}), \ldots, F(x_{sK}) \} \]

\[F'(x) = \frac{1}{K} \sum_{k=1}^{K} F(x_{sk}) \]

This work: \[F'(x) = \max_{k} F(x_{sk}) \]

MIL: ‘bag’ of features

T. Dietterich et al. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 1997
Position and Scale evaluation in `batch mode`

Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. ECCV 2012
Explicit Scale/Position Search + MIL Training

\[G_c = \max_{(x,y)} F_c(x, y) \]

MIL: Explicit position & scale search during both training and testing

(0) Baseline: max-pooled net
- 13.0%
- ~1% gain

(1) epitomic DCNN
- 11.9%
- ~2% gain

(2) epitomic DCNN + search
- 10.0%

Bonus: Vanilla argmax yields 48% localization error in Imagenet
Towards Object Detection

Search over position and scale: done!

Missing: aspect ratio
Procrustes Alignment: The Greeks did it first!

R. Girschick, Donahue, Darrell, Malik, RCNN, CVPR 2014
Explicit search over aspect ratio, scale & position
Explicit search over aspect ratio, scale & position

See also: Region Proposal Networks (RPN) Faster-RCNN, 2016
Pascal VOC 2007: Best sliding-window detector

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN-DPM [1]</td>
<td>43.4%</td>
<td>~10 sec/image</td>
</tr>
<tr>
<td>MP-DPM [2]</td>
<td>46.5%</td>
<td>~10 sec/image</td>
</tr>
<tr>
<td>EE-DPM [3]</td>
<td>46.9%</td>
<td>~10 sec/image</td>
</tr>
<tr>
<td>Ours</td>
<td>58.6%</td>
<td>~10 sec/image</td>
</tr>
</tbody>
</table>

- **sliding windows**
 - CNN-DPM [1]: 43.4%
 - MP-DPM [2]: 46.5%
 - EE-DPM [3]: 46.9%
 - Ours: 58.6%

- **region proposals**
 - RCNN [4]: 62.2%

This talk: controlling DCNNs for low- and high-level tasks

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

S. Chandra, I. Kokkinos, Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs, arXiv:1603.08358
Semantic segmentation task
Repurposing DCNNs for semantic segmentation

- Accelerate CNN evaluation by ‘hard dropout’ & finetuning
 - In VGG: Subsample first FC layer 7x7 → 3x3

- Decrease score map stride (32->8) with ‘atrous’ (w. holes) algorithm

OK classification-wise, rather poor segmentation-wise

- Large CNN receptive field:
 + good accuracy
 - worse performance near boundaries

J. Long, E. Shelhamer, T. Darrell, FCNNs for Semantic Segmentation, CVPR 15
FCNN-DenseCRF: Accurate & Sharp

P. Krähenbühl and V. Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS 2011

Markov Random Fields in Vision

\[P(X, Y) = \frac{1}{Z} \prod_i \Phi(Y_i, X_i) \prod_{(i,j) \in C} \Psi(X_i, X_j) \]

\[P(X|Y) = ? \]
Mean Field Inference for the Ising Model

Variational Inference: \[q^* = \arg\min_{q \in \mathcal{Q}} KL(q||p) \]

where: \[KL(q||p) = \sum_x q(x) \log \frac{q(x)}{p(x)} \]

and \(\mathcal{Q} \) simplifies minimization

Naïve mean field: \[\mathcal{Q} : \{ q : q(x) = \prod_n q_n(x_n) \} \]

Ising model: \[p(x) = \frac{1}{Z} \exp (-E(x)) \]

\[E(x) = \sum_n \sum_{m \in \mathcal{N}_n} J_{m,n} |x_m - x_n| \quad x_n \in \{-1, 1\} \]

Mean Field equations: \[q_n(1) = \tanh \left(\sum_m J_{n,m} q_m(1) \right) \]
Dense CRF: smart choice of pairwise term

\[
\psi_{i,j}(l, l') = \mu(l, l') \sum_{m=1}^{M} w_m k_m(f_i, f_j)
\]

\[
= [l \neq l'] \left[w_1 \exp \left(-\frac{||p_i - p_j||^2}{2\sigma^2_a} - \frac{||I_i - I_j||^2}{2\sigma^2_b} \right) + w_2 \exp \left(-\frac{||p_i - p_j||^2}{2\sigma^2_\gamma} \right) \right]
\]

Potts model \quad \text{‘Bilateral kernel’} \quad \text{Spatial proximity}

Mean Field Updates:

\[
Q_i(l) = \frac{1}{Z_i} \exp \left\{ -\psi_i(l) - \sum_{l'} \mu(l, l') \sum_{m=1}^{M} w_m \sum_{j \in N_i} k_m(f_i, f_j) Q_j(l') \right\}
\]

Efficient high-dimensional convolutions using the Permutohedral Lattice

Philipp Krähenbühl and Vladlen Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS 2011
Qualitative Results

FCNN

FCNN-DCRF
Qualitative Results

<table>
<thead>
<tr>
<th>Image</th>
<th>FCNN</th>
<th>FCNN-DCRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird in Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Boat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qualitative Results

FCNN

FCNN-DCRF
Indicative Results

![Images of results for FCNN and FCNN-DCRF]

- FCNN
- FCNN-DCRF
Comparison to state-of-the-art (Pascal VOC test)

<table>
<thead>
<tr>
<th>Method</th>
<th>mean IOU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRA-CFM</td>
<td>61.8</td>
</tr>
<tr>
<td>FCN-8s</td>
<td>62.2</td>
</tr>
<tr>
<td>TTI-Zoomout-16</td>
<td>64.4</td>
</tr>
<tr>
<td>DeepLab-CRF (our)</td>
<td>66.4</td>
</tr>
<tr>
<td>DeepLab-MSc-CRF (our)</td>
<td>67.1</td>
</tr>
</tbody>
</table>

Pre-CNN: Up to 50%

CNN: 60-64%

CNN + CRF: >67%

Pascal Train: 67%

Coco + Pascal: 71%

Semantic Part Segmentation

Fast, Exact, and Multi-Scale Inference for FCNN-CRF

S. Chandra, I. Kokkinos, Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs, arXiv:1603.08358
Gaussian Random Fields: Random Fields for dummies

\[
\pi(x) = \frac{1}{Z} \exp \left(-x^T \Theta x + \theta^T x \right)
\]

\[
\Theta x^* = \theta
\]

Maximum-A-Posteriori inference =
Minimum Mean-Squared Error inference =
solution of linear system

Gaussian MRF: blurry samples (hard to have outliers)
Gaussian CRF: image-based pairwise terms (e.g. discontinuity-preserving)

Jancsary, Nowozin, Sharp & Rother, Regression Tree Fields, CVPR12
Tappen, Liu, Adelson & Freeman, Learning Gaussian CRFs for low-level vision, CVPR07
Deep Gaussian Conditional Random Field

Pairwise terms

Dog-Background (Vertical)

Dog-Background (Horizontal)

Outputs

Unary terms

Posterior
Deep Gaussian Conditional Random Field vs. DenseCRF

Variables
- Deep Gaussian CRF: continuous
- Dense CRF: discrete

Inference
- Deep Gaussian CRF: exact (linear system)
- Dense CRF: approximate (mean-field)

Learning
- Deep Gaussian CRF: exact (linear system)
- Dense CRF: BackProp on mean-field

Unary terms
- Deep Gaussian CRF: CNN-based
- Dense CRF: CNN-based

Pairwise terms
- Deep Gaussian CRF: CNN-based
- Dense CRF: parametric (Gaussian form)
Linear systems & Gaussian CRFs

\[Ax = B \]

Gauss-Seidel:
\[x_i^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left\{ b_i - \sum_{j<i} a_{ij} x_j^{(k+1)} - \sum_{j>i} a_{ij} x_j^{(k)} \right\} \]

Jacobi:
\[x_i^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left\{ b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right\} \]

\[\Theta x^* = \theta \]

Parallel Mean-Field

Sequential Mean-Field

Conjugate gradients: 2x faster!
Naïve Multi-Resolution Semantic Segmentation

I. Kokkinos, Pushing the Boundaries of Boundary Detection using Deep Learning, ICLR 2016
Learn to enforce coupling of different results
Consistently better results than decoupled learning!
Improvements/Complementarity with DenseCRF
Quantitative Results

<table>
<thead>
<tr>
<th>Method</th>
<th>IoU</th>
<th>IoU after dense CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basenet</td>
<td>72.72</td>
<td>73.78</td>
</tr>
<tr>
<td>QO₄</td>
<td>73.41</td>
<td>75.13</td>
</tr>
<tr>
<td>QO₄<sup>mres</sup></td>
<td>73.86</td>
<td>75.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>mean IoU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepLab-CRF (Chen et al., 2014)</td>
<td>66.4</td>
</tr>
<tr>
<td>DeepLab-MSc-CRF (Chen et al., 2014)</td>
<td>67.1</td>
</tr>
<tr>
<td>DeepLab-CRF-7x7 (Chen et al., 2014)</td>
<td>70.3</td>
</tr>
<tr>
<td>DeepLab-CRF-LargeFOV (Chen et al., 2014)</td>
<td>70.3</td>
</tr>
<tr>
<td>DeepLab-MSc-CRF-LargeFOV (Chen et al., 2014)</td>
<td>71.6</td>
</tr>
<tr>
<td>Deeplab-Cross-Joint (Chen et al., 2015a)</td>
<td>73.9</td>
</tr>
<tr>
<td>CRFRNN (Zheng et al., 2015)</td>
<td>74.7</td>
</tr>
<tr>
<td>Adelaide Context (Lin et al., 2016)</td>
<td>77.8</td>
</tr>
<tr>
<td>Deep Parsing Network (Liu et al., 2015)</td>
<td>77.4</td>
</tr>
<tr>
<td>Ours (QO₄<sup>mres</sup>)</td>
<td>75.5</td>
</tr>
</tbody>
</table>
This talk: controlling DCNNs for low- and high- level tasks

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

I. Kokkinos, Pushing the Boundaries of Boundary Detection using Deep Learning, ICLR 2016 (earlier title: ‘Surpassing Humans in Boundary Detection’)
Can humans do it?

Segmentation: task-agnostic, ill-posed
Can humans do it?

Segmentation: task-agnostic, ill-posed
Can humans do it?

Segmentation: task-agnostic, ill-posed
30 years of boundary detection

S. Xie and Z. Tu, Holistically-Nested Edge Detection, ICCV 2015
I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016
This work

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Grouping in DCNNs
Holistically-Nested Edge Detection network
HED network

VGG convolutional layers (1-5)

Outputs: f^m, $m = 1, \ldots, 5$
HED network

Parameters: \mathbf{W}^m

Inputs: \mathbf{f}^m

Outputs: $\mathbf{S}^m = \langle \mathbf{W}^m, \mathbf{f}^m \rangle$ $m = 1, \ldots, 5$
HED network

Parameters: \((\alpha_1, \ldots, \alpha_5)\)

Inputs: \(s^1, \ldots, s^5\)

Outputs: \(f = \sum_{m=1}^{5} \alpha_m s^m\)
HED network

\[l^m(W, w^{(m)}) = \sum_{j \in Y} w_{\hat{y}_j} S(\hat{y}_j, s_j^m) \quad s_j^m = \langle w^{(m)}, f_j \rangle \]

\[\mathcal{L}_{side}(W, w) = \sum_{m=1}^{M} \alpha_m l^m(W, w^{(m)}) \]

\[\mathcal{L}_{HED}(W, w, h) = \mathcal{L}_{side}(W, w) + \mathcal{L}_{fuse}(W, w, h) \]
This work in a nutshell

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Grouping in DCNNs
Ambiguity in boundary annotations

Common interpretation, but different position information!
Ambiguity in boundary annotations

Solution: take into account annotator inaccuracies
Ambiguity in boundary annotations

For every positive point, gather set of locations that can `support` it.

False negative if no such point leads to a positive decision.

<table>
<thead>
<tr>
<th>Method</th>
<th>Baseline</th>
<th>MIL</th>
<th>G-DSN</th>
<th>M-Scale</th>
<th>VOC</th>
<th>Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>0.7781</td>
<td>0.7863</td>
<td>0.7892</td>
<td>0.8033</td>
<td>0.8086</td>
<td>0.8134</td>
</tr>
<tr>
<td>OIS</td>
<td>0.7961</td>
<td>0.8083</td>
<td>0.8106</td>
<td>0.8196</td>
<td>0.8268</td>
<td>0.8308</td>
</tr>
<tr>
<td>AP</td>
<td>0.804</td>
<td>0.802</td>
<td>0.789</td>
<td>0.8483</td>
<td>0.861</td>
<td>0.866</td>
</tr>
</tbody>
</table>
This work in a nutshell

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Spectral Clustering in DCNNs
Holistically-Nested Edge Detection Training

\[\mathcal{L}(W, w, h) = \mathcal{L}_{side}(W, w) + \mathcal{L}_{fuse}(W, w, h) \]

DSN’s side losses: steer network parameters to correct values

\[\mathcal{L}^{(t)}(W, w, h) = (1 - \frac{t}{T})\mathcal{L}_{side}(W, w) + \mathcal{L}_{fuse}(W, w, h) \]

Graduated DSN: remove side losses as training progresses

<table>
<thead>
<tr>
<th>Method</th>
<th>Baseline</th>
<th>MIL</th>
<th>G-DSN</th>
<th>M-Scale</th>
<th>VOC</th>
<th>Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>0.7781</td>
<td>0.7863</td>
<td>0.7892</td>
<td>0.8033</td>
<td>0.8086</td>
<td>0.8134</td>
</tr>
<tr>
<td>OIS</td>
<td>0.7961</td>
<td>0.8083</td>
<td>0.8106</td>
<td>0.8196</td>
<td>0.8268</td>
<td>0.8308</td>
</tr>
<tr>
<td>AP</td>
<td>0.804</td>
<td>0.802</td>
<td>0.789</td>
<td>0.8483</td>
<td>0.861</td>
<td>0.866</td>
</tr>
</tbody>
</table>
This work in a nutshell

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Grouping in DCNNs
Boundary CNN scale-space
Boundary CNN scale-space

\[\frac{1}{2} \]
Boundary CNN scale-space
Boundary CNN scale-space
Boundary CNN scale-space
Multi-Scale DSN

Image Pyramid Tied CNN outputs Scale fusion
Multi-Scale DSN

-tied weights -end-to-end training

<table>
<thead>
<tr>
<th>Method</th>
<th>Baseline</th>
<th>MIL</th>
<th>G-DSN</th>
<th>M-Scale</th>
<th>VOC</th>
<th>Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>0.7781</td>
<td>0.7863</td>
<td>0.7892</td>
<td>0.8033</td>
<td>0.8086</td>
<td>0.8134</td>
</tr>
<tr>
<td>OIS</td>
<td>0.7961</td>
<td>0.8083</td>
<td>0.8106</td>
<td>0.8196</td>
<td>0.8268</td>
<td>0.8308</td>
</tr>
<tr>
<td>AP</td>
<td>0.804</td>
<td>0.802</td>
<td>0.789</td>
<td>0.8483</td>
<td>0.861</td>
<td>0.866</td>
</tr>
</tbody>
</table>
Pascal Context Dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Baseline</th>
<th>MIL</th>
<th>G-DSN</th>
<th>M-Scale</th>
<th>VOC</th>
<th>Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>0.7781</td>
<td>0.7863</td>
<td>0.7892</td>
<td>0.8033</td>
<td>0.8086</td>
<td>0.8134</td>
</tr>
<tr>
<td>OIS</td>
<td>0.7961</td>
<td>0.8083</td>
<td>0.8106</td>
<td>0.8196</td>
<td>0.8268</td>
<td>0.8308</td>
</tr>
<tr>
<td>AP</td>
<td>0.804</td>
<td>0.802</td>
<td>0.789</td>
<td>0.8483</td>
<td>0.861</td>
<td>0.866</td>
</tr>
</tbody>
</table>

- tied weights
- end-to-end training
- more data 😊
This work in a nutshell

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Grouping in DCNNs
This work in a nutshell

Starting point:
Holistically-Nested Edge Detection,
S. Xie and Z. Tu, ICCV 2015

Learning Techniques:
Multiple Instance Learning for Boundary Detection
Graduated Deep Supervised Networks

Network Architecture:
Tied Multi-Scale Networks
Grouping in DCNNs

Shi & Malik, Normalized Cuts and Image Segmentation. PAMI 2000
Catanzaro et. al.: Efficient, high-quality image contour detection. ICCV 2009
FCNNs + Spectral Clustering
FCNNs + Spectral Clustering
FCNNs + Spectral Clustering

\[(D - W)y = \lambda Dy\]
FCNNs + Spectral Clustering

\[(D - W)y = \lambda Dy\]
FCNNs + Spectral Clustering

\[(D - W)y = \lambda Dy\]
FCNNs + Spectral Clustering

\[(D - W)y = \lambda Dy\]
FCNNs + Spectral Clustering

\[(D - W)y = \lambda Dy\]

Catanzaro et al.: Efficient, high-quality image contour detection. ICCV 2009
-Global Pb: ~60 seconds (CPU) -spectralPb layer: 0.2 seconds (GPU)
All-in-one caffe network, ~1 second per frame
Progress in edge detection

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016

Recall vs Precision plot showing different methods:
- Human: F = 0.8027
- Grouping: F = 0.8134
- VOC data: F = 0.8086
- Multi-res: F = 0.8033
- G-DSN: F = 0.7893
- MIL: F = 0.7875
- Baseline: F = 0.7781

This work is indicated by a red arrow pointing to a point on the curve, suggesting an improvement over the baseline.
One last trick!

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016
2015: Deeplab: FCNNs + DenseCRF

2016: Combine with spectral embedding
2016: Combine with spectral embedding

Boundaries Top-3 eigenvectors unaries posterior
Spectral embedding + DenseCRF

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide-Context-CNN-CRF-COCO (Lin et al., 2015)</td>
<td>77.8</td>
</tr>
<tr>
<td>CUHK-DPN-COCO (Liu et al., 2015)</td>
<td>77.5</td>
</tr>
<tr>
<td>Adelaide-Context-CNN-CRF-COCO (Lin et al., 2015)</td>
<td>77.2</td>
</tr>
<tr>
<td>MSRA-BoxSup (Dai et al., 2015)</td>
<td>75.2</td>
</tr>
<tr>
<td>Oxford-TVG-CRF-RNN-COCO (Zheng et al., 2015)</td>
<td>74.7</td>
</tr>
<tr>
<td>DeepLab-MSc-CRF-LF-COCO-CJ (Chen et al., 2015)</td>
<td>73.9</td>
</tr>
<tr>
<td>DeepLab-CRF-COCO-LF(Chen et al., 2015)</td>
<td>72.7</td>
</tr>
<tr>
<td>Multi-Scale DeepLab</td>
<td>72.1</td>
</tr>
<tr>
<td>Multi-Scale DeepLab-CRF</td>
<td>74.8</td>
</tr>
<tr>
<td>Multi-Scale DeepLab-CRF-Embeddings</td>
<td>75.4</td>
</tr>
<tr>
<td>Multi-Scale DeepLab-CRF-Embeddings-GraphCuts</td>
<td>75.7</td>
</tr>
</tbody>
</table>

I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, ICLR 2016
Bottom-up alternative: metric learning

This talk: controlling DCNNs for low- and high-level tasks

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, F. Moreno-Noguer,
Discriminative Learning of Deep Convolutional Descriptors, ICCV15
Discriminative learning of Deep Convolutional Feature Point Descriptors

Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, Francesc Moreno-Noguer

https://github.com/cvlab-epfl/deepdesc-release
Advertisement #2

CVIU Special Issue on Deep Learning for CV

Submission deadline: April 16, 2016
Conclusion

2012 onwards: all about DCNNs

if [all] you have [is] a hammer, you treat everything like a nail

- Classification & Detection
- Semantic Segmentation
- Boundary Detection
- Feature Descriptors

2014 onwards: incorporating structure in DCNNs

trust is good, but control is better!
even better are results!

Thanks!